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Abstract: Triflumezopyrim, a novel mesoionic insecticide used to control planthoppers, is a potential
substitute for imidacloprid. In this study, triflumezopyrim and imidacloprid residues in rice were
determined using a quick, easy, cheap, effective, rugged, and safe procedure combined with ultra-
high-performance liquid chromatography–tandem mass spectrometry. The limit of quantification of
both triflumezopyrim and imidacloprid was 0.01 mg kg−1, and the average recovery values were
94–104% and 91–106%, with relative standard deviations (RSDs) of 1.1–1.4% and 2.1–3.4% (n = 5),
respectively. The consumer protection level was assessed by calculating the theoretical maximum
daily intake using the reported maximum residue limits of triflumezopyrim and imidacloprid. The
established method was successfully applied to 200 commercial rice samples collected from four
provinces in China, and their potential public health risks were assessed using triflumezopyrim and
imidacloprid residues. The risk associated with triflumezopyrim and imidacloprid dietary intake
was assessed by calculating the national estimated short-term intake and the acute reference dose
percentage (%ARfD). The results show that the theoretical maximum daily intake (NEDI) values
of triflumezopyrim and imidacloprid in different age and gender groups were 0.219–0.543 and
0.377–0.935 µg kg−1 d−1 bw, and the risk quotient (RQ) values were 0.188–0.467% and 0.365–0.906%,
respectively. The acute reference dose (%ARfD) of triflumezopyrim and imidaclopridin ranged from
0.615 to 0.998% and from 0.481 to 0.780%, respectively.

Keywords: triflumezopyrim; imidacloprid; risk assessment; rice

1. Introduction

Rice is one of the world’s three major grains and serves as a staple food for almost half
of the global population [1]. Rice planthoppers are the most economically important pests
infesting rice in Asia [2,3] and have gained increasing public attention. Imidacloprid, a
neonicotinoid insecticide, is widely used to control rice planthopper populations. However,
with the increasing application of imidacloprid, pests have developed resistance. Moreover,
the negative impact of this compound on pollinators, such as bees, further affects the
ecological balance. Imidacloprid induces widespread disruption in the behavior of within-
nest worker bees, which may contribute to their impaired growth [4–6]. The compound
has also been reported to significantly reduce growth rate and cause an 85% reduction in
the production of new queens [7]. In addition, the climbing ability of the affected bees is
significantly impaired, and cell dysfunction is evident [8]. Pesticide residue levels and risk
monitoring are important aspects of agricultural product quality in many countries [9–12].
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Triflumezopyrim (chemical structure shown in Figure 1) is a novel mesoionic insec-
ticide that possesses a pyridopyrimidinedione core that controls planthoppers without
adverse effects on pollinators [13]. This class of mesoionic agents targets the nicotinic
acetylcholine receptors by inducing a physiological action (unique among neonicotinoids)
that prevents nerve conduction, causing the rice planthopper to lose consciousness as a
result [14,15]. This insecticide controls susceptible and resistant hopper populations at low
application rates, thereby conferring excellent protection to rice plants against a variety
of planthoppers. Most importantly, it has been reported to have no adverse effects on
pollinators. Therefore, triflumezopyrim is highly effective in controlling rice planthoppers
and can replace new nicotinic insecticides, such as imidacloprid, which are associated with
high resistance.
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treatment in rice. It is necessary to establish a rapid, sensitive, efficient, and reliable pes-
ticide residue detection method for rice and compare the health risks associated with tri-
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the safety of triflumezopyrim application in the cultivation of rice. 

2. Results and Discussions 
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In the first experiment, the extraction solvent was studied to achieve the satisfactory 
extraction efficiency. Considering the polarity of the target, acetonitrile was selected as 
the extraction solvent, which achieved a high extraction efficiency and good separation 
for the subsequent salting out and other purification methods. However, dry rice powder 
led to the poor recovery of triflumezopyrim and imidacloprid. Therefore, water was 
added to the rice powder samples before acetonitrile extraction. The effects of the addi-

Figure 1. Chemical structure of triflumezopyrim (a) and imidacloprid (b).

