
Citation: Shekarappa, S.B.; Rimac, H.;

Lee, J. In Silico Screening of Quorum

Sensing Inhibitor Candidates

Obtained by Chemical Similarity

Search. Molecules 2022, 27, 4887.

https://doi.org/10.3390/

molecules27154887

Academic Editor: Simone Carradori

Received: 30 June 2022

Accepted: 27 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

In Silico Screening of Quorum Sensing Inhibitor Candidates
Obtained by Chemical Similarity Search
Sharath Belenahalli Shekarappa 1, Hrvoje Rimac 2 and Julian Lee 1,*

1 Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea; sharathbs@ssu.ac.kr
2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb,

10000 Zagreb, Croatia; hrvoje.rimac@pharma.unizg.hr
* Correspondence: jul@ssu.ac.kr

Abstract: Quorum sensing (QS) is a bacterial communication using signal molecules, by which they
sense population density of their own species, leading to group behavior such as biofilm formation
and virulence. Autoinducer-2 (AI2) is a QS signal molecule universally used by both gram-positive
and gram-negative bacteria. Inhibition of QS mediated by AI2 is important for various practical
applications, including prevention of gum-disease caused by biofilm formation of oral bacteria. In
this research, molecular docking and molecular dynamics (MD) simulations were performed for
molecules that are chemically similar to known AI2 inhibitors that might have a potential to be
quorum sensing inhibitors. The molecules that form stable complexes with the AI2 receptor protein
were found, suggesting that they could be developed as a novel AI2 inhibitors after further in vitro
validation. The result suggests that combination of ligand-based drug design and computational
methods such as MD simulation, and experimental verification, may lead to development of novel
AI inhibitor, with a broad range of practical applications.
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1. Introduction

Quorum sensing (QS) is chemical communications between bacteria used to sense their
own population. QS leads to various group behaviors, including bioluminescence, virulence,
and biofilm formation [1]. Gram-positive and gram-negative bacteria use oligopeptides [2,3]
and N-acyl homoserine lactone [4,5] for quorum sensing, respectively. In contrast to these
two types of signal molecules, autoinducer-2 (AI2) is used by both gram-positive and
gram-negative bacteria [6–9]: it is a universal QS signal molecule that can be used across
species [10]. The inter-special nature of the AI2-mediated QS is particularly crucial for
biofilm formation on dental gum, because such a biofilm is formed by aggregation of diverse
species of oral bacteria [11]. In particular, Fusobacterium nucleatum is a major target of AI2
inhibition, because F. nucleatum recruits various species of oral bacteria to form biofilm on
dental gum, leading to periodontitis. Various AI2 inhibitors for F. nucleatum have been
found, including furanone compounds [12,13], D-ribose [13,14], and D-galactose [15], where
D-galactose has actually been used commercially for prevention of dental gum diseases [16].
However, the AI2 inhibiting activities of these molecules have also been assessed by using
Vibrio harveyi as the target, because the QS of V. harveyi can be easily detected from the
resulting bioluminescence. Due to the universal nature of the AI2-mediated QS, a molecule
that inhibits QS of V. harveyi is also shown to inhibit that of F. nucleatum [15]. This fact
is useful in the light of the fact that the QS receptor of F. nucleatum is still unknown and
the structure of V. harveyi QS receptor, LuxP, is well known, so that the latter can be used
in place of F. nucleatum QS receptor for computational purposes. AI inhibitors have also
been developed for other bacterial species, such as V. harveyi [17,18] and avian pathological
Eschrichia coli [19]. Inhibitors of AI molecule production have also been developed [20,21].
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Nonetheless, it is still desirable to find AI2 receptor inhibiting molecules which are effective
in small doses, easy to produce, and are not toxic. In this respect, it is particularly useful to
look for QS activities of well-known substances in chemical databases [15,22]. Finding a
hitherto unknown QS activities of such substances can lead to the development of novel
QS inhibitors by drug-repositioning [23].

