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Abstract: In this work, β-cyclodextrin (β-CD)/mesoporous carbon (CMK-8) nanocomposite was
synthesized and used as an electrochemical sensing platform for highly sensitive and selective
detection of Cu2+. The morphology and structure of β-CD/CMK-8 were characterized by scanning
electron microscope (SEM) and X-ray diffraction (XRD). In addition, the dates from electrochemical
impedance spectroscopy (EIS) and Cyclic voltammetry (CV) demonstrated that the β-CD/CMK-8
possessed a fast electronic transfer rate and large effective surface area. Besides this, the β-CD/CMK-8
composite displayed high enrichment ability toward Cu2+. As a result of these impressive features,
the β-CD/CMK-8 modified electrode provided a wide linear response ranging from 0.1 ng·L−1 to
1.0 mg·L−1 with a low detection limit of 0.3 ng·L−1. Furthermore, the repeatability, reproducibility
and selectivity of β-CD/CMK-8 towards Cu2+ were commendable. The sensor could be used to
detect Cu2+ in real samples. All in all, this work proposes a simple and sensitive method for Cu2+

detection, which provides a reference for the subsequent detection of HMIs.

Keywords: copper ion; β-cyclodextrin; mesoporous carbon; electrochemical sensor

1. Introduction

HMIs are considered to be a group of hazard pollutants that pose a threat to the
environment [1]. With the continuing development industry, most HMIs are released into
the environment, causing serious pollution. The accumulation of HMIs in the food chain
has great potential to harm human health [2,3]. Copper, as a crucial trace element, occupies
a significant position in a myriad of physiological functions [4–6]. However, excessive Cu2+

might lead to cancer [7], cardiovascular disorders [8] and neurodegenerative diseases [9].
Therefore, it is urgent to develop an effective and sensitive method for the trace detection
of Cu2+ in the food industry and environmental field. So far, various techniques have been
developed for detecting Cu2+, including graphite furnace atomic absorption spectroscopy
(GF-AAS) [10], atomic absorption spectrometry (AAS) [11] and inductively coupled plasma
atomic emission spectrometry (ICP-AES) [12], etc. These methods display high sensitivity.
However, these techniques are relatively expensive and, in most cases, require a complex
and rigorous pre-treatment of the sample to be analyzed. In contrast, the electrochemical
method has aroused widespread attention because of its advantages, such as its simple
operation, its quick responsiveness, low cost, and high selectivity [3,13–15].

As an electrochemical sensor, its performance mainly depends on the electrode ma-
terial. β-cyclodextrin (β-CD) is a kind of cyclic oligosaccharide composed of seven glu-
copyranose units with a cylindrical structure with internal hydrophobicity and external
hydrophilicity [16,17]. The hydrophobic inner cavity of β-CD can selectively bind various
organic, inorganic, and biological guest molecules into its cavities to form host–guest inclu-
sion complexes [18–20]. When a β-CD-modified electrode is applied to detect Cu2+, the
wide opening cavity of β-CD could form a binuclear hydroxyl bridge with Cu2+ to achieve
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the selective adsorption of Cu2+ [21]. Nevertheless, poor conductivity is the intrinsic short-
coming of β-CD, which limits its wide application. In this case, combining β-CD with
conductive materials has been proved to be a feasible method to improve its conductivity.
Ordered mesoporous carbon (OMC) has gained much attention due to its large specific
surface area, large pore volume, low cost, high stability and good conductivity [22]. OMC
is usually synthesized by etching silica templates and different types of carbon materials
could be produced by changing the pore structure of the mesoporous silica templates [23],
such as CMK-3 and CMK-8. Among them, CMK-8 is a kind of three-dimensional (3D) cubic
mesoporous carbon with a robust 3D framework [24,25]. It possesses unique structural
properties, such as high surface area, highly uniform mesoscale pores and an ordered
mesopore system [26,27]. However, as far as we know, there has been no relevant report on
the use of β-CD/CMK-8 as electrode material for the quantification of Cu2+.

