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Abstract: Two water-soluble single-benzene-based chromophores, 2,5-di(azetidine-1-yl)-tereph- thalic
acid (DAPA) and its disodium carboxylate (DAP-Na), were conveniently obtained. Both chro-
mophores preserved moderate quantum yields in a wide range of polar and protonic solvents.
Spectroscopic studies demonstrated that DAPA exhibited red luminescence as well as large Stokes
shift (>200 nm) in aqueous solutions. Femtosecond transient absorption spectra illustrated quadrupo-
lar DAPA usually involved the formation of an intramolecular charge transfer state. Its Frank–Condon
state could be rapidly relaxed to a slight symmetry-breaking state upon light excitation following
the solvent relaxation, then the slight charge separation may occur and the charge localization be-
came partially asymmetrical in polar environments. Density functional theory (DFT) calculation
results were supported well with the experimental measurements. Unique pH-dependent fluorescent
properties endows the two chromophores with rapid, highly selective, and sensitive responses to
the amino acids in aqueous media. In detail, DAPA served as a fluorescence turn-on probe with a
detection limit (DL) of 0.50 µM for Arg and with that of 0.41 µM for Lys. In contrast, DAP-Na featured
bright green luminescence and showed fluorescence turn-off responses to Asp and Glu with the
DLs of 0.12 µM and 0.16 µM, respectively. Meanwhile, these two simple-structure probes exhibited
strong anti-interference ability towards other natural amino acids and realized visual identification of
specific analytes. The present work helps to understand the photophysic–structure relationship of
these kinds of compounds and render their fluorescent detection applications.

Keywords: single-benzene chromophore; femtosecond transient absorption; excited state dynamic;
fluorescence detection; visual identification

1. Introduction

Amino acids are the fundamental building blocks of biological macromolecular pro-
teins and play pivotal roles in many physiological processes and behaviors [1–3]. According
to the structural characteristics of side groups, 20 common natural amino acids generally
fall into four categories, i.e., hydrophobic, polar, and acidic as well as basic ones. Aspartic
acid (Asp) and glutamic acid (Glu) are typical acidic amino acids, and are involved in many
physiological processes, such as learning, memory, movement disorders, and other brain
functions [4–6]. Arginine (Arg), lysine (Lys), and histidine (His) are well-known basic amino
acids and play crucial roles in many biological processes such as cell division, healing of
wounds, release of hormones, the immune system, and metabolism, etc. [7–9]. For various
amino acids, maintaining an appropriate level in biological systems is of great importance
and any serious alterations may cause related diseases. For example, high concentrations of
Asp may cause motor neuron disease known as Lou-Gehrig’ s disease [10], while excessive
Lys in urine and plasma could even lead to cystinuria or hyperlysinemia [11,12]. Therefore,
the development of versatile sensor systems for discriminating and quantifying of various
amino acids becomes more important for human health and medical diagnosis of diseases.
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To date, a variety of sensing technologies have been developed to detect amino
acids, including high-performance liquid/ion chromatography [13,14], amperometric
enzyme electrodes [15,16], and diverse spectroscopic approaches, etc. [17–19]. Among
the current detection methods, fluorescence methods have drawn increasing attention
owing to their simple operation system, inherent sensitivity, fast response, and non-
invasiveness in bio-samples [20–23]. A variety of fluorescent sensors such as metal-
containing complexes [24,25], quantum dots [26,27], metal nanoparticles [28], π-conjugated
organic dyes [29–33], and surfactant-assisted assemblies [34] have been intensively investi-
gated to discriminate amino acids. In particular, shifting the emission wavelength towards
the far-red and even the near-infrared (NIR) region is a requisite for deeper in-vivo biologi-
cal imaging. Advantages include strong absorption and high photo-stability, combined with
the infinite possibilities offered by organic synthesis to functionalize the single-benzene
chromophore and to tune their spectroscopic properties. For example, Zhang et al. de-
veloped a new 1,8-naphthalimide-Cu(II) ensemble and utilized it for sensitive detection
of thiols-containing cysteine (Cys), histidine (His), and glutathione (GSH) at pH 7.4 in
organic media [35]. Tuccitto et al. reported a new class of fluorescent carbon quantum
dots (CDs) for sensing hydrophobic amino acids from polar ones based on the interaction
between the surface of activated CDs and analytes [36]. Chen and co-workers designed
and synthesized a novel TCF-imidazo [1,5-α]pyridine-based fluorescent probe, which ex-
hibited high sensitivity and excellent selectivity toward GSH over other related bio-species
including Cys and homocysteine (Hcy) [37]. Moreover, we previously reported two unique
ternary sensor systems based on fluorophore-anionic surfactant-Cu2+ assemblies, allowing
rapid and selective discrimination of basic amino acids such as Arg and Lys in aqueous
solution [38,39]. However, most of these fluorescent probes targeted thiol-containing amino
acids, and their molecular structures are somewhat complicated and required laborious
chemical synthesis procedures. Therefore, the development of new fluorescent probes
with compact structures that are sensitive and selective to monitor various amino acids
remains meaningful.

