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Figure S1. SEM images of as-obtained PBA materials. (a) PBA 0-1; (b) PBA 1-1; (c) PBA 3-1; (d) 

PBA 4-1.  

 

 
Figure S2. The Raman spectra of PBA materials. 



 
Figure S3. The XPS survey spectra of PBA materials before OER tests. (a) PBA NiFe 2-1; (b) 

PBA NiFe 2-1/rGO. 

 

Table S1. Catalyst performance of analogous materials. 

Materials Methods  
Mass 
loading  
/mg cm-2 

Overpotential 
/mV  
(30 mAcm-2) 

Tafel 
slopes 
/mV  
dec-1 

Durability 
/h  

Ref 

NiHCF-200c  
Sodium-ion 
electrochemical 
tuning method 

0.5 300 41 24 [1] 

FeCoNi 
PBAs 
polyhedrons 

Oil bath reaction 0.5 300 52 ‒ [2] 

Ni-Fe-K0.23M
nO2 
CNFs-300 

Sacrificial template 
strategy 

2 290 42.3 24 [3] 

NiCo@A-Ni
Co-PBA-AA 

Topological 
growth method 

0.0006 
(GCE) 

410 79.1 40 [4] 

(v-NiFe 
PBA@rGO 

Rapid 
coprecipitation 
method 

0.285 290 36.2 200 [5] 

PBA NiFe 
2-1/rGO 

Coprecipitation 
method 

0.5 331.5 57.9 40 
This 
work  

GCE: glassy carbon electrode. 

 



 
Figure S4. CV curves of as-obtained PBA materials at different scan rates in non-Faraday 

potential range. (a) PBA NiFe 0-1; (b) PBA NiFe 1-1; (c) PBA NiFe 2-1; (d) PBA NiFe 3-1; (e) 

PBA NiFe 4-1; (f) PBA NiFe 2-1/rGO. 

 



 

Figure S5. XPS spectra of PBA samples after OER measurement. High-resolution Ni 2p (a) and Fe 

2p (b) spectra of PBA NiFe 2-1, respectively.  

 
Table S2. The calculated Cdl ECSA values of as-obtained PBA materials. 

 

Materials  Cdl (mF cm-2) ECSA (cm2) 

PBA NiFe 0-1 0.4 10 

PBA NiFe 1-1 0.6 15 

PBA NiFe 2-1 0.5 12.5 

PBA NiFe 3-1 0.4 10 

PBA NiFe 4-1 0.5 12.5 

PBA NiFe 2-1/rGO 5.3 132.5 
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