An attractive approach for the selection of ligands for computational screening is
its chemical and structural similarity with that of the molecules with known bioactivity.
In addition, fingerprinting methods such as MACCS, ECFP, path-based fingerprints, and
many others are used in characterizing properties of compound collections such as chemical
diversity, density in chemical space, and content of biologically active molecules [24–26].
Based on these criteria, we selected molecules in chemical database which are chemically
similar to known AI2 inhibitors of LuxP, the quorum-sensing receptor of Vibrio harveyi, the
bacteria often used for experimental test of quorum-sensing inhibition activity of AI2 via
detection of bioluminescence. We then performed in silico screening of these molecules
using molecular docking and molecular dynamics (MD) simulations. We have found that
there are molecules with so far undescribed stable AI2 receptor binding capabilities, which
could be developed as novel AI2 inhibitors after further in vitro validation.

2. Results
2.1. Generation of AI2 Inhibitor Candidate Library

The ligand-based drug discovery (LBDD) approach was applied to construct a library
of potential AI2 inhibitors, where the molecules were selected based on 2D molecular
similarities/fingerprints with known inhibitors [26]. Due to the universality of the AI2-
mediated QS between different bacterial species, it is expected that a molecule that inhibits
AI2 binding to the QS receptor of a particular species will have QS inhibitory effect in
other species as well. Therefore, we looked for known molecules that bind to LuxP,
the QS receptor of Vibrio harveyi. We chose 33 known AI2 receptor inhibitors based on
activity outcome(active/inactive) and mean activity value (Supplementary file 1), and
performed pairwise similarity search against PubChem database. Molecular similarities
were evaluated using PubChem fingerprints and Tanimoto coefficient (Tc). Only molecules
with Tc ≥ 0.9 were selected. Since PubChem similarity search returns hits without the
similarity score between the query and the hit molecules, we selected those that were found
in hit lists for more than one query molecule, under the assumption that such molecules
are more likely to be active (true positive) than those that appear in the hit list for a single
query. A total of 8196 compounds were selected. We then filtered the compounds based on
Lipinski’s descriptors calculation (RO5), where we selected the molecules with molecular
weight ≤ 500, xLogP < 5, number of hydrogen bond donors ≤ 5, and number of hydrogen
bond acceptors ≤ 10. We extracted a unique representative compound in terms of isomeric
SMILES for each group of multiple compounds with the same connectivity (stereoisomers).
These additional filters resulted in 2917 unique compounds. Finally, the top 10 hits from the
filtered list of 2917 unique compounds were taken based on the frequency of their return
(hit frequency), and were then docked to the LuxP structure to assess their binding affinity
as AI2 inhibitors.

2.2. Molecular Docking

Before docking the inhibitor candidates to the receptor structure, we first tested the
performance of the docking procedure by redocking AI2 to the crystallographic structure
of LuxP. We found that the root-mean-square deviation (RMSD) between redocked and
co-crystallized ligand structure is low (2.077 Å) and the position and orientation were
in excellent agreement with the original structure of the co-crystallized bound complex
(Figure 1). Therefore, the docking procedure can be considered to be reliable, and structures
obtained by docking could be used as initial structures for MD simulations.
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Figure 1. Comparison of the crystallographic (green) and redocked (orange red) AI2 in the binding
site of the LuxP protein.