Featuring distinct emissive properties as well as simple molecular structures, the
chromophores with single-benzene-based skeletons are potentially applied in optoelec-
tronic devices and fluorescence sensing [40–47]. Our group firstly reported the diethyl 2,5-
di(azetidine-1-yl)terephthalate derivatives as representative single-benzene chromophores
in 2019 [44]. With small π-conjugated systems, these compounds impressively emit intense
luminescence in both solution and solid states. This observation further confirmed that
introduction of four-membered azetidine as an electron-donating group leads to effectively
extended π-conjugation and enhanced brightness of a variety of chromophores [48,49].
Bondar et al. recently developed a new squaraine derivative, 2,4-bis[4 -(azetidyl)-2-
hydroxyphenyl]squaraine, which displayed efficient NIR emission, large two-photon ab-
sorption (2PA) cross sections, and high photostability [50]. Aiming to obtain water-soluble
and environment-sensitive fluorescent probes, we developed two new single-benzene
derivatives, 2,5-di(azetidine-1-yl)terephthalic acid (DAPA) and its disodium carboxylate
(DAP-Na) (Scheme 1). Besides compact molecular structure and easy synthesis, both chro-
mophores demonstrated efficient luminescence and large Stokes shifts in most highly polar
and protonic solvents. More importantly, the superior pH-responsive fluorescence emission
of DAPA and DAP-Na can be successfully used for efficient identification of different
amino acids in aqueous media.
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by single absorption maxima around 457 nm in DMF and 470 nm in DMSO, respectively 

Scheme 1. Efficient single-benzene chromophores reported in previous literature (a) and the present
work (b); their emission maxima and fluorescence quantum yields in DMSO or H2O are given.

2. Results and Discussion
2.1. Photophysical Properties of DAPA and DAP-Na

UV−vis absorption and fluorescence emission spectra of water-soluble DAPA and
DAP-Na were firstly investigated in water and the results are shown in Figure 1a. The ab-
sorption maximum of DAPA was located at 365 nm, while that of DAP-Na was blue-shifted
and centered at 338 nm. The emission peak of DAPA was located at 591 nm and exhibited
an obviously bathochromic shift with respect to that of DAP-Na (535 nm). The obtained
bathochromic shift phenomena are probably due to the stronger intramolecular charge
transfer property [49]. Typically, these two single-benzene-based chromophores feature
extraordinarily large Stokes shifts of up to 226 nm in water. This special characteristic
and almost zero overlap between their excitation and emission spectra (Figure S1) com-
monly benefit fluorescent sensing applications. Of particular interest, DAP-Na displayed
intensively green fluorescence with a quantum yield (Φf) of up to 0.42 in aqueous media.
However, DAPA exhibited relatively weak red emission with Φf around 0.08.
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Figure 1. (a) Normalized absorption and emission spectra of DAPA (red lines) and DAP-Na (green
lines) in aqueous solution. Inset: Images of aqueous solution of DAPA and DAP-Na under UV light
(λ = 365 nm). (b) UV−vis absorption and (c) normalized fluorescence emission spectra of DAPA in
various solvents (λex = 365 nm; c = 20.0 µM).