In view of the above considerations, herein, β-CD/CMK-8 composite was successfully
developed through an ultrasonic blending method and employed as an electrochemical
sensing platform for the detection of Cu2+. The abundant hydroxyl groups in the cavity
of β-CD could form a binuclear hydroxyl bridge with Cu2+, so as to achieve selective
detection of Cu2+. In addition, the excellent conductivity of CMK-8 improves the interfacial
electron transfer rate. More than this, the large specific surface area and porous structure
of β-CD/CMK-8 provide a great quantity of active sites for the detection of Cu2+, which
endows the Cu2+ sensor with a low detection limit, wide linear range, good stability and
selectivity, etc.

2. Results and Discussion
2.1. Materials Characterization

SEM shows that the β-CD is a kind of polyhedron (Figure 1A) and CMK-8 has a
rough and porous surface (Figure 1B). For β-CD/CMK-8 (Figure 1C), β-CD and CMK-8
were entangled evenly with each other, and the β-CD was exposed on the surface of
CMK-8, creating more binding sites, which benefited the highly sensitive detection of Cu2+.
The result of the SEM indicated that β-CD/CMK-8 had been synthesized successfully.
Meanwhile, the crystallinity of CMK-8, β-CD and β-CD/CMK-8 were studied by XRD
(Figure 1D). As shown, for CMK-8 (curve a), there were two diffraction peaks at 2θ = 27.5◦

and 43.0◦, which were accordant with (002) and (100) crystal planes, respectively, indicating
good graphitization degree. The XRD curve of β-CD (curve b) and β-CD/CMK-8 (curve c)
were almost consistent, except for the slight differences at 27.5◦ and 43◦, which indicated
the characteristic peaks of β-CD and CMK-8 were retained in β-CD/CMK-8.

2.2. Absorption Experiments

The adsorption behavior of β-CD/CMK-8 was explored by means of a static adsorp-
tion test. The adsorption isotherm is displayed in Figure 2A. The amount of Cu2+ adsorbed
onto β-CD/CMK-8 is expressed as:

Q = (C0 − C) V / m

In which, Q (mg·g−1) is the adsorbed quantity of adsorbate per unit mass of the
adsorbent. Concentrations of C0 and C (mg·L−1) are the initial and equilibrium of con-
taminants, respectively, m (g) is the mass of the adsorbent and V (mL) is the volume of
adsorption solution. As shown, the Cu2+ adsorption capacity increased with increasing
solution concentration. In addition, The maximum binding capacity (Qmax) and apparent
dissociation constant (KD) could be obtained by the Scatchard equation:

Q / C = (Qmax −Q) / KD
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Figure 2. (A) Blinding isotherm of β-CD/CMK-8 toward Cu2+. (B) Scatchard curve of blinding
nature of β-CD/CMK-8 toward Cu2+.

The Scatchard analysis of β-CD/CMK-8 toward Cu2+ is presented in Figure 2B. As
shown, Q has a linear relationship with Q / C , which indicated that β-CD/CMK-8 has a
class of equivalent binding sites and uniform affinity for Cu2+. The corresponding linear
regression equation is Q/C = 1.30 − 0.038 Q (R2 = 0.991). Thus, the maximum binding
capacity (Qmax) and apparent dissociation constant (KD) could be calculated, and were
26.32 mg·g−1 and 34.21 mg·L−1, respectively.

2.3. Electrochemical Characterization of Different Modified Electrodes

The effective surface area (Ae f f ) of β-CD/CMK-8/GCE was calculated according to
the Randles-Sevcik equation [28,29]. Roughness factor (R f ) is also a pivotal parameter to
characterize the composite.

