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Abstract: Two new lactones, named Ardisicreolides A–B (1–2), together with four known flavonoids,
Quercetin (3), Myricetrin (4), Quercitrin (5), Tamarixetin 3-O-rhamnoside (6), were isolated from
the ethyl acetate portion of 70% ethanol extracts of dried leaves from Ardisia crenata Sims. These
compounds were identified from Ardisia crenata Sims for the first time. The structures of 1–6 were
elucidated according to 1D and 2D-NMR methods and together with the published literature. All
of the isolated compounds were evaluated for in vitro anti-microbial effect against Escherichia coli,
Pseudomonas aeuroginosa, Enterococcus faecalis, Proteus vulgaris, Staphylococcus aureus, and Bacillus
subtilis. In addition, compounds 1–2 were assessed for anti-inflammatory activity by acting on
LPS-induced RAW 264.7 macrophage cells in vitro. The results showed that only compound 2
exhibited moderate antibacterial activity on Bacillus subtilis. Moreover, compounds 1 and 2 were
found to significantly inhibit the production of nitric oxide (NO) and reduce the release of tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in
LPS-induced RAW 264.7 macrophage cells. The present data suggest that lactones from the leaves of
A. crenata Sims might be used as a potential source of natural anti-inflammatory agents.

Keywords: Ardisia crenata Sims; lactone; antibacterial; anti-inflammatory; natural product

1. Introduction

There are about 500 species of plants in the genus Ardisia, which are widely dis-
tributed in subtropical and tropical regions [1,2]. The Ardisia crenata Sims is a common
evergreen shrub belonging to Ardisia of Myrsinaceae with red fruits at maturity [3]. In
China, the roots of the red-fruited A. crenata Sims are used as a traditional Chinese medicine
“Zhushagen” [4], which is widely used for the treatment of respiratory infections, toothache,
arthralgia, menstrual problems, and fertility regulation [5–7]. These pharmacological ac-
tivities are often closely related with different kinds of chemical constituents from the
roots of A. crenata Sims. Previous phytochemical studies on the roots of A. crenata Sims
have mainly revealed active constituents including triterpenoid saponins, coumarins,
phytosterols, and benzoquinones [8–10]. Recently, researchers have extensively investi-
gated these compounds for their anti-tumor, immunosuppressive, anti-inflammatory, and
antimicrobial activities [11–15].

The existing studies have rarely identified lactones, which often have better pharma-
cological activities including anti-inflammatory activities [16–18]. Such constituents are
mainly obtained through chemical synthesis or microbial biosynthesis, which involve many
pathways and enzymes [19,20]. Previous studies on A. crenata Sims have focused on the
root of A. crenata Sims, however, the non-medicinal parts of A. crenata Sims have been less
studied. In this report, in order to expand the available resources and search for new bioac-
tive constituents of A. crenata Sims, we described the isolation and structural elucidation
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of lactones and flavonoids. Moreover, the antibacterial and anti-inflammatory activities
of two new lactones are discussed by the paper diffusion method and enzyme-linked
immunosorbent (ELISA) assay.

2. Results and Discussion
2.1. Structure Elucidation

Compound 1 was separated as a light yellow amorphous solid. The molecular formula
was inferred as C26H28O11 according to the HR-ESI-MS analysis of m/z 539.1522 [M + Na]+