Molecules 2022, 27, 5522 4 of 14

Photophysical properties of these two single-benzene-based chromophores were in-
vestigated in highly polar and protonic solvents including DMF, DMSO, EtOH, and MeOH.
DAPA showed obviously solvent-dependent properties and was characterized by single
absorption maxima around 457 nm in DMF and 470 nm in DMSO, respectively (Figure 1b).
In EtOH and MeOH, its absorption spectra at longer wavelengths were characterized by two
bands located at 415–550 and 305–415 nm. Based on our understanding, the dicarboxylic
acid of DAPA may be partially ionized, resulting in two balanced components (ionized
state and carboxylic acid state) in the abovementioned solutions. If further considering the
polarity of MeOH is larger than that of EtOH, the proportion of the component of ionized
state (377 nm) in MeOH was slightly higher than that of carboxylic acid state (456 nm) as
shown in Figure 1b. However, in water, the carboxy on one side was completely ionized,
and thus DAPA was characterized by single absorption maxima around 365 nm. However,
the absorption maxima of DAP-Na were insensitive to solvent properties (Figure S2a), and
fluorescence emission of DAPA and DAP-Na exhibited comparatively slight dependence
on the abovementioned solvents (Figures 1c and S2b). Importantly, DAPA and DAP-Na
demonstrated moderate Φf values within a range of 0.20–0.61 in all the tested organic
solvents (Table 1).

Table 1. Photophysical data for DAPA and DAP-Na in selected solvents: solvent polarity parameter
ET(30), maximum absorption (λabs) and emission wavelength (λem), fluorescence quantum yield (Φf),
and lifetimes (τf).

Solvent ET(30)
λabs λem Φf

[a] τf

DAPA DAP-Na DAPA DAP-Na DAPA DAP-Na DAPA DAP-Na

DMF 43.2 457 345 563 508 0.20 0.36 9.36 10.70
DMSO 45.1 470 347 571 507 0.25 0.61 7.65 13.62
EtOH 51.9 459/394 345 571 527 0.22 0.21 5.69 7.75
MeOH 55.4 456/377 344 574 533 0.20 0.23 5.61 7.56
H2O 63.1 365 338 591 535 0.08 0.42 2.61 17.60

[a] Absolute fluorescence quantum yields determined with a calibrated integrating sphere system (errors < 3%).

2.2. Theoretical Calculations

Time-dependent DFT calculations of DAPA and DAP-Na were performed in water
at the CAM-B3LYP/6-31G(d,p) level to investigate their structural characteristics and
photophysical properties (Figure 2a). The molecular orbital diagrams of DAPA and DPA-
Na in both ground and excited states demonstrated HOMOs that were mainly localized over
the benzene ring and the azetidines. However, LUMOs moved to the electron-withdrawing
carbonyl moiety, indicating an effective push–pull system was established for these two
single-benzene frameworks (Figure 2b,c). It is noteworthy that the absorptive energy gap of
DAP-Na (6.48 eV) between the ground HOMO (−5.90 eV) and LUMO (0.58 eV) was larger
than that of DAPA (5.94 eV). The similar trend of emissive energy gaps explicated the
bathochromic shift phenomena from DAP-Na to DAPA. Moreover, their theoretical maxima
absorption and emission bands agreed well with the experimental results, supporting our
understanding about their photophysics.
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results of DAPA and (c) DAP-Na: molecular orbital distributions of HOMO and LUMO in the
vertical excitation and emission, rationalization of UV−vis absorption and emission wavelengths,
and oscillator strengths. Water was used as the solvent for calculations at the CAM-B3LYP/6-
31G(d,p) level.