Ip = 2.99× 105 n3/2 Ae f f D1/2
0 C v1/2

R f = A / Ageom
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where, Ip refers to the maximum current of anode. Ae f f represents the effective surface area
of β-CD/CMK-8/GCE. D0 (7.6 × 10−6 cm2·s−1) is the diffusion coefficient. n represents
the electron transfer number (n = 1). C is the concentration of the probe molecule (5 mM
[Fe (CN)6] 3−/4−). v is the scan rate (0.05 V s−1). Ageom is the geometric surface area
(0.03925 cm2). Figure 3A shows CVs cureves of β-CD/CMK-8/GCE at different scan
rates. According to these parameters (shown in Figure 3B), the effective surface area and
roughness factor of β-CD/CMK-8 were estimated to be 0.091 cm2 and 2.32, respectively,
which were significantly higher than those of bare GCE (Ae f f = 0.0707 cm2, R f = 1). The
β-CD/CMK-8 provided a larger effective surface area for electrochemical reaction, which
had great significance for enhancing the sensitivity of the sensor.
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Figure 3. (A) CV curves of β-CD/CMK-8/GCE at different scan rates; (B) The linear relationship
between the peaks current and v1/2.

Electrochemical impedance spectroscopy (EIS) is an available tool for exploring the
electron transfer behavior of different modified electrodes, which usually consists of a
straight line of low-frequency and a semicircle of high-frequency. The diameter of the
high-frequency semicircle represents electron transfer resistance (Rct) [30]. Figure 4A
describes the Nyquist diagrams of the GCE (curve a), β-CD/GCE (curve b), CMK-8/GCE
(curve c) and β-CD/CMK-8/GCE (curve d). In addition, the impedance data can be
obtained from Randles circuit model (the illustration of Figure 4A), composed of Warburg
impedance (Zw), electrode surface resistance (Rs), double-layer capacitance (Cdl) and Rct.
Accordingly, the Rct value of bare GCE was 876.4 Ω, while, β-CD/GCE presented a larger
semicircle with Rct at about 1067.8 Ω, which was attributed to the low conductivity of β-CD.
CMK-8/GCE displayed a minuscule semicircle with a Rct value of 49.6 Ω, demonstrating
the high conductivity of CMK-8. The Rct value of β-CD/CMK-8/GCE was 417.8 Ω, which
was between that of β-CD and CMK-8, confirming that the β-CD/CMK-8 composite was
successfully prepared.
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CMK-8/GCE (c) and β-CD/CMK-8/GCE (d) in 0.1 M ABS (pH 5.0).
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2.4. Electrochemical Responses of Cu2+ on Different Electrodes

The electrochemical responses toward 1.0 mg·L−1 Cu2+ at different modified electrodes
were researched by DPASV (Figure 4B). It can be clearly observed that there was no obvious
oxidation peak on bare GCE (curve a), while, there were evident oxidation peaks on
β-CD/GCE (curve b) and CMK-8/GCE (curve c), which were due to the good Cu2+-
enrichment ability of β-CD and the excellent conductivity of CMK-8 [24]. Meanwhile, the
largest oxidation peak current was observed on β-CD/CMK-8/GCE (curve d), which was
about twice that of β-CD/GCE or CMK-8/GCE. This phenomenon could be attributed to
the synergetic effects between β-CD and CMK-8. These results indicated that β-CD/CMK-8
was an ideal electrode material for fabricating a Cu2+ sensor.

2.5. Optimization of the Experimental Conditions

Some experimental parameters were optimized to explore the best conditions for the
detection of Cu2+. The effect of the mass ratio of β-CD and CMK-8 on the response of the
modified electrode to 1 mg·L−1 Cu2+ is presented in Figure 5A. As shown, the current value
increased with the increase of mass ratio from 1:2 to 2:1. The result might be attributed to
the fact that more active site was produced with the increase of the amount of β-CD on
the surface of the electrode. However, when the mass ratio further increased to 4:1, the
response current tended to be almost constant. Therefore, in this work, the mass ratio of
β-CD and CMK-8 was fixed at 2:1.
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Figure 5. Optimization of experimental conditions. Effect of (A) the mass ratios of β-CD and CMK-8,
(B) supporting electrolyte, (C) the volume of β-CD/CMK-8/GCE, (D) the buffer pH value, (E) the
deposition time and (F) the deposition potential on the electrochemical response of 1 mg·L−1 Cu2+ at
β-CD/CMK-8/GCE.