In case of the ligands, for each molecule, conformations to be used as inputs for molec-
ular docking were generated by the ETKDG algorithm, followed by subsequent minimiza-
tions using MMFF94s force field. The resulting input structures did not deviate much from
each other, with the lowest root-mean-square deviation (RMSD) value being ≤ 2 Å, which
is considered to be of high quality [24]. These input conformations were then docked to the
LuxP structure using Smina Vinardo. The output from the Vinardo results were further
rescored using random forest scoring function (RF-score-v4). Among the top hits, we chose
top 5 molecules based on the binding affinity. 1,4-dihydroxypentadecane-2,3-dione (Pub-
Chem CID: 91228998) showed the highest binding affinity, followed by (2R,3S,4R)-1,2,3,4-
tetrahydroxypentadecan-5-one (PubChem CID: 141428452), 5,8-dihydroxytetradecane-6,7-
dione (PubChem CID: 146305585), 1,4-dihydroxytetradecane-2,3-dione (PubChem CID:
90901763), and 1,2-dihydroxytetradecan-3-one (PubChem CID: 144603006). Details of the
top five hits are shown in Table 1. The details of interactions between the top five hit
molecules in the active site of LuxP are depicted in Figures 2 and 3. All these analyses
were performed using Maestro 12.3 (Schrödinger Release 2022-2; Maestro, Schrödinger,
LLC.: 2021) and Chimera [27,28]. For brevity, these molecules, as well as their complex
with LuxP, will be referred by their serial number in Table 1 from here on.

Table 1. Docking energy of the top five hit compounds and their amino acid interactions.

Serial Number Compound Name (PubChem CID) Structure of the Compounds
Smina

(Binding Energy in
kcal/mol)

RF_Score
(Binding Affinity

in pKd)

1 5,8-dihydroxytetradecane-6,7-dione
(146305585)
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2.3. Molecular Dynamics (MD) Simulation and Binding Free Energy Calculation

Further validation of docking results was done by MD simulations and binding free
energy calculation. In particular, one can check for possible unstable docking poses [25] and
ligand interactions with protein, as well as determine contributions of individual amino
acid residues to ligand binding. MD simulations of LuxP complexed with five selected
compounds (Table 1) were performed to evaluate the stability and binding energies of
the complexes.

To assess stability of the protein–ligand complex, RMSDs of receptor and ligand confor-
mations relative to their initial conformations were monitored for each trajectory at regular
time interval of 20 ns. Receptor and ligand RMSDs relative to their initial conformations
are shown in Figure 4 (A) and (B), respectively, where RMSDs were computed after the
receptor structures are superposed. Among the five complexes, complexes 1 and 5 had the
lowest mean receptor backbone RMSD of 1.196 ± 0.58 Å and 1.21± 0.43 Å, respectively,
while complex 3 had the highest RMSD value (1.52 ± 0.61 Å). The mean backbone RMSD
of all ligands was above 5 Å for the entire 120 ns simulations.

The root mean square fluctuation (RMSF) is another important parameter that reveals
flexibility of each individual residue throughout the simulation and is shown in Figure 5A.
Among all the complexes, amino acid residues from 50 to 200 in complex 3 showed the
highest flexibility compared to the other complexes. It is interesting to note that amino acids
in the ligand binding region of the protein show a certain level of rigidity. This might be an
indication that the structure of the protein has been optimized to minimize fluctuations of
these residues during the evolution.

Binding free energies (∆GBIND) were also evaluated for the five ligand–receptor com-
plexes using the MM-GBSA method [29]. As can be seen in Table 2, complex 1 has relatively
weak interactions compared to the other complexes. Complex 5 has the strongest interac-
tions among all the tested ligands, followed by complex 2, both of which are significantly
stronger than that of the other complexes. Top ten contributing amino acids of LuxP for
the binding free energy of the five complexes are shown in the Table 3. The solvation
free energies were evaluated by solving the generalized Born equation, and the total bind-
ing free energies were calculated as the sum of various interactions (Table 4). The van
der Waals (vdW) interactions have a vital role in binding, while net polar contributions
(∆GGB) are positive in all five complexes. Among the five complexes, complexes 2 and 5
have the lowest binding free energy and the most favorable van der Waals interaction
energy. The number of intermolecular hydrogen bonds for all complexes are shown in
Figure 5B, where complexes 4 and 5 show relatively strong intermolecular interactions
during the MD simulations. Based on all these analyses, complex 5 (PubChem CID:
141428452, (2R,3S,4R)-1,2,3,4-tetrahydroxypentadecan-5-one) might be the best candidate
as a AI2 inhibitor.

Table 2. Average number of intermolecular hydrogen bonds and ∆GBIND of the five complexes.