To determine if the exposure to or intake of a compound exceeds human health
safety limits, toxicological endpoint values, such as allowable daily intake (ADI) and
acute reference dose (ARfD), should be assessed. Such assessments reveal if the residue
concentration is above the maximum residue limit (MRL) without representing a risk to the
consumer [16–18]. Risk assessments are performed to evaluate the risks associated with
consuming food contaminated with pesticides; thus, exposure assessment is a key step in
calculating dietary intake risk and is based on the actual residue and consumption data
for each country [19–21]. To the best of our knowledge, only a few studies to date have
compared the health risks associated with triflumezopyrim and imidacloprid treatment in
rice. It is necessary to establish a rapid, sensitive, efficient, and reliable pesticide residue
detection method for rice and compare the health risks associated with triflumezopyrim
and imidacloprid. Therefore, to potentially substitute imidacloprid with triflumezopyrim
to control rice planthoppers, we aimed to establish an analytical method using ultra-high
performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) for the
simultaneous determination of triflumezopyrim and imidacloprid residues in rice and to
evaluate and compare the long-term and short-term risks posed by each of these pesticides.
The results of our study provide basic data supporting the safety of triflumezopyrim
application in the cultivation of rice.

2. Results and Discussions
2.1. Optimization of Extraction Conditions

In the first experiment, the extraction solvent was studied to achieve the satisfactory
extraction efficiency. Considering the polarity of the target, acetonitrile was selected as the
extraction solvent, which achieved a high extraction efficiency and good separation for the
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subsequent salting out and other purification methods. However, dry rice powder led
to the poor recovery of triflumezopyrim and imidacloprid. Therefore, water was added to
the rice powder samples before acetonitrile extraction. The effects of the addition of water
to acetonitrile and acetonitrile on the extraction of rice samples were investigated, and the
results are shown in Figure 2.
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There were significant differences in the influence of the two pesticides with or without
water during extraction. The extraction rate after adding water was higher than the
extraction rate without adding water. When water was added to the samples, the target
pesticides mixed easily with the acetonitrile, and the pesticides were extracted from the
samples sufficiently. Therefore, we added water to the samples and then performed
extraction with acetonitrile.

2.2. Optimization of Purification Conditions

After the extraction of triflumezopyrim and imidacloprid from the rice samples, 3 mL
of the acetonitrile supernatant was transferred to a mixture of different purified sorbents.
Primary secondary amine (PSA) and C18 were selected to test the purification effects at a
spiked level of 0.2 mg kg−1. The results are summarized in Figure 3. The recovery rate
of C18 was approximately 70%, while the recovery rate of PSA was between 94 and 97%.
PSA provided polar adsorption and weak anion exchange, which removed acid-interfering
substances and polar pigments, such as fatty acids, phenols, and carbohydrates. C18 is
often used to remove non-polar substances, such as lipids, and has an effective clean-up
effect on animal-derived agricultural products with a high-fat content [22,23]. Therefore,
PSA was used for further purification.
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2.3. Method Validation

To determine the recovery and precision of the analytical method, different concentra-
tions of mixed standard solutions were added to the blank sample matrix for all spiking
experiments and matrix effect studies (shown in Table 1, Table 2 and Figure 4). The results
showed that the proposed method had good linearity (concentration range: 0.005, 0.01, 0.02,
0.05, and 0.1 µg/mL), trueness, precision (repeatability and intermediate precision), and
the limit of quantification (LOQ). Significant signal enhancement was observed for triflume-
zopyrim, whereas the signal was reduced for imidacloprid, indicating a matrix-weakening
effect. Therefore, to ensure the accuracy of quantitative measurements, a matrix-matching
standard solution correction method was used to compensate for the matrix effect (ME).

Table 1. Average recoveries and RSDs at three spiked levels.

Compounds Spiking
Levels/(mg/kg)

Average
Recovery/% RSD/% LOQ/(mg/kg)

imidacloprid
0.01 106 2.1

0.010.10 91 2.6
0.20 97 3.4

triflumezopyrim
0.01 104 1.1

0.010.10 101 1.4
0.20 94 1.4

Table 2. Method validation parameters.