The effect of the support electrolyte type was also studied. Cu2+ detection perfor-
mances, based on β-CD/CMK-8/GCE in 0.6 M KCl solution (pH 5.0), 0.1 M phosphate
buffer solution (PBS, pH 5.0) and 0.1 M HAc-NaAc buffer solution (ABS, pH 5.0) were
conducted, and the results are displayed in Figure 5B. As shown, the peak current of Cu2+

in 0.6 M KCl solution was almost invisible (curve a), while an enhanced peak current
was found in 0.1 M PBS solution (curve b). More obviously, the peak current of Cu2+ in
0.1 M ABS solution (curve c) was the largest. Therefore, ABS was applied as the optimal
electrolyte solution for the detection of Cu2+.

The modification amount of β-CD/CMK-8 on GCE was optimized (Figure 5C). The
result showed that the peak current of Cu2+ increased with the increased β-CD/CMK-8
suspension when the volume of the suspension was less than 3 µL. This could be attributed
to the fact that the active site increased with the increase of modification amount. However,
the peak current decreased rapidly when the volume of β-CD/CMK-8 suspension was
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more than 3 µL. This phenomenon was because a high amount of β-CD/CMK-8 on the
electrode surface caused considerable resistance against electron transfer. Therefore, 3 µL
was used as the optimal modified volume of β-CD/CMK-8 suspension.

The influence of pH value of ABS on the detection of Cu2+ was explored (Figure 5D).
The result showed that the maximum peak current of Cu2+ appeared with a pH of 5.0. This
might be attributed to the fact that the Cu2+ binding site could be protonated when the pH
value was lower than 5.0, leading to the weakened adsorption of Cu2+. However, when
the pH value was higher than 5.0, the Cu2+ could be hydrolyzed, resulting in a reduced
response current. Therefore, 5.0 was employed as the optimum pH value.

The effect of deposition time on the detection of Cu2+ was explored (Figure 5E). As the
deposition time increased from 30 s to 180 s, the peak current of Cu2+ increased gradually.
The result might be attributed to the fact that with the increase of deposition time, more and
more Cu2+ was accumulated on the surface of the electrode. However, when deposition
time exceeded 180 s, the response current of Cu2+ tended to be flat. This phenomenon
might be due to the saturation of electrode surface [1]. Thus, 180 s was selected as the
optimum deposition time.

Finally, other conditions kept constant, the deposition potential from −0.1 V to
−0.8 V was chosen to research the effect of deposition potentials on the response of Cu2+

(Figure 5F). The peak current of Cu2+ displayed an increasing trend as the deposition po-
tential transferred from−0.1 V to−0.5 V, indicating that the negative shift of the deposition
potential promoted the reduction of Cu2+ on the electrode surface. However, the peak
current remained constant as the deposition potential continued to shift negatively. This
might be because hydrogen evolution occurred on the electrode when the potential was
too negative [31,32]. Therefore, −0.5 V was chosen as the optimum deposition potential.

2.6. Kinetics Studies

The effect of scan rate on the redox of Cu2+ on β-CD/CMK-8/GCE was studied by cyclic
voltammetry (CV). Figure 6A shows the CVs of 1.0 mg·L−1 Cu2+ at β-CD/CMK-8/GCE
with the scan rate ranging from 25 to 300 mV·s−1. As shown, the redox currents in-
creased with the increase of the scan rate. There were good linear relationships between
the anodic and cathodic currents and between the scan rates and the linear regression
equations of Ipa = 39.57 + 1.04 ν (R2= 0.995) and Ipc = −27.07 − 0.61 ν (R2 = 0.996), respec-
tively (Figure 6B). The phenomenon indicated that the electrochemical behavior of Cu2+ on
β-CD/CMK-8/GCE was an adsorption control process.