(calculated value 539.1524 [M + Na]+), and the calculated unsaturation (Ω) = 13. The
1H-NMR spectrum of compound 1 (Table 1) showed two aromatic ring proton signals δH
7.49 (2H, dd, J = 1.9, 7.8 Hz, H-2′′′, H-6′′′); 7.26 (3H, m, H-3′′′, H-4′′′, H-5′′′); δH 6.25 (1H,
d, J = 2.9 Hz, H-3′); 6.19 (1H, d, J = 2.9 Hz, H-5′), a double bond signal δH 7.06 (1H, d,
J = 12.6 Hz, H-7′′′); 5.98 (1H, d, J = 12.6 Hz, H-8′′′) identified as cis by the coupling constant,
together with one anomeric proton at δH 4.44 (1H, d, J = 7.6 Hz, H-1′′). 13C-NMR spectrum
data (Table 1) revealed two benzene ring carbons and one pair of olefin carbons δC 103.4,
109.2, 120.3, 129.1, 130.0, 130.7, 133.0, 136.4, 138.5, 144.8, 151.5, 155.9, two ester carbonyl data
δC 167.6, 180.5, and one sugar unit δC 64.5, 71.3, 75.4, 75.9, 77.9, 107.5, and the remaining
four carbons were identified by DEPT 135◦ as three methylene δC 28.3, 29.5, 82.8 and one
hypomethyl δC 36.5. Thus, the skeleton was identified as a five-membered lactone ring
fragment by the key 1H-1H COSY signal (Figure 1). The connection of each fragment was
determined by key HMBC signals (Figure 1) including H2-3 and H1-5 to C-2; H2-6 to C-4,
C-1′, C-5′ and C-6′; H1-6′′ to C-5′′, C-4′ and C-9′′′; H1-8′′′ to C-9′′′; H1-7′′′ to C-2′′′ and C-9′′′.
The spectroscopic data of compounds 1 (Figures S2–S11) were available as Supporting
Information. The structures are shown in Figure 2. The structure of compound 1 was
similar to that of Myrsinoside A [21], differing in the cinnamoyl and pentadactyl lactone
ring portions.
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Acid hydrolysis of 1 provided D-glucose. In addition, the coupling constant of H2-1′′,
J = 7.6 Hz indicated the configuration of the hydroxyl group at the anomeric carbon in
sugar to be β. To further elucidate its absolute configuration, a combined CD spectrum
with the electronic circular dichroism (ECD) spectrum of 1 recorded in MeOH showed a
negative cotton effect at 208 nm, a positive cotton effect at 250 nm, a negative cotton effect
at 267 to 296 nm, and a positive cotton effect at 297 to 325, which was broadly consistent
with the calculated ECD data of the (5S) model (Figure 3). The calculation process could be
found in the supporting information (Figure S1 and Tables S1–S3). Thus, the structure of 1
was established as ((2R,3S,4S,5R,6S)-6-(2,4-dihydroxy-6-(((S)-5-oxotetrahydrofuran-2-yl)
methyl) phenoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl) methyl (Z)-3-phenylacrylate
and was named Ardisicreolides A (Figure 1).
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Table 1. The 1H and 13C-NMR data of compounds 1–2 in CD3OD (δ in ppm).

Position
Ardisicreolide A Ardisicreolide B

δC δH (J in Hz) δC δH (J in Hz)

2 180.5 - - 180.4 - -
3 29.5 2.35 m 29.5 2.45 dd (7.5, 8.9)
4 28.3 1.90, 2.19 m, m 28.3 1.96, 2.23 dtd (7.0, 8.9, 12.5), m
5 82.8 4.76 m 82.8 4.84 M

6 36.5 2.85, 3.15 dd (4.7, 14.1),
dd (8.0, 14.1) 36.6 2.87, 3.25 dd (5.2, 14.0),

dd (7.6, 14.0)
1′ 138.5 - - 138.6 - -
2′ 151.5 - - 151.6 - -
3′ 103.4 6.25 d (2.9) 103.4 6.23 d (2.9)
4′ 155.9 - - 155.9 - -
5′ 109.2 6.19 d (2.9) 109.2 6.18 d (2.9)
6′ 133.0 - - 132.9 - -
1′′ 107.5 4.44 d (7.6) 107.6 4.57 d (7.6)
2′′ 75.4

3.28~3.46 m (4H)

75.4

3.37~3.62 m (4H)
3′′ 77.9 77.9
4′′ 71.3 71.5
5′′ 75.9 76.0

6′′ 64.5 4.24, 4.50 dd (6.5, 12.0),
dd (2.0,12.0) 64.7 4.34, 4.59 dd (6.5, 12.0),

dd (2.0,12.0)
1′′′ 136.4 - - 135.7 - -

2′′′ 6′′′ 130.7 7.49 dd (1.9, 7.8, 2H) 130.1 7.61 dd (1.9, 7.8, 2H)
3′′′ 5′′′ 129.1

7.26 m (3H)
129.4

7.42 m (3H)4′′′ 130.0 131.6
7′′′ 144.8 7.06 d (12.6) 146.8 7.73 d (16.0)
8′′′ 120.3 5.98 d (12.6) 118.5 6.54 d (16.0)
9′′′ 167.6 - - 168.3 - -
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Figure 3. The CD and ECD spectra of compounds 1–2.