2.3. Transient Absorption Spectroscopy

To obtain a full understanding of the excited state dynamics, femtosecond transient
absorption (fs-TA) measurements of DAPA were carried out in DMF, DMSO, EtOH, and
MeOH upon an excitation at fs-420 nm. fs-TA spectra recorded at less than 0.5 ps delay time
were characterized by a positive excited state absorption (ESA) band in the 470–850 nm
region and accompanied by three peaks at 495, 610, and 790 nm (Figures 3a,c and S3a–c).
As mentioned in previous reports, highly symmetric push–pull chromophores, such as
DAPA, could be recognized as quadrupolar molecules and the solvent dependence of
their fluorescence is usually related to the formation of an intramolecular charge transfer
(ICT) state [51–55]. In our opinion, the Frank–Condon S1 state of DAPA could be rapidly
relaxed to a slight symmetry-breaking state upon light excitation following the solvent
relaxation, and then the slight charge separation may occur and the charge localization
become partially asymmetrical in polar media [56,57]. To provide an overview of excited-
state dynamics and charge transfer properties of the fluorophores, the decay curves in
fs-TA spectra and multi-exponential fitting kinetic traces probed at different wavelengths
were compared as shown in Figures 3b and S4a,b. The corresponding lifetimes of transient
states are summarized in Table S1. Based on these spectral traces and time constants,
a corresponding sequential model for global fitting was proposed as shown in Figure 3d.
The first decay lifetime may reflect the time-constant of solvent relaxation (τSR < 1 ps). The
second one is associated with the formation of the charge separation state and symmetry-
breaking state (τCS~5 ps), implying the ICT localizing on the partial donor (azetdiine)-
π-acceptor (carboxy) branch. The falling processes reflected the formation of the charge
recombination process and the quenching of the excited state absorption (ESA) process
(Table S1). Comparatively, the fs-TA spectra of parent compound 5 (diethyl 2,5-di(azetidine-
1-yl)terephthalate) in DMSO displayed similarly spectral characteristics and photoinduced
excited-state dynamics (Figure S5). These results remarkably revealed that the ICT state
can also be formed for these symmetric push–pull single-benzene chromophores based on
the view of excited-state dynamics.
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2.4. pH-Dependent Fluorescence

As shown in Figure S11, in the NMR spectrum for DAPA, there were two split peaks
at 3.72 and 3.25 ppm assigned to the proton (-NCH2-) close to the N atom. Based on
our understanding, this special splitting should be originated from the formed hydrogen
bonding between the carboxyl-H and N atom, thus resulting in the asymmetry or twist of
the azetidine ring. It hints that the azetidine ring is pH-responsive. Spectroscopic properties
of DAPA and DAP-Na were also examined under the pH range of 4.0–8.6 (Figure S6).
In Britton–Robinson buffer at pH~4.0, DAPA showed weak emission at 591 nm. When the
pH increased from 6.0 to 8.0, the fluorescence intensity enhanced significantly along with a
blue-shifted emission peak. It is anticipated that, with the increase of alkalinity, the acidic
carboxyl group on DAPA was easily deprotonated and converted into the corresponding
carboxylate. Based on the pH titration results, the pKa value of DAPA was estimated
to be 6.59. Concomitantly, the absorption maxima of DAPA showed a slight red shift
above pH~8.0. DAP-Na also exhibited remarkable pH-dependent fluorescence emission
properties. The fluorescence emission of DAP-Na was quenched dramatically as the pH
decreased from 8.6 to 7.0 (Figure S6). Particularly, the fluorescence intensity was quite low
when pH < 6.0, concomitantly with a red-shifted emission maximum. The pH investigations
clearly demonstrate that these two single-benzene chromophores can be used as superiorly
base- and acid-responsive fluorescent probes in aqueous media.