Moreover, from Figure 6C, it can be seen that the anode peak potential (Epa ) and cathode
peak potential (Epc) had a good linear correlation with the logarithm of scan rate (log ν) under
high scan rate. The linear regression equations were Epa = 0.085 log ν − 0.14 (R2 = 0.999) and
Epc = −0.059 log ν + 0.083 (R2 = 0.996), respectively. According to the Laviron formulae, E0′

is standard potential, the slope of the equation for Epa and Epc could be represented as
2.3RT / (1− α)nF and −2.3RT / αnF, respectively.

Epa = E0′ + [2.3RT / (1− α)nF] log ν

Epc = E0′ − (2.3RT / αnF) log ν

Epa = E0 + (2.3RT / αnF) log (RTK0 / α + (2.3RT / αnF) log ν

log ks = αlog (1− α) + (1− α)log α− log(RT /nFν)− α(1− α)nF∆EP / 2.3RT

Consequently, electron transfer coefficient (α) and electron transfer number (n) could
be calculated to be 0.59 and 1.97, respectively. Furthermore, based on the Laviron Equations
K0 and ks of β-CD/CMK-8/GCE were calculated to be 0.23 and 0.51 s−1, averaged.
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Figure 6. (A) Cyclic voltammetric response of β-CD/CMK-8/GCE to 1.0 mg·L−1 Cu2+ in ABS
(pH 5.0) with scan rate of 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 mV·s−1; (B) Relationship
between the peak current and scan rate; (C) Relationship between peak potential and logarithm of
scan rate under high scan rate.

2.7. Electrochemical Detection of Cu2+ at β-CD/CMK-8/GCE

Under the optimized conditions, the electrochemical performance of Cu2+ on
β-CD/CMK-8/GCE was researched by means of DPASV. As shown in Figure 7A, there
was an obvious oxidation peak at −0.06 V, the peak current of which increased with the
increase of Cu2+ concentration. Besides this, a good linear relationship between the con-
centration of Cu2+ and response current was established from 0.1 ng·L−1 to 1.0 mg·L−1

(R2 = 0.995, Figure 7B). The limit of detection (LOD) of the Cu2+ sensor was calculated as
0.3 ng·L−1 (LOD = 3 SD / S), where SD was the standard deviation of intercept and S was
the sensitivity. The LOD value was far lower than the prescribed value in drinking water by
the World Health Organization (2000 µg·L−1) [33]. The β-CD/CMK-8/GCE also possessed
lower LOD and higher sensitivity than those reported in previous literature with regards
to Cu2+ detection (shown in Table 1) [34–38].
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1000 µg·L−1.
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Table 1. Comparison of the detection performance in various reported electrochemical Cu2+ sensors.

Electrode Substrate Measurement
Technique

Linear Range
(µg·L−1)

LOD
(µg·L−1) References

AuNPs-GR a/GCE ASV 0.32–6.4 0.0018 [34]
SSA/MoS2/o-MWCNTs b/GCE DPASV 6.4–704 3.648 [35]

Trp-RGO c/GCE DPASV 15.36–3072 4.096 [36]
C-Dot-TPEA d/GCE DPASV 64–3840 6.4 [37]
[PAH-GO e]n/GCE DPASV 32–3200 22.4 [38]
β-CD/CMK-8/GCE DPASV 0.001–1000 0.0003 This work

Note: a: graphene and AuNPs; b: oxidized multi-walled carbon nanotubes functionalized with 5-sulfosalicylic
acid/MoS2 nano-sheets nanocomposites; c: Tryptophan non-covalent modification of reduced graphene oxide;
d: Carbon Dot-TPEA Hybridized; e: Layered graphene nanostructures functionalized with NH2-rich polyelectrolytes.