Compounds Matrix Regression Equation Correlation
Coefficients ME/%

imidacloprid solvent y = 1,963,648x − 3902 0.9999 -
rice y = 1,176,517x − 449 0.9980 −37.3

triflumezopyrim solvent y = 1,617,540x + 211 0.9998 -
rice y = 5,291,693x − 1059 0.9992 224.2
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The accuracy was determined by the addition of known amounts of standards to the
rice samples, and was calculated based on the difference in the total concentrations between
the spiked and original samples. The trueness of triflumezopyrim ranged from 94 to 104%
and that of imidacloprid ranged from 91 to 106% in all experiments (Table 3). Therefore,
the accuracy of the proposed method was satisfactory. The method was precise, with the
relative standard deviation (RSD) varying from 1.1 to 1.4% for triflumezopyrim and from
2.1 to 3.4% for imidacloprid. In routine analysis, the acceptable range of precision was less
than 20%. These results demonstrate that the method developed in this study provides
satisfactory reproducibility and good analytical performance.

Table 3. Risk assessment data according to the JMPR report.

Compounds ADI, mg/kg bw ARfD, mg/kg bw STMR, mg/kg HR, mg/kg

imidacloprid 0.06 0.4 0.05 0.05
triflumezopyrim 0.2 1 0.086 0.16

2.4. Pesticide Residues in Rice Samples

The validated method was used to analyze the two target pesticide residue levels
in 200 rice samples. The results showed that there were no residues in the 200 tested
samples (data not shown). Samples of triflumezopyrim and imidacloprid were then
spiked at a concentration of 0.01 and 0.10 mg/kg into rice, which were regarded as the
positive samples for the real sample test. The analytical results are presented in Figure 5.
Considering the maximum risk to human health, the supervised trial median residue
(STMR) and the maximum residue level (HR) values of triflumezopyrim and imidacloprid
were collected from the report of the Joint FAO/WHO Meeting on Pesticide Residues
(JMPR). As shown in Table 3, the STMRs of triflumezopyrim and imidacloprid at 0.05 and
0.086 mg/kg, respectively, were used for the long-term intake assessment, and the HRs of
triflumezopyrim and imidacloprid at 0.05 and 0.16 mg/kg, respectively, were used for the
short-term intake assessment.
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2.5. Risk Assessment
2.5.1. Long-Term Intake Assessment

We collected the acceptable daily intake (ADI), acute reference dose (ARfD), STMR,
and HR values of triflumezopyrim [24] and imidacloprid [25] from the JMPR report, which
are shown in Table 3. These data were used for the comparison of risk assessments of the
two target pesticides. The risk assessment results of chronic dietary exposure to the two
pesticides were collected at the first stage of our comparison, and the results are shown
in Table 4 and Figure 6. The theoretical maximum daily intake (NEDI) values of triflume-
zopyrim and imidacloprid were 0.219–0.543 and 0.377–0.935 µg kg−1 d−1 bw, respectively,
and their risk quotients (RQs) were 0.188–0.467% and 0.365–0.906%, respectively. The RQ
values of the two pesticides were less than 100%, indicating that risk is acceptable with a
high protection level and implying that the pesticide will not constitute a health threat in
the long term. The RQ of triflumezopyrim was slightly lower than that of imidacloprid.
Triflumezopyrim provides a high level of protection to consumers in terms of the risk
associated with chronic ingestion. Table 4 shows that the RQ of males was lower than
that of females. Meanwhile, with an increase in age, RQ decreased, indicating that the
risk decreased.

Table 4. Long-term intake assessment at the different age groups.

Age Gender bw/(kg) Fi/(g d−1)
NEDI/(µg kg−1 d−1 bw) RQ/(%)

Imidacloprid Triflumezopyrim Imidacloprid Triflumezopyrim

2–3
Male 13.2 135.5 0.883 0.513 0.855 0.441

Female 12.3 133.7 0.935 0.543 0.906 0.467

4–6
Male 16.8 179.7 0.920 0.535 0.891 0.460

Female 16.2 159.5 0.847 0.492 0.820 0.423

7–10
Male 22.9 230.8 0.867 0.504 0.840 0.433

Female 21.7 212.0 0.840 0.488 0.814 0.420
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Table 4. Cont.

