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Abstract: Besides their extremely useful properties as solvent, ionic liquids (ILs) are now considered
to be highly instructive tools for enhancing the rates of chemical reactions. The ionic nature of the IL
anion and cation seems to be the origin of this fascinating function of ILs as organocatalyst/promoter
through their strong Coulombic forces on other ionic species in the reaction and also through the
formation of hydrogen bonds with various functional groups in substrates. It is now possible to
tailor-make ILs for specific purposes as solvent/promoters in a variety of situations by carefully
monitoring these interactions. Despite the enormous potentiality, it seems that the application of ILs
as organocatalysts/promoters for chemical reactions have not been fully achieved so far. Herein, we
review recent developments of ILs for promoting the nucleophilic reactions, focusing on fluorination.
Various aspects of the processes, such as organocatalytic capability, reaction mechanisms and salt
effects, are discussed.
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1. Introduction

Ionic liquids (ILs) have found a wide range of applications in various fields of chem-
istry (organic, physical, medicinal, analytical and materials chemistry) because of their
unique and useful physicochemical properties. In addition to being excellent solvents
(due to high polarity) and environmentally benign solvents (because of low volatility, no
metallic element, and easy recovery) ionic liquids are also gaining importance as cata-
lysts/promoters in various chemical transformations [1–16]. Significantly enhanced reac-
tivity and selectivity have also been observed in concerted reactions such as nucleophilic
substitution reactions in ionic liquids [14–16]. By combining a variety of cations and anions
with characteristic structures, it is possible to tailor-make task-specific ILs with desirable
properties for specific chemical reactions [15,17–28].

Nucleophilic fluorination [13,14,16,29–40] has received considerable attention recently
because of the importance of the synthesis of radiopharmaceutical substances to be used as
diagnostic materials for the powerful technique of positron emission tomography (PET) [32].
Because the SN2 fluorination processes need not deal with the cumbersome F2 gas, they are
advantageous over the electrophilic methods. There are two critical issues here, however,
concerning the counter-cation and solvent (Scheme 1). First, the common use of bulky
counter-cations such as tetrabutylammonium (TBA+) may minimize the harmful Coulombic
influence on the nucleophile, but usually suffers from a large amount of by-products (for
example, E2 products). Alkali metal cations such as K+ or Cs+ may be more desirable, but
these sources of fluoride exhibit the problem of solubility in organic solvents. Moreover,
the strong electrostatic influence of alkali metal counter-cations was thought to decrease
the reactivity of nucleophiles significantly. Second, protic solvents (water, alcohol), which
are deemed to be favorable with regard to the solubility for alkali metal fluorides, were
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considered to be disadvantageous for nucleophilic reactions due to the hydrogen bonding
between the –OH of solvent molecules and the nucleophile.
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butanol, t-amyl alcohol [38]) may lead excellent SN2 yields (>90%) in reasonable reaction 
time (<6 h). As the key to the mechanism of this class of phenomenally efficient and selec-
tive nucleophilic fluorination, it was proposed [32,33,36,37] that the solvents and/or pro-
moters act as Lewis bases on the counter-cation, mitigating the unfavorable Coulombic 
influence of the latter on the nucleophile, thereby producing essentially ‘naked’ nucleo-
phile. 

In this respect, ILs were regarded as excellent solvent for metal fluorides, completely 
solving the problem of solubility of alkali metal fluorides (MFs). Due to the ionic nature 
of ILs, they can also be highly desirable promoters for nucleophilic fluorination using 
MFs. The IL cations and anions may facilitate the SN2 fluorination processes through their 
strong Coulombic interactions with MF, and also through the formation of hydrogen 
bonds with various functional groups in substrates. 

Here, in this brief review, we describe the studies for IL-promoted nucleophilic fluor-
ination that provided important advances in this very useful technology. Both experi-
mental and theoretical (mechanistic) investigations are treated to encourage further de-
velopments. This review is not exhaustive, but discusses various features (efficacy of ILs, 
mechanism, salt effects, IL derivatives, etc.) of IL-facilitated fluorination. 