Serial No. Compound Name (PubChem CID)
H-Bonds ∆GBIND *

(kcal/mol)Mean s.d.

1 5,8-dihydroxytetradecane-6,7-dione (146305585) 2.52 1.28 −38.17

2 1,4-dihydroxypentadecane-2,3-dione (91228998) 3.43 1.32 −44.09

3 1,4-dihydroxytetradecane-2,3-dione
(90901763) 3.6 1.36 −40.66

4 1,2-dihydroxytetradecan-3-one
(144603006) 2.99 1.51 −41.77

5 (2R,3S,4R)-1,2,3,4-tetrahydroxypentadecan-5-one
(141428452) 5.64 1.74 −49.43

* Last 30 ns of the 120 ns simulation using MM-GBSA. Bolded values indicate the compounds that showed the
lower ∆GBIND.
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Table 3. The top ten contributing amino acid residues of LuxP with top three potential ligand molecules.

Complex 1 Complex 2 Complex 3 Complex 4 Complex 5

Residue ∆GBIND Residue ∆GBIND Residue ∆GBIND Residue ∆GBIND Residue ∆GBIND

Val 57 −9.75 Glu 37 −8.74 Glu 37 −6 Asp 36 −8.24 Pro 58 −9.5

Ser 60 −8.5 Ala 54 −6.69 Glu 40 −7.99 Pro 58 −6 Lys 61 −8.49

Leu 96 −8.24 Thr 63 −6.49 Glu 50 −6.25 Ser 60 −5 Gln 64 −5.5

Ile 98 −7.75 Gln 64 −5.99 Val 57 −4.25 Thr 63 −7.74 Leu 96 −7

Thr 199 −7.5 Phe 194 −9.74 Pro 58 −5.49 Leu 96 −4.74 Asn 97 −7.1
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Table 3. Cont.

Complex 1 Complex 2 Complex 3 Complex 4 Complex 5

Residue ∆GBIND Residue ∆GBIND Residue ∆GBIND Residue ∆GBIND Residue ∆GBIND

His 255 −7.75 Asp 257 −8.5 Leu 59 −6.5 Asn 97 −3.74 Leu 148 −5.25

Asp 257 −9.49 Ala 277 −6.74 Pro 66 −4.49 Ile 98 −4 Pro 256 −8.49

Asp 259 −7.49 Leu 279 −8.5 Ile 98 −9.25 Asn 99 −5.74 MET 311 −7.49

Leu 279 −9.25 Leu 327 −8.99 Asn 99 −6.99 Phe 194 −3.49 Ile 323 −7.49

Leu 355 −9.5 Asp 329 −5.99 Val 223 −5.5 Lys 197 −8.99 GLY 338 −5.75

Table 4. Energy contribution to the binding free energy (kcal/mol) for top five potential hits obtained
by MM-GBSA approach.