2.8. Repeatability, Reproducibility, Stability, and Selectivity Measurements

The repeatability of β-CD/CMK-8/GCE toward 1.0 mg·L−1 Cu2+ was explored by
using one modified electrode (Figure 8A). After 10 consecutive measurements, there was no
significant loss between these electrochemical signals, and the relative standard deviation
(RSD) was calculated to be 1.53%. The significant difference between the 10 sets of date
was estimated by using the t-test method. The p-value was calculated as 0.063 using SPSS
18.0 software. Generally, the level of statistical significance was set at 0.05 (α = 0.05). As
the calculated p-value was bigger than 0.05, there was no significant difference between
the 10 sets of current data. This result demonstrates that the repeatability of β-CD/CMK-
8/GCE was satisfactory.
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Figure 8. (A) Repetitive DPASV responses regarding β-CD/CMK-8/GCE with the same electrode;
(B) DPASV responses of β-CD/CMK-8/GCE for 10 different electrodes. (C) DPASV responses of
β-CD/CMK-8/GCE with 0.1 M ABS solution (pH 5.0) containing Cu2+ (1 mg·L−1) in the presence
and absence of 100-fold common ions (Cu2+, Na+, Zn2+, K+, Cd2+, Hg2+, Pb2+, Cl−, NO3

−, SO4
2−).

The reproducibility of the β-CD/CMK-8/GCE was confirmed by detecting 1.0 mg·L−1

Cu2+ with 10 individual modified electrodes. As shown in Figure 8B, the response of
peak current remained almost stable and the relative standard deviation (RSD) was calcu-
lated to be 1.60%. Similarly, the result of p-value was calculated to be 0.052, using SPSS
18.0 software, which was bigger than our considered significance level 0.05, indicating that
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there was no significant difference between the measured currents. The result showed that
β-CD/CMK-8/GCE owns excellent reproducibility.

Selectivity is also an important factor in evaluating the performance of a sensor, which
could be further evaluated by selectivity factor (SF). Here, SF = I / I0 · 100%. I and I0 stand
for the DPASV responses of β-CD/CMK-8/GCE toward 1.0 mg·L-1 Cu2+ under 100-fold
common ions (Cu2+, Na+, Zn2+, K+, Cd2+, Hg2+, Pb2+, Cl−, NO3

−, SO4
2−) and 1.0 mg·L−1

Cu2+, respectively. As shown in Figure 8C, the SF values were calculated as 99.2%, 98.3%,
102.3%, 101.7%, 104.3%, 104.1%, 102.1%, 97.4%, 98.2%, respectively. These results revealed
that the common ions had no effect on the detection of Cu2+, which indicated the excellent
selectivity of β-CD/CMK-8/GCE toward Cu2+.

2.9. Real Sample Analysis

Tap water was used as the real sample to verify the practicability of β-CD/CMK-8/GCE
in the analysis of real samples. The tap water sample was firstly filtrated with 0.45 µm
filter, and the pH value was adjusted to 5.0. Subsequently, different concentrations of Cu2+

standard solutions were spiked separately into the tap water sample and tested using
β-CD/CMK-8/GCE. The data are summarized in Table 2. As shown, the recovery of
Cu2+ was from 99.38% to 104.0%, and the RSD value was less than 4%, indicating that the
β-CD/CMK-8 /GCE was feasible for the detection of Cu2+ in the tap water sample.

Table 2. Recoveries of trace Cu2+ in tap water sample (n = 3).