 
Scheme 1. Two examples of nucleophilic fluorination (a) solvent free nucleophilic introduction of 
fluorine with [bmim][F], Ref. [35] (b) nucleophilic fluorination with KF catalyzed by 18-Crown-6 
and bulky diols, Ref. [40]. 
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CsF facilitated by ILs. They observed that for nucleophilic fluorination of 2-(3-methanesul-
fonyloxypropyl)naphthalene (Scheme 2), the IL [bmim][BF4] tremendously increased the 
reaction rates. Using catalytic amounts (0.5 equiv) of [bmim][BF4] was enough to almost 
complete the reaction over 12 h with excellent SN2 yields (>85%) (Table 1). They also found 
that a small amount of water did not much affect the reaction, suggesting that the organo-
catalysis by ILs did not require anhydrous conditions. They also tried other ILs, finding 
similar results with the exception of [bmim][NTf2] in CH3CN (Table 2). 
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These two traditional ‘common senses’ for nucleophilic fluorination proved to be
inaccurate in a series of recent investigations [13,14,16,32–39]: It was observed that the
use of metal fluorides in combination with Lewis base promoters (oligoethylene glycol [33],
t-butanol, t-amyl alcohol [38]) may lead excellent SN2 yields (>90%) in reasonable reaction
time (<6 h). As the key to the mechanism of this class of phenomenally efficient and
selective nucleophilic fluorination, it was proposed [32,33,36,37] that the solvents and/or
promoters act as Lewis bases on the counter-cation, mitigating the unfavorable Coulombic
influence of the latter on the nucleophile, thereby producing essentially ‘naked’ nucleophile.

In this respect, ILs were regarded as excellent solvent for metal fluorides, completely
solving the problem of solubility of alkali metal fluorides (MFs). Due to the ionic nature of
ILs, they can also be highly desirable promoters for nucleophilic fluorination using MFs.
The IL cations and anions may facilitate the SN2 fluorination processes through their strong
Coulombic interactions with MF, and also through the formation of hydrogen bonds with
various functional groups in substrates.

Here, in this brief review, we describe the studies for IL-promoted nucleophilic fluori-
nation that provided important advances in this very useful technology. Both experimental
and theoretical (mechanistic) investigations are treated to encourage further developments.
This review is not exhaustive, but discusses various features (efficacy of ILs, mechanism,
salt effects, IL derivatives, etc.) of IL-facilitated fluorination.

2. Promotion of SN2 Fluorination by ILs Using Alkali Metal Fluorides

Kim, Song and Chi [14] reported in 2002 the first case of SN2 reactions using
KF or CsF facilitated by ILs. They observed that for nucleophilic fluorination of
2-(3-methanesulfonyloxypropyl)naphthalene (Scheme 2), the IL [bmim][BF4] tremendously
increased the reaction rates. Using catalytic amounts (0.5 equiv) of [bmim][BF4] was enough
to almost complete the reaction over 12 h with excellent SN2 yields (>85%) (Table 1). They
also found that a small amount of water did not much affect the reaction, suggesting that
the organocatalysis by ILs did not require anhydrous conditions. They also tried other ILs,
finding similar results with the exception of [bmim][NTf2] in CH3CN (Table 2).