Compound 2 was obtained as a colorless amorphous solid. HR-ESI-MS analysis
revealed the molecular formula to be C26H28O11 based on the [M + Na]+ signal at m/z:
539.1525 (calculated value of 539.1524 [M + Na]+) with the calculated unsaturation (Ω) = 13.
The 1H-NMR (Table 1) spectrum of compound 2 exhibited two aromatic ring proton signals
δH 7.61 (2H, dd, J = 1.9, 7.8 Hz, H-2′′′, H-6′′′); 7.42 (3H, m, H-3′′′, H-4′′′, H-5′′′); δH 6.23
(1H, d, J = 2.9 Hz, H-3′); 6.18 (1H, d, J = 2.9 Hz, H-5′); a double bond signal δH 7.73 (1H, d,
J = 16.0 Hz, H-7′′′); 6.54 (1H, d, J = 16.0 Hz, H-8′′′) identified as trans by the coupling constant,
together with one anomeric proton δH 4.57 (1H, d, J = 7.6 Hz, H-1′′). The 13C-NMR spectrum
data (Table 1) showed two benzene ring carbons and one pair of olefin carbons δC 103.4,
109.2, 118.5, 129.4, 130.1, 131.6, 132.9, 135.7, 138.6, 146.8, 151.6, 155.9; two ester carbonyl
data δC 168.3, 180.4; and one sugar unit data δC 64.7, 71.5, 75.4, 76.0, 77.9, 107.6; and the
remaining four carbons were identified by DEPT135◦ as three methylene δC 28.3, 29.5, 82.8
and one hypomethyl δC 36.6. Thus, the skeleton was identified as a five-membered lactone
ring fragment by the key 1H-1H COSY signal (Figure 1). Through a data comparison,
compound 2 was similar to compound 1 and was determined to contain a cinnamoyl
fragment, a sugar fragment, and an aromatic ring fragment, differing in the five-membered
lactone ring portion. The connection mode of each segment was determined by key HMBC
signals (Figure 1) including H2-3 and H1-5 to C-2; H2-6 to C-4, C-1′, C-5′ and C-6′; H1-6′′ to
C-5′′, C-4′′ and C-9′′′; H1-8′′′ to C-9′′′; H1-7′′′ to C-2′′′, and C-9′′′. The spectroscopic data of
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compounds 2 (Figures S12–S21) were available as Supporting Information. The structure is
shown in Figure 2. The structure of compound 2 was similar to that of Myrsinoside A [21].

The conformation of the sugar was inferred to be β-D-glucose based on 1H-NMR
and 13C-NMR by comparison with the known literature, and the acid hydrolysis of glu-
cose confirmed that the sugar contained in compound 2 was D-glucose, and the relative
conformation of the sugar was determined to be β due to the H2-1′′ coupling constant of
7.6 Hz, so it was β-D-glucose. By comparing the 1D and 2D NMR spectra, the absolute
configuration of compound 2 at the 5-position was the same as that of compound 1, which
was confirmed by CD spectroscopy, so the structure of compound 2 was characterized as
((2R,3S,4S,5R,6S)-6-(2,4-dihydroxy-6-(((S)-5-oxotetrahydrofuran-2-yl) methyl) phenoxy)-
3,4,5-trihydroxytetrahydro-2H-pyran-2-yl) methyl (E)-3-phenylacrylate and named as Ar-
disicreolide B.

The known compounds (3–6) were identified on the basis of a detailed spectroscopic
interpretation in comparison to the reported data in the references, to be Quercetin (3) [22],
Myricetrin (4) [23], Quercitrin (5) [24], and Tamarixetin 3-O-rhamnoside (6) [25] (Figure 1).
Their 1H-NMR (400 MHz) and 13C-NMR (100 MHz) data were in the supporting informa-
tion (Tables S4 and S5).