Complex 1 Complex 2 Complex 3 Complex 4 Complex 5

∆EvdW −42.01 −46.27 −39.85 −44.43 −45.26

∆Eelectrostatic −27.42 −27.32 −35.39 −19.003 −45.47

∆GGB 37.83 36.64 41.02 28.28 48.57

∆GSA −6.56 −7.14 −6.44 −6.62 −7.37

3. Discussion

In this work, we searched for potential inhibitor candidates of the AI2 receptor by
combining ligand-based search with molecular docking and MD simulations. One of the
practical applications of AI2 receptor inhibition is prevention of dental periodontitis caused
by biofilm formation, since such biofilm is formed by multiple species of bacteria, and AI2
receptor-mediated quorum sensing is a universal means of communication across species.
The quorum sensing inhibition without hindering the growth of bacteria is especially valu-
able, because such a treatment can deter pathogenic behavior of bacteria without inducing
drug resistance. Therefore, we deliberately left out any molecules with known anti-bacterial
activity from the initial list. The key pathogen causing periodontitis is F. nucleatum, which
emits AI2 signal to recruit other bacterial species to form a biofilm. Although the quorum
sensing receptor of is F. nucleatum is assumed to be a galactose-binding protein, its struc-
ture is so far unknown. However, utilizing the fact that AI2 is universally used across
species and the AI2 receptors of diverse species of bacteria share structural similarity,
we used quorum sensing receptor of V. harveyi, LuxP, as the target structure for docking
and MD simulations. We constructed a library of molecules that share similar chemical
structures with known AI2 inhibitors and docked them to the known LuxP structure.
Molecular docking revealed that compounds 5,8-dihydroxytetradecane-6,7-dione (Pub-
Chem CID: 146305585), 1,4-dihydroxypentadecane-2,3-dione (PubChem CID: 91228998),
1,4-dihydroxytetradecane-2,3-dione (PubChem CID: 90901763), 1,2-dihydroxytetradecan-
3-one (PubChem CID: 144603006), and (2R,3S,4R)-1,2,3,4-tetrahydroxypentadecan-5-one
(PubChem CID: 141428452) showed the highest binding affinity to the LuxP protein. We
then performed additional MD simulation on these five complexes and we found that they
indeed form stable complexes with LuxP. These molecules also have good drug-likeness
properties, suggesting their potential as AI2 receptor inhibitors.

Computational methods are valuable for saving time and costs by screening potential
inhibitors for further experimental validation. Previously, AI2 inhibiting capability of D-
galactose has been found by a method purely based on bioinformatics, where the sequences
of known quorum sensing receptors, LuxP of V. harveyi, LsrB of S. typhimurium, and RbsB
of A. actinomycetemcomitans were searched against protein sequences of F. nucleatum to
find that the D-galactose binding protein have a sequence similar to these proteins and
hence may function as a quorum-sensing receptor [15]. An alternate approach of using
molecular docking and MD simulation have been employed, where a molecule with a
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high activity as AI-2 inhibitor has been found [22]. The current method is somewhat
intermediate between these methods, because although we use molecular docking and MD
simulations, we first select the initial candidates based on molecular similarity with known
quorum-sensing inhibitors in order to increase the chance of finding a molecule with AI2
inhibiting capabilities. The current method is also somewhat similar to the method used
for development of inhibitor of AI2 production [20], but the target of the current method is
AI2 reception instead of its production.

The current method is different from that of ref. [21] in that the homology modeling of
the unknown receptor structure was not attempted, under the assumption that potential
F. nucleatum AI2 inhibitor will inhibit the receptor of any other bacterial species. The
current method is also different from that of ref. [22], where intermediate conformations
between open and closed forms of the quorum-sensing receptors were generated and used
for molecular docking and subsequent MD simulations. Only the closed form of LuxP is
used in this work for simplicity, which might lead to some bias towards relatively small
molecules with a size similar to AI-2. Among the molecules that were not selected by the
current protocol due to the low docking scores with the closed conformation of the quorum-
sensing receptor, there might have been some molecules that inhibit the AI2 receptor in
its more open conformations, which should be examined further. The significance of the
current work is to development of a protocol for screening potential AI2 inhibitors among
known substance, so that the time and cost of synthesizing new molecules. However,
it is inevitable that the result of a computational study is limited without experimental
validation. Therefore, it goes without saying that the single most important future direction
is to combine the current protocol with in vitro tests, such as measurement of V. harveyi
bioluminescence or biofilm formation by F. nucleatum. Once the molecules found in this
work are experimental validated, it will be able to be applied to various practical areas such
as dental disease prevention.

4. Materials and Methods
4.1. Preparation of the Ligand-Based Compound Library

The bioactivity data for autoinducer 2-binding periplasmic protein LuxP of Vibrio
harveyi was retrieved by collecting available target annotations from ChEMBL database
(https://www.ebi.ac.uk/chembl/, accessed on 12 May 2022), Binding database (https://
www.bindingdb.org/rwd/bind/, accessed on 12 May 2022), and PubChem database (https://
pubchem.ncbi.nlm.nih.gov/, accessed on 12 May 2022). The dataset was cleaned by removing
the duplicates. The activity cut-off (IC50/EC50) value to distinguish between active and
inactive compounds was set to 10,000 nM (10 µM). Compounds with activity value ≤ 10 µM
were considered as active and were further included into the compound library.