Studies for other metal fluorides by these authors showed that the reaction rates
depended strongly on the alkali metal counter-cation [15]. For example, fluorination using
the metal salts LiF and NaF did not proceed at all under the influence of [bmim][BF4]
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(Table 3). This observation is, of course, due to the difference in the Coulombic influence
of the alkali metal counter-cations on the nucleophile (Li+ > Na+ > K+ > Rb+ > Cs+):
The Coulombic attractive forces between the alkali metal cation Li+, Na+ and F− are so
strong [36] that the influence of the IL on Li+ and Na+ was not enough for facile reactions.
In fact, to the best of our knowledge, the use of Li+ or Na+ as a counter-cation has not been
successful so far for SN2 fluorination. Kim, Song and Chi applied this methodology to a
variety of substrates, observing similar acceleration rates for a wide range of SN2 processes.
These authors also proposed [13] that the role of ILs for enhancing the rates of nucleophilic
substitution reactions was as an amphiphilic “electrophile-nucleophile” dual activator
(acting both as Lewis acid on the nucleophile and as Lewis base on the counter-cation),
which was the first such mechanistic insight to the ILs as organocatalysts for SN2 reactions.
According to this conception, IL cation–IL anion–counter-cation–nucleophile–substrate
form a compact configuration by Coulombic forces for facile SN2 reactions. The proof for
this concept in molecular detail came in 2011, as described below.
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Table 2. Fluorination of mesylate 1 with KF in [bmim][BF4] in various ionic liquids.
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3. SN2 Fluorination Facilitated by Polymer-Supported ILs

Considerable attention was also paid to polymer-supported (PS) ILs [16,41–43], which
showed high efficacy as catalysts for nucleophilic fluorination. One of the advantages of
this type of promoter/catalyst is, of course, the possibility of reuse. Kim and Chi [16] re-
ported that polystyrene-based ILs [hmin]X (hmin = 1-n-hexyl-3-methylimidazolium cation,
X = BF4, OTf) promoted fluorination reactions (such as that shown in Scheme 3) in very
high yields and can be reused for many SN2 reactions. Table 4 illustrates that fluorination
reaction of the mesylate substrate (2) in the presence of 2.2 or 1.1 equiv of PS[hmim][BF4]
was complete within 2 h, with excellent SN2 yields of 97–98% (entries 1 and 2), whereas
the same reaction with 3 equiv of CsF in CH3CN at 100 C barely proceeded after 2 h (entry
5). Additionally, fluorination using PS[hmim][BF4] as an immobilized catalyst (entry 3)
proceeded much faster than that using the same amount of IL as the catalytic system (entry
6). Chi and co-workers also studied [41] the synergistic effects of polymer-supported ionic
liquid catalyst/tert-alcohol solvent system (Scheme 2) for SN2 fluorination, in compari-
son with the corresponding reactions in tert-alcohol and in PS[hmim][BF4]/CH3CN. They
observed the SN2 yield of 18, 40, and 84%, respectively, a significant increase due to the
synergistic effects (Table 5). Application of this methodology to various substrates, leaving
the groups –Br, –Cl, –OMs, –OTs and –OTf, was attempted, and Chi and co-workers mostly
obtained > 80 % fluorination yields within 12 h.
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Table 4. Fluorinations of mesylate 2 with alkali–metal fluorides (MF) using PS[hmim][BF4] or the
stated alternative reagents [a].
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Entry PS[hmim][BF4] mg
(Equiv) MF

Temp.
(◦C)

Time
(h)

Yield of Product (%)

1 2a 2b

1 227 (0.5) in CH3CN CsF 80 12 9 89 –
2 – CsF 80 6 – 93 5
3 PS[hmim][OTf] (0.5) CsF 80 2.5 – 95 3
4 227 (0.5) RbF 90 1.5 – 97 2
5 – RbF 90 24 13 76 9
6 227 (0.5) KF 100 7 – 91 4
7 – KF 100 24 90 trace 7
8 454 (1.0) CsF 80 1 – 96 2
9 – in CH3CN CsF 100 2 91 trace –

10 18-crown-6 (2.0) in
CH3CN KF 100 24 53 40 –

All reactions were carried out on a 1.0 mmol reaction scale in 4.0 mL of solvent.