2.2. Effect of Compounds 1–6 on Antibacterial Activities

The inhibitory activities of compounds 1–6 were determined by measuring the diame-
ter of the inhibition zone against six bacteria (Escherichia coli, Bacillus subtilis, Staphylococcus
aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Pseudomonas aeruginosa) with
50 µg/mL ceftiofur sodium (Cef) as a positive control. The results showed that Ardisicre-
olide B had a better inhibition effect on Bacillus subtilis (Table 2).

Table 2. The antibacterial activities of Ardisicreolide B. (mean ± SD, n = 3) (d, mm).

C(µg/mL)
Ardisicreolide B

Cef a
25 50 100

Escherichia coli - - - 16.63 ± 0.99
P. aeruginosa - - - 19.30 ± 1.42

Bacillus subtilis 11.33 ± 1.01 13.2 ± 1.01 17.47 ± 1.53 29.37 ± 1.01
Enterococcus Faecalis - - - 19.40 ± 1.01

Proteus vulgaris - - - 18.47 ± 0.78
Staphylococcus aureus - - - 28.40 ± 1.35

a Positive control.

2.3. Effects of Compounds 1–2 on RAW264.7 Cells by CCK-8 Method

To find anti-inflammatory compounds, the effect of Ardisicreolides A and B on the
cell viability of LPS-stimulated RAW264.7 cells was evaluated with the cck-8 reagent. LPS
activation of RAW246.7 cells could result in enhanced activity, and positive drug and
compounds 1–6 were compared with the LPS-stimulated group alone. It was found that
Ardisicreolide A had significant anti-inflammatory activity at ≥20 µM/mL, and Ardisicre-
olide B at ≥40 µM/mL showed significant anti-inflammatory activity (Table 3). Therefore,
Ardisicreolides A and B were tentatively identified as compounds with potential anti-
inflammatory activity (Figure 4), IC50 see Table 3.

Table 3. The IC50 values of Ardisicreolides A and B as inhibitors of LPS-treated RAW264.7 cells.

Compound Mean ± SD (µM/mL)

Ardisicreolide A 24.46 ± 1.57
Ardisicreolide B 55.85 ± 4.28
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Figure 4. The effects of Ardisicreolides A (a) and B (b) on the cell viability of LPS-treated RAW264.7
cells. The data were expressed as the mean ± SD (n = 3). ** p < 0.01, *** p < 0.001 versus the control
cells that were treated with LPS. ### p < 0.001 versus the control group.

2.4. Effects of Compounds 1–2 on NO Production

NO has a variety of regulatory effects on inflammation, and plays an increasingly
important role in mediating inflammatory response. Therefore, Griess reagents were used to
measure the effect of Ardisicreolides A and B on NO production in LPS-stimulated RAW264.7
cells, and dexamethasone was used as a positive control to evaluate the anti-inflammatory
activity of the compounds. As a result (Table S6 in supporting information), both Ardisreolides
A and B showed inhibitory activity on the amount of NO release (Figure 5), however, the
activity could not correlate significantly with the compound concentration.
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2.5. Effects of Compounds 1–2 on Inflammatory Cytokines Production

IL-1β, IL-4, IL-10, and TNF-α are important inflammatory regulators produced in the
process of inflammatory response. They can be produced and released in large amounts
under the conditions of infection, injury, and immune response [26]. Therefore, they
are commonly used as indicators to assess the anti-inflammatory effects of natural com-
pounds [27,28]. In this paper, the effects of new compounds on the production of IL-1β,
IL-4, IL-10, and TNF-α release by LPS-stimulated RAW264.7 cells were quantified with
ELISA kits. As shown in Figure 6 (Table S7 in supporting information), Ardisicreolides A
and B had significant effects on IL-1β, IL-4, IL-10, and TNF-α at ≥5 µM/mL. This indicates
that both Ardisicreolides A and B could effectively inhibit the inflammatory response of
the LPS-stimulated RAW264.7 cells (Figure 6).
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3. Materials and Methods
3.1. General Experimental Procedures