4.1.1. Molecular Fingerprinting Analysis

A set of active molecules containing isomeric SMILE strings was used as the query for
performing 2D molecular similarity/fingerprints (FP) search against PubChem database
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 12 May 2022). RDKit (1 March 2022) [30]
was used for fingerprint (FP) and molecular similarity analysis. FPs were calculated using
molecular similarity assessment based on the Tanimoto coefficient (Tc), which is the ratio
of the number of attributes common to both molecules to the total number of features:

Tc(a, b) =
NC

Na + Nb − Nc
(1)

where N represents the number of attributes in each a and b molecules, and c is the common
attribute in a and b. The range of Tc varies from 0 to 1, where 0 represents minimal and 1
maximal similarity.

https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/rwd/bind/
https://www.bindingdb.org/rwd/bind/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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4.1.2. Compound Filtering

Filtering of the compounds was performed to choose hit-like compounds from the
compound list and to remove compounds with undesirable properties. There are numerous
computational filters which can be used to identify compounds that may have problems
due to assay interference or downstream ADMET properties. The most commonly used of
these are physicochemical property calculations based on Lipinski’s descriptors (rule of
five); these methods specifically attempt to remove compounds that may lead to low levels
of drug absorption and distribution. Molecules which do not possess any of the descriptors
were discarded, and molecules that satisfy all the Lipinski rule of five (RO5) criteria were
considered for further analysis. Compounds with the same connectivity but different
stereochemistry/isotopes were also removed from the dataset. The filtering process also
removed salts, invalid molecules, and PAINS (Pan-Assay Interference Compounds) for
unspecific and promiscuous compounds because they are frequently identified as hits in
a variety of target-based screening [31,32]. Finally, the filtered compounds were noted
based on the frequency of their return and subjected to molecular docking calculations.
Prior to docking, top hits from virtual screening were converted to isomeric SMILES
preserving their stereochemistry. The resulting SMILES strings were employed as input
for conformational sampling by ETKDG (Experimental Torsion-angle preference along
with basic knowledge-terms and Distance Geometry), a stochastic search method that
utilizes distance geometry, together with knowledge derived from experimental crystal
structure [33]. Then, energy minimizations employing MMFF94s were performed, with
1000 iterations for each conformation, with maximum number of 10 conformations for each
molecule. For each ligand, 10 diverse poses were generated and the best scoring pose was
used for molecular docking calculations. All these analyses were performed using Open
Source MayaChemTools by utilizing the RDKit library [34].

4.2. Protein Preparation

Protein preparation in computational biology is a process in which macromolecular
structures are converted into a more suitable form for computational purposes [35]. Prior
to docking, refinement of the protein molecule is desirable, hence the protein structure was
prepared using the following steps: (i) deletion of heteroatoms, including water molecules,
metal ions, and cofactors. (ii) Addition of polar hydrogen bonds followed by removal of
atomic clashes. (iii) Gasteiger charges were calculated by means of AutoDockTools (ADT)
1.5.6 tools [36]. Further, Lys, Arg, His, and Cys side chains were protonated, along with
deprotonation of Asp and Glu side chains. Missing amino acid residues were added using
Šali and Bundell’s Modeller accessed through UCSF Chimera 1.14 [28,37]. For the current
study, the structure of LuxP (PDB ID: 1JX6) was obtained from the RCSB PDB, which
was determined experimentally and validated through X-ray diffraction method having
resolution 1.5 Å and R-value free score 0.239, which is significantly lower than standard
value 0.25.

4.3. Molecular Docking and Rescoring Calculation

The top hits compounds from virtual screening were subjected to molecular docking
calculations using Smina, a fork of Vina that focuses on improving scoring function and
accuracy and is approximately two-fold faster than its predecessor Vina [38]. Here, we
used a python script to virtually screen the top hits against the target, LuxP, with the script
providing top poses amongst the screened compounds with the lowest binding energy in
kcal/mol.