Age Gender bw/(kg) Fi/(g d−1)
NEDI/(µg kg−1 d−1 bw) RQ/(%)

Imidacloprid Triflumezopyrim Imidacloprid Triflumezopyrim

11–13
Male 34.1 266.2 0.671 0.390 0.651 0.336

Female 34.0 238.4 0.603 0.351 0.584 0.302

14–17
Male 46.7 308.7 0.568 0.331 0.551 0.284

Female 45.2 240.7 0.458 0.266 0.444 0.229

18–29
Male 58.4 309.6 0.456 0.265 0.442 0.228

Female 52.1 260.9 0.431 0.250 0.417 0.215

30–44
Male 64.9 316.2 0.419 0.244 0.406 0.210

Female 55.7 278.6 0.430 0.250 0.417 0.215

45–59
Male 63.1 314.9 0.429 0.250 0.416 0.215

Female 57.0 272.8 0.412 0.239 0.399 0.206

60–69
Male 61.5 274.0 0.383 0.223 0.371 0.192

Female 54.3 242.9 0.385 0.224 0.373 0.192

≥70
Male 58.5 258.3 0.380 0.221 0.368 0.190

Female 51.0 223.5 0.377 0.219 0.365 0.188
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We used the rice consumption data for the Chinese population, which are divided 

into data related to the general population and data of children 1–6 years old, as recom-
mended by the GEMs/Food project to calculate short-term dietary risk assessment. The 
results are presented in Table 5 and Figure 7. The %ARfD of triflumezopyrim and im-
idacloprid ranged from 0.615 to 0.998% and from 0.481 to 0.780%, respectively. These 
%ARfD values were much lower than 100%, indicating that the risk of acute dietary in-
take was acceptable. However, the %ARfD for children aged 1–6 was higher than that of 
the general population, indicating that the risk is higher in children than in adults. 

Table 5. Short-term intake assessment of triflumezopyrim and imidacloprid. 

Age bw/(kg) LP/(g d−1) Ue/(g) 
NESTI/(μg kg−1 d−1, bw) %ARfD/(%) 

imidacloprid triflumezopyrim imidacloprid triflumezopyrim 
1–6 16.1 1004.28 <25 3.119 9.980 0.780 0.998 

General 
population 53.2 2046.23 <25 1.923 6.154 0.481 0.615 
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2.5.2. Short-Term Intake Assessment

We used the rice consumption data for the Chinese population, which are divided into
data related to the general population and data of children 1–6 years old, as recommended
by the GEMs/Food project to calculate short-term dietary risk assessment. The results
are presented in Table 5 and Figure 7. The %ARfD of triflumezopyrim and imidacloprid
ranged from 0.615 to 0.998% and from 0.481 to 0.780%, respectively. These %ARfD values
were much lower than 100%, indicating that the risk of acute dietary intake was acceptable.
However, the %ARfD for children aged 1–6 was higher than that of the general population,
indicating that the risk is higher in children than in adults.

Table 5. Short-term intake assessment of triflumezopyrim and imidacloprid.

Age bw/(kg) LP/(g d−1) Ue/(g)
NESTI/(µg kg−1 d−1, bw) %ARfD/(%)

Imidacloprid Triflumezopyrim Imidacloprid Triflumezopyrim

1–6 16.1 1004.28 <25 3.119 9.980 0.780 0.998
General

population 53.2 2046.23 <25 1.923 6.154 0.481 0.615
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3. Materials and Methods
3.1. Materials and Reagents