2.5. Sensitive and Discriminative Detection of Amino Acids

Next, to inspect the practical applications of these two highly pH-sensitive chro-
mophores, the fluorescent sensing performances of DAPA and DAP-Na towards 20 natural
amino acids with different pI values were examined (pI values of used amino acids: Arg,
10.76; Lys, 9.74; His, 7.59; Pro, 6.30; Ala, 6.02; Ile, 6.02; Leu, 5.98; Val, 5.97; Gly, 5.97; Trp, 5.89;
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Met, 5.75; Ser, 5.68; Tyr, 5.66; Gln, 5.65; The, 5.60; Phe, 5.48; Asn, 5.41; Cys, 5.02; Glu, 3.22;
Asp, 2.97) [58,59]. As shown in Figure 4a, DAPA underwent a significant intensity increase
along with ~30 nm blue-shifted emission in the presence of basic amino acids (100 µM, Arg
and Lys). Addition of other natural amino acids induced negligible responses, although
His induced a little emission enhancement in comparison with that of Arg or Lys. The
fluorescence enhancement of DAPA upon addition of different amino acids revealed high
selectivity to Arg and Lys (Figure 4b). Moreover, a visual fluorescence color change of the
aqueous solution from dark red to bright yellow upon addition of Arg or Lys was clearly
identified under UV lamp (λex = 365 nm). As depicted in Figure S7a, the selectivity of
DAP-Na for Asp and Glu detection was also evaluated. When adding 20 natural amino
acids to aqueous DAP-Na, only Asp and Glu produced dramatical fluorescence quenching
as well as a 20 nm red shift. While, basic amino acids (Arg, Lys, and His) induced a slight
emission enhancement of DAP-Na and all the other amino acids caused few changes.
The fluorescence variation of DAP-Na to various amino acids also revealed the strong
identifying capability to Asp and Glu (Figure S7b).
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Figure 4. (a) Fluorescence emission spectra of DAPA in the absence and presence of various amino
acids in water; (b) histogram style of fluorescence intensity changes, inset: photos of aqueous DAPA
in the absence and presence of Arg under UV light (λ = 365 nm); anti-interference capabilities of
DAPA to detect Arg (c) and Lys (d) in the presence of various amino acids (DAPA: c = 20 µM, amino
acids: c = 100 µM).

Present single-benzene-based probes of DAPA and DAP-Na exhibited highly se-
lective responses to basic (Arg and Lys) and acidic (Asp and Glu) amino acids, respec-
tively. It is worthy to further appraise the anti-interference ability of the probes in the
real-life applications. Therefore, a series of competitive experiments were conducted
(Figures 4c,d and S7c,d). When Arg or Lys was added to the aqueous solution of DAPA
with the co-existing interfering amino acids, 16 among 18 kinds of amino acids show no
obvious effect. Asp and Glu show little interference because the released H+ might weaken
the basicity of Arg or Lys, thus reducing the positive response of DAPA to Arg or Lys.
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The competitive experiments demonstrated that most of these natural amino acids did not
significantly induce the fluorescent sensing of DAPA towards Arg or Lys. Similarly, we
also verified the co-presence of other natural amino acids did not obviously influence the
fluorescent detection of DAP-Na towards Asp or Glu (Figure S7c,d).

Sensitivity is another crucial factor for determining the practical usability of the
fluorescent probes. Accordingly, the sensing performances of DAPA for Arg and Lys were
systematically studied. Figures 5a and S8a demonstrated that the fluorescence dependence
of DAPA on Arg and Lys ranged from 2 to 200 µM, respectively. As depicted, with
incremental addition of Arg or Lys to aqueous DAPA solution, the fluorescence intensity
was gradually enhanced (turn-on) and accompanied by the emission peak shift from 591 to
558 nm (∆λ = 33 nm). Figure S9a,b represent the corresponding plots of the fluorescence
intensity rations (I/I0) at 558 nm versus the concentrations of Arg and Lys. A relatively
linear correlation was observed over a concentration range from 12 to 100 µM for both
amino acids, and then the plot reached a plateau as the concentration of amino acids above
140 µM. To quantitatively evaluate the sensitivity of DAPA, the detection limits (DLs) were
investigated using the standard IUPAC 3δ method [60]. The DL values for Arg and Lys
were calculated to be 0.50 µM and 0.41 µM, respectively. In contrast, the fluorescence
quenching (turn-off) responses of DAP-Na with respect to Asp and Glu were also carefully
investigated (Figure 5b, Figures S8b and S9c,d). Related DL values were found to be
0.12 µM for Asp and 0.16 µM for Glu, respectively. Compared with recently-reported
fluorescence probes, the structures of DAPA and DAP-Na are the simplest but display
efficient sensing performances to different amino acids in aqueous media (Table S2).
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Figure 5. (a) Fluorescence emission spectra of DAPA upon titration of Arg (0~200µM, pH = 7.09–10.08)
in water; (b) fluorescence variation of DAP-Na upon titration of Asp (0~90 µM) in water (DAPA:
λex = 365 nm, DAP-Na: λex = 350 nm, c = 20.0 µM).