4. Mechanistic Features of IL-Facilitated SN2 Fluorination Using Metal Fluorides

A rough inspection for catalysis of nucleophilic fluorination (and also other nucle-
ophilic processes involving the nucleophiles other than F−) by ILs may look quite puzzling
for two apparent reasons: First, the ionic liquid cation may slow the reactivity of F− due to
its strong Coulombic influence on F−. Second, the ionic liquid anion may try to stay as far
away as possible from F− also because of the repelling electrostatic interactions with F−.
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A clue to solving this difficulty of interpreting the experimental observed promotion by
ILs came from the mechanism of SN2 reactions using alkali metal/nucleophile complexes
facilitated by bulky protic solvents (t-butanol, t-amyl alcohol) and oligoethylene glycols. In
contrast with conventional account of SN2 processes, the –OH groups in these promoters do
not act as Lewis acids on F− (thus, retarding the reactions), but as Lewis bases on the alkali
metal counter-cation to alleviate the latter’s harmful electrostatic influence on F−, thereby
producing an almost ‘naked’ nucleophile. This new mechanistic feature of SN2 processes
was able to explain lots of experimental observations for the new class of SN2 reactions
using KF or CsF in the presence of bulky alcohols and oligoethylene glycols. According to
this mechanistic conception, an alternative feature of ionic interactions among the IL cation,
IL anion, alkali metal cation (K+ or Cs+) and F− would be envisioned: (1) the IL cation
may not only interact with F− but also with the IL anion, and thus these latter Coulombic
interactions may significantly weaken the IL cation’s retarding influence on F−. (2) the IL
anion, as Lewis bases, may act on K+ or Cs+ that mitigate the strong Coulombic influence
of the alkali metal counter-cation, just as the O atoms of protic solvent molecules or of
oligoethylene glycols. These strong interactions among the four ionic species may also help
the formation of a pre-reaction complex and transition state that is highly favorable for SN2
attack of F−, hence the observed high SN2 selectivity.

Song and co-workers [13] discussed a range of chemical reactions to elucidate the origin
of ‘positive effects of ionic liquids on catalysis’. The authors developed their concepts based
on the ‘stabilization of highly reactive intermediates’ (vinyl cations, arenium cations, oxygen
radical anions, etc.), formation of more reactive catalytic species for rare earth triflate cat-
alyzed reactions, and ‘stabilized transition state’ for nucleophilic fluorination in ionic liquids.
Song and co-workers’ conception of the IL-assisted SN2 fluorination (ILs act as amphiphilic
“electrophile-nucleophile” dual activator: The counter-anion of ILs acts as a Lewis base toward
K+, drastically reducing its electrostatic effects and thereby ‘freeing’ the nucleophile F− and
the acidic C2-proton interacts with the mesylate leaving group, helping it to detach from
the reactant) was confirmed by Oh et al. [37] by quantum chemical calculations, treating the
nucleophilic fluorination of 2-(3-methanesulfonyloxypropyl) naphthalene with CsF. Figure 1
depicts this mechanistic feature obtained by Oh et al. for fluorination reaction [Cs+F− +
C3H7OMs→ C3H7F + Cs+OMs−] in [bmim][OMs]. The IL cation [bmim], IL anion [OMs],
nucleophile F−, counter-cation Cs+ and the leaving group of the substrate form a very com-
pact cyclic structure. The counter-cation Cs+ binds both to F− and the leaving group -OMs,
allowing an ideal configuration for the nucleophilic attack to be formed. The role of the IL
cation [bmim] and IL anion [OMs] for accelerating the reaction is clearly seen: [OMs] (and
the leaving group) interacts with the counter-cation Cs+, reducing the retarding Coulombic
influence of Cs+ on F− (thus “freeing” F−), whereas [bmim] ‘collects’ [OMs], Cs+ and F−

for this ideal configuration. The role of Cs+ promoting the approach of F− to the leaving
group (the substrate) and that of [OMs] (acting as a Lewis base) to neutralize the Coulombic
influence of Cs+ on F− seems to be the key factor in this mechanism. In this sense, the IL
anion [OMs] plays its role just as the electronegative O atoms do in nucleophilic fluorination
catalyzed by oligoethylene glycols [33] and bulky alcohols [38].
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5. Salt Effects