The 1D and 2D NMR spectra were recorded on a Bruker DPX 400 instrument (Bruker,
Bremen, Germany) with tetramethylsilane as the internal standard and MeOH-d4 as the
solvent. The HR-ESI-MS experiments were performed on a Waters Xevo G2-S QTOF
(Waters Corporation, Milford, MA, USA). The semi-preparative HPLC procedure was
performed on a Shimadzu LC-16P instrument with a RID-20A (Shimadzu Tokyo, Japan)
and a reversed-phase C18 column (250 × 10 mm, 5 µm, Shim-pack GIST, Shimadzu Tokyo,
Japan)). UV spectra were scanned with a SHIMADZU UV-2401PC spectrometer (Shimadzu
Tokyo, Japan). Infrared spectra were performed on a VERTEX 70 spectrometer (Bruker,
Bremen, Germany) using KBr particles. The rotational luminosity was measured on an
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Autopol VI instrument. Electron circular dichroism spectra were recorded on a LAAPD
detector. Column chromatography was performed with silica gel (200–300 mesh, Qingdao
Marine Chemical Ltd., Qingdao, China) and octadecyl silica gel (ODS) (50 µm, Merck,
Darmstadt, Germany).

3.2. Plant Material

The leaves of Ardisia crenata Sims were collected from Guiyang in Guizhou Province
(China), and identified by Professor Sheng-hua Wei from Guizhou University of Traditional
Chinese Medicine. The voucher specimen (Accession number: 20200908) was deposited at
the Guizhou University of Traditional Chinese Medicine.

3.3. Extraction and Isolation

The dried leaves (5 kg) of Ardisia crenata Sims were crushed, extracted with 70%
ethanol at reflux for three times, the solvent was recovered under reduced pressure to
obtain the crude extract, and the suspension was obtained by adding 10 L of distilled water.
The crude extract was partitioned with petroleum ether, EtOAc, and n-BuOH successively
to yield EtOAc (522.0 g) extracts. The soluble fraction of the EtOAc (220.8 g) was eluted by
dichloromethane-methanol (0:1–1:0) on a silica gel column for a total of ten fractions (Fr.
A–J). Fraction D (5.0 g) was chromatographed on an ODS column with MeOH-H2O (1:9
to 1:0) to afford sub-fractions D1–D9, Fr. D5 was eluted by MCI with MeOH-H2O (3:7 to
1:0) to afford sub-fractions D51–D58 and Fr. D55 was separated by semi-preparative HPLC
(MeOH-H2O, 62:38; flow rate: 3 mL·min−1) to obtain compound 1 (5.9 mg tR = 13.7 min),
compound 2 (3.6 mg tR = 19.5 min), and compound 5 (9.0 mg tR = 21.4 min). Fraction E
(9.6 g) was chromatographed on an ODS column with MeOH-H2O (1:9 to 1:0) to afford
sub-fractions E1–E9, Fr. E4 was separated by semi-preparative HPLC (MeOH-H2O, 55:45,
flow rate: 3 mL·min−1) to obtain compound 6 (6.8 mg tR =15.0 min). Fraction I (17.6 g)
was chromatographed on an ODS column with MeOH-H2O (1:9 to 1:0) to afford sub-
fractions I1–I9, Fr. I4 was separated by semi-preparative HPLC (MeOH-H2O, 45:55; flow
rate: 3 mL·min−1) to obtain compound 3 (7.2 mg tR = 20.0 min) and compound 4 (6.8 mg
tR = 34.2 min).

3.4. Characterization of Compounds 1–2

Ardisicreolide A, Yellowish amorphous solid; [α]24
D + 14.23 (c 0.05, MeOH); UV (MeOH)

λ (logε) 203 (4.29) nm; HR-ESI-MS m/z 539.1522 [M + Na]+ (Calcd for C26H28O11, 539.1524);
1H and 13C NMR data (CD3OD), see Table 1.

Ardisicreolide B, Colorless amorphous solid; [α]24
D − 22.65 (c 0.08, MeOH); UV (MeOH)

λ (logε) 203 (4.45) nm; HR-ESI-MS m/z 539.1525 [M + Na]+ (Calcd for C26H28O11, 539.1524);
1H and 13C NMR data (CD3OD) see Table 1.