Aiming to better understand the sensing mechanism, 1H NMR spectra were evaluated
to study the interactions between the probes and the amino acids. As depicted in Figure 6,
the signals of aromatic protons (Ha) in DAPA were assigned to 7.46 ppm. After adding
Arg, the aromatic protons shifted up-field obviously and the chemical shifts changed
up to 0.33 ppm. Such results suggest DAPA was easily converted into the species of
carboxylate anion through the deprotonation of basic Arg, thus increasing the electron
cloud density on the benzene ring of DAPA [61]. Upon addition of Asp into the D2O
solution of DAP-Na, all the protons assigned to DAP-Na shifted downfield (Figure S10).
Specifically, the downfield shift magnitude of the aromatic proton signal (Ha′ ) was close to
1.12 ppm, and that of methylene (Hb′ ) attached to the nitrogen atom was close to 0.53 ppm.
Such extraordinary shifts suggest that the Lewis-basic nitrogen of azetidine is most probably
protonated by Asp, explaining why DAP-Na exhibited dramatically quenching phenomena
toward acidic amino acids [45].
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3. Materials and Methods
3.1. Reagents and Instruments

All the organic solvents for spectroscopic measurements were distilled prior to use.
Water used was prepared from Milli-Q water. Diethyl 2,5-di(azetidine-1-yl)terephthalate
was synthesized and characterized according to our previous report [44]. Twenty natural
amino acids including arginine (Arg), lysine (Lys), histidine (His), aspartic acid (Asp), glu-
tamic acid (Glu), proline (Pro), tryptophan (Trp), leucine (Leu), alanine (Ala), methionine
(Met), glycine (Gly), cysteine (Cys), threonine (The), serine (Ser), tyrosine (Tyr), glutamine
(Gln), asparagine (Asn), isoleucine (Ile), valine (Val), and phenylalanine (Phe) were pur-
chased from J&K scientific company and used without further purification. Deuterated
solvents of d6-DMSO and D2O were obtained from Cambridge Isotope Laboratories.

NMR spectra of the synthesized compounds were recorded on a Bruker 600 MHz spec-
trometer and their high-resolution mass spectra were determined by a Bruker maxis UHR-
TOF mass spectrometer. UV-vis absorption spectra were measured on a Hitachi U-3900
spectrophotometer. Fluorescence measurements were performed on a time-correlated
single-photon-counting FLS920 fluorescence spectrometer from Edinburgh Instruments.
Absolute fluorescence quantum yields (Φf) were measured on the Hamamatsu C9920-02G
quantum efficiency measurer.

The femtosecond transient absorption (fs-TA) setup adopted in the present work was
based on a PHAROS laser system from Light Conversion (1030 nm, ~200 fs, 200 µJ/pulse,
and 100 kHz repetition rate), nonlinear frequency mixing techniques, and the Femto-TA100
spectrometer (Time-Tech Spectra) [62,63]. Briefly, the 1030 nm output pulse from the
regenerative amplifier was split in two parts with an 80% beam splitter. The reflected part
was used to pump an ORPHEUS Optical Parametric Amplifier (OPA) which generates
a wavelength-tunable laser pulse from 300 nm to 15 µm. Here, 420 nm was used as the
pump beam. The transmitted 1030 nm beam was split again into two parts. One part
with less than 50% was attenuated with a neutral density filter and focused into a YAG
window to generate a white light continuum from 500 to 1600 nm used for probe beam.
The probe beam was focused with an Ag parabolic reflector onto the sample. After the
sample, the probe beam was collimated and then focused into a fiber-coupled spectrometer
with CMOS sensors and detected at a frequency of 10 kHz. The intensity of the pump pulse
was controlled by a variable neutral-density filter wheel. The delay between the pump and