Binding of ligand/drug molecules to a specific protein site is the key strategy in treat-
ment of many diseases. Attachment of ligand to different proteins may cause side effects
and have a higher possibility of toxicity [39]. Binding affinity depends on several features,
i.e., hydrogen bond donors and acceptors and hydrophobic or hydrophilic interaction. In
this study, we used Smina autobox feature to find the binding site of the desired protein.
The autobox_ligand and autobox_add features of Smina use custom scoring function for
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the prediction of accurate ligand binding sites for protein structure. The predicted binding
energy (kcal/mol) indicates how strongly a ligand binds to the protein, which is calculated
based on the scoring function used in Vinardo, an extension of Smina scoring function
with few additional features that includes a modified term for calculating steric interaction
and an estimation of atomic radii [40]. A more negative score indicates stronger bind-
ing affinity. It is also possible to apply multiple scoring functions which outperform the
classical scoring function such as Vina, Smina, and Vinardo. Therefore, the output from
docking calculations were further rescored based on machine-learning scoring function
called RF-Score-VS, a novel Random Forest-based scoring function for rescoring outputs
from Smina-Vinardo, which has shown great promise by providing much better prediction
of measured binding affinity than Smina and Vina [41,42]. Top 5 ranked molecules were
then selected for molecular dynamic (MD) simulations.

4.4. Molecular Dynamic (MD) Simulations

The AMBER ff14SB force field [43] was used to model the protein and the GAFF
force field [44] was used to model the ligands. Such protein–ligand complexes were
solvated in a truncated octahedral box of TIP3P water molecules spanning a 12 Å thick
buffer, and Na+ and Cl- ions were added according to Machado and Pantano [45] to
achieve a neutral environment with a salt concentration of 0.15 M. Such structures were
then submitted for geometry optimization in the AMBER16 program [46], employing
periodic boundary conditions in all directions. For the first 1500 cycles, the complex
was restrained (k = 10.0 kcal/ mol Å2) and only water molecules were optimized, after
which another 2500 cycles of optimization followed where both water molecules and the
complex were unrestrained. Optimized systems were gradually heated from 0 to 310 K and
equilibrated during 30 ps using NVT conditions, followed by productive and unconstrained
MD simulations of 120 ns employing a time step of 2 fs at constant pressure (1 atm) and
temperature (310 K), the latter held constant using Langevin thermostat with a collision
frequency of 1 ps−1. Bonds involving hydrogen atoms were constrained using the SHAKE
algorithm [47], while the long-range electrostatic interactions were calculated employing
the Particle Mesh Ewald method [48]. The non-bonded interactions were truncated at 11.0 Å.
Analysis of the trajectories was performed using the cpptraj module of AmberTools16 [49].
The MD simulation was performed on a single i7-2600 CPU, where wall clock time of about
four hours was used per 1 ns simulation.

4.5. Binding Free Energy Calculations and Decomposition

The binding free energies, ∆GBIND, of the simulated complexes were calculated using
the MM-GBSA (Molecular Mechanics—Generalized Born Surface Area) protocol [50,51],
available as a part of AmberTools16 [46]. ∆GBIND is calculated from snapshots of MD
trajectory [52] with an estimated standard error of 1–3 kcal/mol [50]. ∆GBIND is calculated
in the following manner:

∆GBIND = <Gcomplex> − <Gprotein> − <Gligand> (2)

where the symbol < > represents the average value over 100 snapshots collected from
the last 30 ns part of the corresponding MD trajectories (every 150th frame was taken
for the calculation). The calculated MM-GBSA binding free energies were decomposed
into specific residue contribution on a per-residue basis according to established proce-
dures. This protocol calculates the contributions to ∆GBIND arising from each amino acid
side chains and identifies the nature of the energy change in terms of interaction and
solvation energies [29,53].
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