Magnier and co-workers reported that, in their use [35] of the IL [bmim]F in solvent-
free environments for SN2 fluorination, using 3 equiv. of the IL significantly enhanced the
reaction yield as compared with the case of IL: substrate ratio = 1:1. This observation of
enhanced fluorination yield from 47 to 84% by changing the IL: substrate molar ratio from
1:1 to 3:1 (Table 6) indicated significant salt effects that require mechanistic elucidation. In
the process of quantum chemical analysis, Choi and Oh [44] found a new feature for the role
of IL when the IL: substrate ratio = 2:1, as shown in Figure 2: The anion F− in the second
IL unit acts as an additional Lewis base on the two IL cations, not as a nucleophile, for
facilitating the reaction. The calculated Gibbs free energy of activation decreases from 20.4
to 18.5 kcal/mol when the IL: substrate ratio increases from 1:1 to 2:1, in good agreement
with the experimental observation of increased yield of fluorination.

A different kind of salt effect was observed by Grée and co-workers [45]. They found
that adding KPF6

− or using 2 equiv. of KF in SN2 fluorination activated by [Bmin][PF6]
significantly enhanced the rate of the reaction (Figure 3). These experimental observations
were also analyzed by quantum chemical calculations by Oh and Lee [46] (Figure 4), with
interpretations similar to those for Magnier and co-workers: The additional PF6

− or KF
plays its role as an extra Lewis base acting on the counter-cation, further reducing the
unfavorable influence of the latter on the nucleophile. Thus, the mechanistic study by
quantum chemical methods was able to account for the experimentalists’ routine use of
>2 equiv. metal salts for SN2 reactions.

Table 6. Fluorination of 3-phenylpropyl p-toluenesulfonate with [bmim][F].
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Entry Time (min) Temperature (◦C) BMIMF (Equiv) Yield a (%)

1 10 80 2 66
2 10 100 2 66
3 10 80 3 77
3 30 80 1 49
4 30 80 2 84
5 30 80 3 95 (85) b

6 360 80 5 83
a Yield determined 19F NMR with internal reference. b Isolated yield.
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6. Organocatalysis of Nucleophilic Fluorination by IL Derivatives

Attempts were made for improving the efficacy of ILs by synthesizing and using IL
derivatives. Once the role of ILs as amphiphilic “electrophile-nucleophile” dual activators,
and specifically the action of the IL anion as a Lewis base interacting with the alkali metal
counter-cation, was elucidated, then the scheme for further development would be systematic
and straightforward. Several investigators indeed carried out this task [34,47–50].

Shinde et al. [34] functionalized ILs with the tert-alcohol moiety, resulting in the
1-(2-hydroxy-2-methyl-n-propyl)-3-methylimidazolium mesylate IL ([C1im-tOH]-[OMs]),
which was tested experimentally for the SN2 fluorination with CsF. Their results showed that
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the selectivity and yield increased considerably in comparison to other non-functionalized ILs,
as an indication that the IL unit and tert-alcohol moiety produced synergetic effects. Oh et al.
reported an activation barrier (∆G‡) values of 20.8 kcal/mol when the reaction was carried
out in the presence of the [C4mim][OMs] and 19.1 kcal/mol when the [C1im-tOH][OMs]
was used, in agreement with the experimental yields of 32 and 100%, respectively (Table 7).
Use of Oligoethylene glycolic imidazolium salts as a promoter for SN2 reactions by Kim and
co-workers [47,48] is another new development toward tailor-making the ILs for specific
purposes. The authors observed that these fused promoters exhibit much better efficacy for
SN2 fluorination (Figure 5).

The mechanisms of the synergistic effects of these IL derivatives were treated else-
where [49]; thus, here, we provide only a succinct description: The t-BuOH unit acts as an
“anchor” to the leaving group for facile nucleophilic attack by F−, rather than as a Lewis
base to Cs+, also helping to decrease the retarding effects of the H-F− interactions. On the
other hand, the six O atoms of the two hexaethylene glycol units in [dihexaEGmim][X] ILs
coordinate K+, and the two –OH groups, each from the two hexaEGs, act as an “anchor” to
the nucleophile F−, thereby helping the formation of a ‘free’ nucleophile that is essentially
separated from the counter-cation.