3.5. Antibacterial Activity Screening

The blank drug sensitive test paper was dipped to 50 µg/mL of ceftiofur sodium
solution and the compound solution of each concentration, respectively. A total of 100 µL
of the test solutions (Escherichia coli, P. aeruginosa, Enterococcus faecalis, Proteusvulgaris,
Staphylococcus aureus, and Bacillus subtilis) were absorbed respectively, and LB medium
was spread evenly using a sterile applicator stick, and took the drug-sensitive test paper
with sterile forceps and spread it evenly on the center of the surface of the medium in
the divided area correspondingly. Then, the medium was put in a constant temperature
incubator until the drug solution adsorbed into the medium, and was incubated at 37 ◦C
for 8 h, and measured the diameter of the inhibition zone by repeating it three times and
recording the data.

3.6. Cell Culture

The RAW264.7 cell lines were obtained from the Chinese Academy of Sciences (Shang-
hai, China) cell bank and cultured in DMEM supplemented with 10% (v/v) heat-inactivated
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FBS at 37 ◦C in a fully humidified incubator containing 5% CO2. The cells were passaged
when they grew to 80–90% confluence.

3.7. Primary Screening for Anti-Inflammatory Compounds

The RAW264.7 cells were inoculated in complete medium containing double antibod-
ies in 10% FBS at 37 ◦C with 5% CO2 in a constant temperature incubator, and 96-well plates
were inoculated with cell suspensions (100 uL/well) at a density of 105/mL at 37 ◦C with
5% CO2 in a constant temperature incubator. Then, cells were pretreated with different
isolated compounds (5–160 µM) or dexamethasone (40 µg/mL) for 1 h and then stimu-
lated with LPS (1 µg/mL). The normal and model cells were stimulated with or without
1 µg/mL LPS for 24 h. All samples were tested in quadruplicate according to the CCK-8 kit
after incubation.

3.8. Determination of Inflammatory Cytokines

The RAW264.7 cells were plated in 24-well plates and incubated at 37 ◦C and 5% CO2
for 24 h. Then, cells were pretreated with different isolated compounds (5, 20, 80 µM) or
dexamethasone (40 µg/mL) for 1 h and then stimulated with LPS (1 µg/mL). The normal
and model cells were stimulated with or without 1 µg/mL LPS for 24 h. The supernatants
of the RAW264.7 cells after drug administration and culture were used to determine the NO
release according to the Griess method, and the contents of IL-1β, IL-4, IL-10, and TNF-α in
the cells were determined according to enzyme-linked immunosorbent assay kits (ELISA)
following the manufacturer’s instructions [29], and all samples were taken in triplicate.

4. Conclusions

In summary, a total of six compounds were isolated and identified from the EtOAc
fraction of the 70% ethanol extract of the leaves of Ardisia crenata Sims including two new
lactone structures Ardisicreolides A and B, which were analyzed and identified mainly by
MS, NMR, and IR. In previous studies, A. crenata Sims components focused on triterpene
saponins, isocoumarins, and benzoquinones, however, lactones were rarely identified. In
this paper, we evaluated the antibacterial and anti-inflammatory activities of two new
lactones isolated and identified, in which Ardisicreolide B showed good inhibition of
Bacillus subtilis at ≥50 µg/mL (IZD = 13.2 ± 1.01 mm), and both Ardisicreolides A and B
exhibited significant anti-inflammatory activity against inflammatory factors of NO, IL-1β,
IL-4, IL-10 and TNF-α release with varying degrees. Therefore, the lactone components in
the leaves of A. crenata Sims might be natural effective drugs for anti-inflammatory drug
development, and the non-traditional medicinal parts of A. crenata Sims could be identified
as a source of natural anti-inflammatory molecules, which is of great significance for the
rational development and application of A. crenata Sims.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154903/s1, Figure S1: Chemical structure of com-
pounds 1; Figures S2–S21: the spectroscopic data for compounds 1–2; Table S1: Energies of configura-
tions 1; Table S2: Energies of configurations 1 at B3LYP/6-311G(d,p) in methanol; Table S3: Standard
orientations of configurations 1 for ECD calculation; Table S4: 13C-NMR and 1H-NMR Data of 3–4 in
CD3OD; Table S5: 13C-NMR and 1H-NMR Data of 5–6 in CD3OD; Table S6: Effects of Ardisicreolides
A and B on NO release of raw cells; Table S7: The effects of Ardisicreolides A and B on production
release of TNF-α, IL-1β, IL-4 and IL-10.
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