Molecules 2022, 27, 5522 10 of 14

probe pulses was controlled by a motorized delay stage. The pump pulses were chopped
by a synchronized chopper at 5 kHz and the absorbance change was calculated with two
adjacent probe pulses (pump-blocked and pump-unblocked).

Kinetic modeling: Kinetic modeling was carried out via target analysis on a composite
data set of the fs-TA spectra in order to capture the complete dynamics. Using target
analysis, the entire TA data set was fitted over the whole wavelength region and all the time
delays with the application of a kinetic model. In this work, CarpetView (version 1.1.10)
software was used for kinetic modelling of the transient absorption data (www.lightcon.
com, accessed on 21 March 2022).

3.2. Synthesis of Compound DAPA

Diethyl 2,5-di(azetidin-1-yl) terephthalate (0.1 g, 0.30 mmol) was dissolved in THF
(1 mL) and methanol (3 mL), followed by addition of 2 M NaOH (aq. 2 mL). The reaction
mixture was heated up to 85 ◦C and stirred for 6 h. Organic solvent was removed under
reduced pressure, and the residue was neutralized with 1 M HCl solution until pH~3.
Excess water was concentrated using a rotary evaporator at 40 ◦C and the residue was
further purified by column chromatography (CH2Cl2/MeOH = 20/1, containing 0.5%
AcOH) to afford DAPA (0.083 g, 79%). 1H NMR (600 MHz, d6-DMSO, ppm) δ 7.25 (s, 2H),
3.72 (t, J = 6 Hz, 4H), 3.25 (t, J = 6 Hz, 4H), 2.02 (m, 4H). 13C NMR (150 MHz, d6-DMSO,
ppm) δ 169.26, 140.41, 117.45, 114.19, 43.08, 40.23, 31.52. ESI-HRMS m/z: [M + Cl]−, calc.
for C14H16N2O4Cl: 311.0804, found: 311.0814.

3.3. Synthesis of Compound DAP-Na

Diethyl 2,5-di(azetidin-1-yl) terephthalate (0.065 g, 0.20 mmol) was dissolved in THF
(1 mL) and methanol (3 mL), followed by addition of 1 M NaOH (aq. 0.39 mL). The reaction
mixture was heated up to 80 ◦C and stirred for 18 h. The reaction mixture was then cooled
to room temperature and the precipitate was isolated by centrifugation, rinsed with CH2Cl2,
and dried under reduced pressure to afford DAP-Na as a white solid (0.035 g, 56%). 1H
NMR (600 MHz, D2O, ppm) δ 6.56 (s, 2H), 3.81 (t, 8H), 2.25 (m, 4H). 13C NMR (150 MHz,
D2O, ppm) δ 177.51, 141.95, 127.87, 114.15, 54.09, 16.77. ESI-HRMS m/z: [M-Na]−, calc. for
C14H14N2O4Na: 297.0857, found: 297.0865.

4. Conclusions

In summary, we developed two compact single-benzene-based chromophores, DAPA
and its disodium carboxylate DAP-Na, which displayed favorable properties including
good water solubility, large Stokes shift, intense luminescence in most polar and protonic
solvents, and highly pH-responsive characteristics. Fs-TA spectra illustrated that quadrupo-
lar DAPA usually involved the formation of an ICT state. The Frank–Condon state could
be rapidly relaxed to a slight symmetry-breaking state upon light excitation following
the solvent relaxation, then the slight charge separation may occur and the charge local-
ization become partially asymmetrical in polar environment. DFT theoretical calculation
results support with the experimental measurements well. Given these advantages, these
two fluorescent probes were capable of rapid, highly selective, and sensitive detection
of amino acids in aqueous media. DAPA can be successfully used in sensing Arg and
Lys via fluorescence turn-on response and displayed DL values of 0.50 µM for Arg and
0.41 µM for Lys, respectively. In contrast, DAP-Na demonstrated a remarkable fluores-
cence quenching response toward Asp and Glu and the DLs were calculated to be 0.12
and 0.16 µM, respectively. The present work provides two structurally simple probes that
help to understand their photophysic–structure relationship and render their fluorescent
detection applications.