Table 7. Experimentally Observed Relative Efficiency and Calculated Barriers of SN2 Reactions
[Cs+F− + C3H7OMs → C3H7F + Cs+OMs−] (energy and Gibbs free energy in kcal/mol) in ionic
liquids.

Ionic Liquids E‡ G‡100◦C SN2 Yield (%)

[bmim][BF4] 19.8 21.9 24
[bmim][OMs] 20.3 20.8 32

[mim-tOH][OMs] 16.0 19.1 100
Reaction was carried out on a 0.2 mmol scale of 3-(naphthalen-2-yloxy) propyl methanesulfonate with 5 equivalent
of CsF using 8 equivalent of [N-butylthiazolium][OMs] in CH3CN (0.6 mL) for 50 min at 100 ◦C.
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7. Aromatic (SNAr) Fluorination of Diaryliodonium Salts Using MFs

Aromatic (SNAr) [51] fluorination has profound implications with regard to the synthe-
sis of aromatic radiopharmaceuticals that may be used as diagnostic or therapeutic agents
for PET technology. One typical example would be the synthesis of [18F]F-dopa. This
class of nucleophilic fluorination has been under intensive study since the development
of diaryliodonium salts as very useful substrates by Pike and coworkers [52] in 1998. The
efficacy of solvent/promoter ILs for fluorination of diaryliodonium salts [52–66], however,
has not been systematically tested so far. There seems to be a great possibility that ILs could
make a profound difference in the efficiency of this class of reaction, because the hyperva-
lent I+ in the substrates may directly interact with the IL anion by the strong Coulombic
force. In contrast with organic solvent, the counter-anion to I+ and the counteraction to
F− may also interact with the IL cation/anion in a very complicated way. For SNAr ra-
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diofluorination, the use of weak bases such as K2CO3 is necessitated to extract 18F−, which
could further complicate the nature of interactions. Thus, mechanistic investigation for
‘cold’ fluorination (introduction of 19F) would be considerably easier. Discussion of (SNAr)
fluorination, including metal-catalyzed processes, would require a separate review; thus,
we only give a brief description of some recent developments in the organocatalysis of
diaryliodonium salts using MFs, in order to stimulate experimental and theoretical studies
for this promising subject.

Scheme 4 depicts the cold and hot SNAr fluorination reactions first advanced by Pike
and co-workers [52], in which the hot reaction reached 80% completion after 40 min in
CH3CN. This method proved a powerful technique to fluorinate the electron-rich rings
with improved yield and controlled regioselectivity that had been difficult to achieve by
conventional methods.
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A more recent synthetic route for [18F]F-DOPA adopted by Maisonial-Besset et al. [61] 
seems to be an advance, because their method obviates the need for the use of base, 
cryptand or metal catalyst with improved RCY (27–38%). The fully automated synthetic 
procedure starts from the t-butyl ester precursor (Scheme 6). 

Scheme 4. (a) Cold fluorination using CsF in CH3CN; (b) hot fluorination of diarylio donium salts using
(i) [18F] K+-APE 2.2.2 under N2 at 85 ◦C 40 min and (ii) [18F]F− Cs+, in CH3CN under N2 at 85 ◦C, 40 min.

This nucleophilic protocol developed by Pike and co-workers was employed by Wirth
and co-workers [58] for the multi-step synthesis of the elusive radiotracer [18F]F-dopa using
chiral phase-transfer catalysts (Scheme 5), which was further advanced later to the one-step
synthetic technique [59]. The RCY was reported to be >35 %. A number of advantages
(for example, no need to handle carrier-added [18F]F2 gas) of the nucleophilic procedure
involving diaryliodonium salts over the electrophilic [18F]-fluorination were demonstrated.
Scheme 4 shows multistep synthesis to [18F]6-fluoro-3,4-dihydroxy-L-phenylalanine ([18F]F-
dopa) using chiral phase-transfer catalysts.
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A more recent synthetic route for [18F]F-DOPA adopted by Maisonial-Besset et al. [61]
seems to be an advance, because their method obviates the need for the use of base,
cryptand or metal catalyst with improved RCY (27–38%). The fully automated synthetic
procedure starts from the t-butyl ester precursor (Scheme 6).
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10 min; (b) aq. HCl conc., 120 ◦C, 7 min.