Sample Added (µg·L−1) Founded (µg·L−1) Recovery (%) RSD (%)

1 0 - - -
2 0.5 0.52 ± 0.02 104.0 3.85
3 5.0 4.98 ± 0.09 99.63 1.81
4 50.0 49.69 ± 0.79 99.38 1.59
5 100.0 101.0 ± 2.31 101.0 2.29

3. Experimental Section
3.1. Materials

Mesoporous carbon (CMK-8) was obtained from XF Nano Co., LTD (Nanjing, China).
β-cyclodextrin (β-CD), N, N-Dimethylformamide (DMF), KOH, HCl, HNO3, H2SO4,
NaOH, Cu(NO3)2·3H2O, and Cd(NO3)2·4H2O were supplied from Aladdin (Shanghai,
China). Absolute ethanol was obtained from Yishi Chemical Co., Ltd. (Shanghai, China).
The water used in this work was deionized water.

3.2. Instruments

Scanning electron microscopy (SEM) (Hitachi Company, Tokyo, Japan) and X-ray
diffraction (XRD) (Rigaku Corporation, Tokyo, Japan) were used for the material character-
ization. All electrochemical measurements were carried out in CHI 660E electrochemical
workstation (CH Instrument Co., Ltd., Shanghai, China). A conventional three-electrode
cell, consisting of a working electrode (bare or modified glassy carbon electrode (GCE)),
a opposite electrode (platinum electrode) and a reference electrode (saturated calomel
electrode), was employed in this work.

3.3. Preparation of the β-CD/CMK-8 Composite

The amounts of 6 mg β-CD and 3 mg CMK-8 were added to 3 mL distilled water
and 3 mL DMF, respectively, which were then ultra-sounded for 30 min to obtain uniform
dispersion. Finally, β-CD/CMK-8 was obtained by mixing 1 mL β-CD dispersion and 1 mL
CMK-8 dispersion uniformly.

3.4. Fabrication of β-CD/CMK-8/GCE

GCE was polished with 0.05 µm alumina powder, and washed with ethanol and
deionized water successively. Subsequently, 3 µL β-CD/CMK-8 suspension was dropped
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on bare GCE by pipette gun and dried under the electric blast drying oven. The synthetic
route of β-CD/CMK-8/GCE and sensing strategy of the Cu2+ sensor are shown in Scheme 1.
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4. Conclusions

In this work, an effective electrochemical sensor for Cu2+ was developed, based on
the synergistic effect of β-CD and CMK-8. The multiple adsorption sites of β-CD and the
good conductivity of CMK-8 enabled β-CD/CMK-8 to exhibit excellent detection perfor-
mance with a satisfactory detection limit of 0.3 ng·L−1 and linear range from 0.1 ng·L−1

to 1.0 mg·L−1. At the same time, the repeatability, reproducibility and selectivity of
β-CD/CMK-8 /GCE toward Cu2+ were satisfactory. In addition, the novel sensing plat-
form proved useful to detect Cu2+ in tap water, demonstrating good application prospects.
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Abbreviations

Acetic acid HAc
Apparent dissociation constant KD
Atomic absorption spectrophotometer AAS
Acetate buffer solution NaAc-HAc
Cyclic voltammetry CV
Copper ion Cu2+

Differential pulse anodic stripping voltammetry DPASV
Electrochemically effective surface area Aeff
Electrochemical impedance spectroscopy EIS
Geometric surface area Ageom
Graphite furnace atomic absorption spectroscopy GF-AAS
Glass carbon electrode GCE
Heavy metal ions HMIs
HAc-NaAc buffer solution ABS
inductively coupled plasma atomic emission spectrometry ICP-AES
Limit of detection LOD
Maximum binding capacity Qmax
Mesoporous carbon CMK-8
Multi-walled carbon nanotubes MWCNTs
Oxidized multi-walled carbon nanotubes o-MWCNTs
Phosphate buffer solution PBS
Roughness factor Rf
Selectivity factor SF
Sodium acetate NaAc
Scanning electron microscopy SEM
X-ray diffraction XRD
β-cyclodextrin β-CD
5-sulfosalicylic acid SSA
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