www.lightcon.com
www.lightcon.com
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27175522/s1. Figure S1. Normalized fluorescence ex-
citation and emission spectra of DAPA (red lines) and DAP-Na (green lines) in water solution
(c = 20.0 µM). Figure S2. (a) UV−vis absorption and (b) normalized fluorescence emission spectra
of DAP-Na in various solvents (λex = 350 nm; c = 20.0 µM). Figure S3. Femtosecond transient ab-
sorption spectra of DAPA in different solvents after excitation at fs-420 nm. Figure S4. Experimental
decay curves of DAPA in transient absorption and their fitting kinetic traces probed at 610 nm and
790 nm in different solvents. Figure S5. (a) Femtosecond transient absorption spectra of 5 after excita-
tion at 420 nm at various time delays in DMSO and (c) its species-associated spectra plots; (b) and
(d) experimental decay curves in transient absorption of DAPA and 5 probed at different wavelengths
and their fitting kinetic traces. Figure S6. UV−vis absorption (a,c) and fluorescence emission spectra
(b,d) of DAPA and DAP-Na in B-R buffer at different pH values (DAPA: λex = 365 nm, DAP-Na:
λex = 350 nm, c = 20.0 µM). Figure S7. (a) Fluorescence emission spectra of DAP-Na in the absence
and presence of various amino acids in water; (b) histogram style of fluorescence intensity changes.
Inset: photos of aqueous DAP-Na in the absence and presence of Asp under UV light (λ = 365 nm);
anti-interference capabilities of DAP-Na to detect Asp (c) and Glu (d) in the presence of various
amino acids (DAP-Na: c = 20 µM, amino acids: c = 100 µM). Figure S8. (a) Fluorescence emission
spectra of DAPA upon titration of Lys (0~260 µM) in water; (b) fluorescence variation of DAP-Na
upon titration of Glu (0~90 µM) in water (DAPA: λex = 365 nm, DAP-Na: λex = 350 nm, c = 20.0 µM).
Figure S9. Fluorescence intensity ratio (I/I0) at 558 nm of DAPA versus the concentration of Arg (a)
and Lys (b) (Inset: Linear relationship between I/I0 and the concentration of Arg and Lys ranged from
12 to 100 µM). Plots of fluorescence variation (I0/I) at 531 nm of DAP-Na as a function of Asp (c) and
Glu (d) concentration (Inset: Linear relationship between I0/I and the concentration of Asp and Glu
ranged from 1 to 30 µM). Figure S10. Partial 1H NMR spectra of DAP-Na upon addition of Asp in
D2O. Figure S11. 1H NMR spectrum of DAPA in d6-DMSO. Figure S12. 13C NMR spectrum of DAPA
in d6-DMSO. Figure S13. 1H NMR spectrum of DAP-Na in D2O. Figure S14. 13C NMR spectrum of
DAP-Na in D2O. Figure S15. ESI-HRMS spectrum for DAPA. Figure S16. ESI-HRMS spectrum for
DAP-Na. Table S1. Time constants of multiple exponential fitting of femtosecond TA data of different
system, with relative amplitudes given for DAPA and 5 in different solvents. Table S2. Performance
comparison of DAPA and DAP-Na for detection of different amino acids with the recently reported
probes [32,33,64–67]. Detection limits of DAPA to basic amino acids (Arg and Lys) and DAP-Na to
acidic amino acids (Asp and Glu) were determined based on the fluorescence titration.
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