6-[18F]fluorodopamine ([18F]F-DA) is another radiotracer for imaging neuroendocrine
tumors. Snyder and co-workers’ [62] one-pot synthetic scheme (Scheme 7) is a notable
development. The diaryliodonium precursor leads to the intermediate after initial ion
exchange at the hypervalent iodine center, and deprotection of the radiolabeled interme-
diate in HCl produces [18F]F-DA. A radiochemically pure product was achieved with a
radiochemical yield of 12%.
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As noted above, the use of ILs as the solvent/promoter for these SNAr fluorination
processes, to the best of our knowledge, has not been attempted so far. It would be
extremely intriguing to examine this possibility both experimentally and theoretically.

8. Theoretical Approaches: Supramolecule–Continuum vs. QM/MM Theory

Several theoretical methods have been employed to treat the promotion of nucleophilic
fluorination in ILs. Since the ILs are in a liquid state, however, some simplifying models
should have been adopted. One choice was the supramolecule (cluster)–continuum ap-
proach, in which the IL molecules directly interacting with the substrate/metal fluoride
are treated by full quantum chemical methods (mostly based on density functional theory
(DFT)), whereas the rest of the infinite number of IL molecules are as continuum. The
biggest merit of this approach is simplicity, and it is good for obtaining and comparing the
relative Gibbs free energies of alternative reaction paths, providing the essential features
of the reaction processes. Pliego [39,67] employed the molecular dynamics simulation
combined with (cluster)–continuum approach to treat bulky alcohols as reaction medium
for SN2 nucleophilic fluorination, specifically for the solvation of alkali metal salts and
the transition states in tert-butanol solution. The author found that the transition state
was solvated by a cluster of four tert-butanol molecules and by a dielectric continuum
(Figure 6). The free energy of activation obtained by cluster–continuum calculations for
CsF reaction with ethyl bromide was 28.4 kcal/mol, close to the experimental value of
28.9 kcal/mol for a similar system. This technique also seems to be promising for SN2 reac-
tions in ILs for calculating and comparing the Gibbs free energies of activation to estimate
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the efficacy of promoter/catalysts and also to compare the relative feasibility of alternative
reaction pathways, as demonstrated by Lee and co-workers in a series of works [32,36,37].
For the supramolecule (cluster) part of the system, it would be prerequisite to accurately
calculate the weak interactions (hydrogen bonding, specifically). Thus, DFT-based methods
with such capability such as M06-2X [68] would be desirable. A number of polarizable
continuum methods (PCM) may be used for the treatment of solvent continuum, but the
SMD method [69] was quite adequate in terms of computational cost and accuracy.
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mations. Table 8 shows that the free energies of activation obtained by the semiempirical 
QM method PDDG/PM3 and force field for the SNAr reactions of piperidine and 2-meth-
oxy-5-nitrothiophene are in better agreement [71] with experimental values [77] than 
those calculated by the supramolecular–continuum approach (B3LYP/6-
311++G(2d,p)/PCM). Figure 8 illustrates the first-solvation shell of the SNAr substrates (pi-
peridine, 2-methoxy-5-nitrothiophene) encapsulated by [bmim][BF4] ILs, which may not 

Figure 6. Cluster–continuum solvation of KF and CsF with four tert-butanol molecules.