A high-purity (99.4%) pesticide standard of triflumezopyrim was obtained from
DuPont Crop Protection (Wilmington, DE, USA), and a high-purity standard of imida-
cloprid (1000 µg/mL) was purchased from the Environmental Quality Supervision and
Testing Center, Ministry of Agriculture and Rural Affairs (Tianjin, China). HPLC-grade
acetonitrile and methanol were obtained from Thermo Fisher Inc. (Waltham, MA, USA),
and HPLC-grade ammonium acetate was obtained from Sigma-Aldrich (St. Louis, MO,
USA). PSA and C18 were purchased from Agela Technologies (Tianjin, China). Syringe
filters (nylon, 0.22 µm) were purchased from ANPEL Laboratory Technologies Inc. (Shang-
hai, China). A stock solution of triflumezopyrim was prepared at 1000 µg/mL in methanol
and stored at −20 ◦C until analysis.

3.2. Sample Acquisition

The 200 rice samples used in this study were procured from different regions in China.
These were purchased from wholesale markets and supermarkets in Zhejiang, Shandong,
Beijing, and Hainan Provinces. The sampling locations of all the rice were representative,
and included the southern and northern planting bases. After sampling, the samples were
ground into powder, placed in sealed pockets, and stored in a refrigerator at −20 ◦C prior
to analysis.

3.3. Sample Preparation

Pretreatment was conducted using a quick, easy, cheap, effective, rugged, and safe
method [26] with minor modifications. Rice powder samples (5 g) were placed in 50 mL
centrifuge tubes. To these, 5 mL of water and 10 mL of acetonitrile were added to extract the
target compounds. Subsequently, the solution was homogenized for 2 min, after which 5 g
of sodium chloride was added. The mixture was vortexed at 3000 rpm for 1 min, followed
by centrifugation at 8000 rpm for 5 min. The supernatant (5 mL) was transferred to a 15 mL
centrifuge tube containing 150 mg PSA and 900 mg magnesium sulfate. The mixture was
then vortexed and centrifuged at 8000 rpm for 5 min. The supernatant was filtered through
a 0.22 µm sieve and collected for further testing.
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3.4. UPLC-MS/MS Analysis

Chromatographic analysis was performed using a Waters Acuity UPLC and triple
quadrupole mass spectrometer (AB SCIEX, Framingham, MA, USA) equipped with an
electrospray ionization source in the positive ionization mode. Chromatographic separation
was achieved using a C18 column (100 mm × 2.1 mm dimensions, 1.7 µm particle size) with
a binary mobile phase comprising solvent A (0.1% formic acid) and B (100% methanol) at
35 ◦C. The mobile phase gradient was set as follows: 0 to 0.1 min, 90% A; 0.1 to 1.0 min,
90 to 5% A; 1.0 to 3.0 min, 5% A; 3.0 to 3.1 min, 5 to 90% A; and 3.1 to 5.0 min, 90%
A. The flow rate was 0.25 mL/min, and the injection volume was 5 µL. The multiple
reaction-monitoring parameters are listed in Table 6.

Table 6. MS/MS parameters for the analysis.

Compounds Ions Declustering Potential/V Collision Energy/V

imidacloprid 256.2/175 *
256.2/209 69 25.2

18.4

triflumezopyrim 399.1/278.1 *
399.1/121 120 40

50
* Quantitative ion.

3.5. Method Validation

The analytical method was validated using a conventional approach, including the
determination of selectivity, linearity, recovery, limit of detection (LOD), LOQ, ME, and
repeatability. The parameters of linearity, including the slope, intercept, and determination
coefficient, were calculated based on a five-point calibration curve. An isotopically labeled
standard was used to eliminate ME as reported previously [27]. Such compounds can
help in the correction of signal deviation because they have the same chemical properties
and retention times as non-labeled compounds. However, isotopically labeled internal
standards were not available for all the analytes. Therefore, we used a matrix-matching
standard for quantitative analysis.

Calibration curves were obtained by plotting the peak area (y) of the analyte versus its
concentration (x) in the matrix-matched standard solution (matrix-matched calibration). A
standard solution was used throughout the analysis to check for possible signal fluctuations.

ME is a major concern in food analysis, and most sample matrices are assessed by
comparing the peak area ratios of matrix-matched calibration curves with that of solvent-
based calibration curves [26,28]. The ME was calculated using Equation (1) with the peak
area of the standard in the solvent (Asolvent) and the peak area of the standard in the matrix
(Bmatrix) [29–32].

ME =
Bmatrix − Asolvent

Asolvent
× 100% (1)

where Bmatrix is the average area of the analyte curve, spiked in the extracted matrix after
the extraction procedure, and Asolvent is the average area for the same concentration of
analyte in the neat solution. Therefore, a negative result indicates a suppressed signal, and
a positive result indicates an enhanced analyte signal.

The LOD was three times the signal/noise ratio [33]. The LOQ was set at the low-
est validated level with acceptable trueness (70–120%) and precision (relative standard
deviation (RSD) < 20%).

The accuracy of the measurement method was confirmed by determining trueness
and precision using a routine recovery assay at three levels of fortification (0.01, 0.10, and
0.20 mg/kg) and replicated five times. The precision of the method was determined by
assessing its repeatability and reproducibility and was expressed using RSD% [34,35].
The target compounds were extracted and purified using the aforementioned sample
extraction procedures.
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3.6. Statistical Calculations

Dietary exposure and risk entropy values are primarily used to assess exposure
pathways and calculate possible dose exposure levels to determine actual and expected
exposure levels among potentially sensitive populations. Based on the dietary structure of
different populations in China and pesticide residue data from this study, we conducted a
risk assessment of chronic and acute dietary exposure to pesticides used for rice.

3.7. Long-Term Intake Assessment

The dietary structure and food consumption of the population were determined, and
the maximum daily intake of certain pesticides was calculated according to the STMR.
Dietary exposure and risk were calculated as follows:

NEDI = ∑(Fi × STMRi)/bw (2)

RQ =
NEDI
ADI

× 100% (3)

where NEDI is the theoretical maximum daily intake (µg kg−1 d−1 bw), Fi is the food intake
(g·d−1), STMRi is the supervised trial median residue (mg kg−1), bw is the body weight of
different age groups (kg) (Table 4), RQ is the risk quotient (%), and ADI is the acceptable
daily intake (mg kg−1 bw).

When the RQ is less than 100, the risk is acceptable with a high protection level,
meaning that the pesticide will not constitute a health threat in the long term. When
the RQ is higher than 100, indicating a low level of protection, consumer health is at an
unacceptable risk. The higher the RQ value, the greater the chronic exposure risk [36–38].

3.8. Short-Term Intake Assessment

The concentration of residue in a composite sample (raw or processed) reflects a large
portion of the commodity. Single-day consumption data for high-end (97.5th percentile)
consumers were required to calculate the national estimated short-term intake (NESTI).
Considering the variability from unit to unit in the composite sample, the NESTI assumed
by the model according to the unit weight (URAC) was <25 g.

NESTI =
LP × HR

bw
(4)

For rice, the available composite residue data reflect the residue levels in a meal-sized
portion of the product (commodity unit weight, <25 g) in cases where the commodity is
well-mixed during processing [19]. In this study, Ue < 25 g; therefore, NESTI was calculated
using Equation (4).

%AR f D =
NESTI
AR f D

× 100 (5)

where LP is the weight of a large serving of food (kg), HR is the maximum residue level
(mg kg−1), and ARfD is the acute reference dose (mg kg−1·bw). When the %ARfD ≤ 100%,
the risk of acute dietary intake is considered acceptable. The smaller the ARfD value, the
lower the risk [39]. In contrast, when %ARfD > 100%, the risk is considered unacceptable.

4. Conclusions

We developed and validated a rapid, sensitive, and selective method for the detection
of triflumezopyrim and imidacloprid residues in rice and analyzed 200 rice samples from
different markets.

In both long- and short-term risk assessments, the risk values were much lower than
100%, indicating that the risk was acceptable. With an increase in age, the risk values
decreased. The RQ of triflumezopyrim was slightly lower than that of imidacloprid in
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the long-term intake assessment; therefore, triflumezopyrim is a potential substitute for
imidacloprid to control planthoppers in rice.
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