An alternative model would be the mixed quantum and molecular mechanical (QM/MM)
simulation method in which the IL molecules in indirect interaction with the QM-treated part
of the system are treated by MM methodology. Recent excellent simulations by Gallo and
co-workers [70] are to be noticed in this regard. Figure 7 depicts the structures of the reactant,
TS, and product for SN2 fluorination in [Bmim][Br]. On average, five IL units were calculated
to surround the contact ion-pair KF. Thus, Gallo and co-workers’ QM/MM simulation clearly
illustrates that the metal salt KF reacts as a contact ion pair nucleophile in [Bmim][Br], in line
with Lee and co-worker’s theory [37]. The calculated Gibbs free energy of activation ∆G‡ of
22~24 kcal/mol [70] for the reactions in five IL solvents are comparable to those obtained by
the supramolecular–continuum approach.
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Figure 7. Molecular environment for the SN2-[Bmim][Br] system at different kinetic states:
(a) reactant, (b) transition state, and (c) product.

A series of QM/MM simulations for reactions in ILs by Acevedo and co-workers [71–76]
also exhibits the potentiality of the technique for IL-facilitated chemical transformations. Table 8
shows that the free energies of activation obtained by the semiempirical QM method PDDG/PM3
and force field for the SNAr reactions of piperidine and 2-methoxy-5-nitrothiophene are in better
agreement [71] with experimental values [77] than those calculated by the supramolecular–
continuum approach (B3LYP/6-311++G(2d,p)/PCM). Figure 8 illustrates the first-solvation shell
of the SNAr substrates (piperidine, 2-methoxy-5-nitrothiophene) encapsulated by [bmim][BF4]
ILs, which may not be obtained by the supramolecule–continuum approach. Improvement may
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also be achieved by employing Born–Oppenheimer molecular dynamics (MD) calculations by
Acevedo and co-workers [72] for the structures of [Bmin]X (X = Cl, BF4, PF6) ionic liquids, and H2
evolution from formic acid decomposition in an ionic liquid solvent by Klein and co-workers [78]

Table 8. Free Energy of Activation, ∆G‡ (kcal/mol), Calculated at 25 ◦C for the SNAr Reactions
between the 2-L-5-nitrothiophene (Para-like) Isomers and Piperidine in Methanol and Ionic Liquids
(Experimental Energies [77] in Parentheses).

Leaving Group (L) ∆G‡ a

CH3OH
∆G‡ b

CH3OH

∆G‡ a

[bmim]
[BF4]

∆G‡ a

[bmim]
[PF6]

Br 25.7 (26.0) 30.8 25.8 (23.0) 25.1
OCH3 26.5 (23.6) 30.7 27.6 (21.8) 26.2
OC6H5 25.1 30.5 23.8 (22.1) 26.0

OC6H4-4-NO2 24.5 (24.1) 29.4 24.1 (21.5) 29.1
a PDDG/PM3/OPLS-AA and MC/FEP. b DFT = B3LYP/6-311++G(2d,p)/PCM optimization.
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9. Conclusions

Use of ILs for facilitating chemical reactions has been and will be much wider than
that described in this review. Since the aliphatic fluorination is just a small part of SN2
reactions, many advantageous properties of ILs will surely stimulate further developments
in other nucleophilic reactions with a variety of substrates and organocatalysts. SNAr
reactions seems to remain a largely unexplored field in this respect [79–82]. Experimental
and theoretical examination of using ILs as solvents/promoters for efficient and selective
SNAr fluorination in metal-free conditions would be highly desirable. Understanding the
underlying mechanism by quantum chemical calculations will certainly help to tailor-make
the ILs for aliphatic and aromatic fluorination. Development of IL derivatives contain-
ing a reinforcing (via interactions with counter-cation and/or with the leaving group)
side-chain is an avenue to be further explored. Use of ILs for synthesizing 18F-labeled
radiophamaceutical substances also looks promising. Although not an IL, the recently
reported reaction of 18F-fluorination by a tert-butanol-integrated quaternary ammonium
salt (tri-(tert-butanol)-methylammonium fluoride [83,84] shows this possibility.
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