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Abstract: Antibiotic drug resistance has emerged as a major public health threat globally. One of the
leading causes of drug resistance is the colonization of microorganisms in biofilm mode. Hence, there
is an urgent need to design novel and highly effective biofilm inhibitors that can work either syner-
gistically with antibiotics or individually. Therefore, we have developed a recursive regression-based
platform “Biofilm-i” employing a quantitative structure–activity relationship approach for making
generalized predictions, along with group and species-specific predictions of biofilm inhibition ef-
ficiency of chemical(s). The platform encompasses eight predictors, three analysis tools, and data
visualization modules. The experimentally validated biofilm inhibitors for model development were
retrieved from the “aBiofilm” resource and processed using a 10-fold cross-validation approach using
the support vector machine and andom forest machine learning techniques. The data was further
sub-divided into training/testing and independent validation sets. From training/testing data sets
the Pearson’s correlation coefficient of overall chemicals, Gram-positive bacteria, Gram-negative
bacteria, fungus, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Escherichia coli
was 0.60, 0.77, 0.62, 0.77, 0.73, 0.83, 0.70, and 0.71 respectively via Support Vector Machine. Further,
all the QSAR models performed equally well on independent validation data sets. Additionally,
we also checked the performance of the random forest machine learning technique for the above
datasets. The integrated analysis tools can convert the chemical structure into different formats,
search for a similar chemical in the aBiofilm database and design the analogs. Moreover, the data
visualization modules check the distribution of experimentally validated biofilm inhibitors according
to their common scaffolds. The Biofilm-i platform would be of immense help to researchers engaged
in designing highly efficacious biofilm inhibitors for tackling the menace of antibiotic drug resistance.

Keywords: antibiotic drug resistance; biofilm; inhibitors; chemical descriptors; QSAR; predictor

1. Introduction

Biofilms are highly differentiated conglomerate masses of microbes that are enclosed
in an extracellular polymeric substance (EPS) matrix [1]. Planktonic bacteria undergo
numerous changes to transform into biofilms [2]. Various stages of biofilm include attach-
ment, proliferation, maturation, and dispersion. Initially, the planktonic bacteria begin
colonization by adsorbing to any surface through reversible followed by irreversible forces.
Next, proliferation starts through multiple cell divisions preceded by their maturation
through numerous physiological changes such as oxygen gradient, efflux pumps, division
of labor, etc. Finally, dispersal and colonization of the new substratum occur via various
factors e.g., enzymes, shear stress, and many more [3–5]. Despite various factors, quorum
sensing (QS), a cell-to-cell communication [6] among microbes, is considered a major cause
of switching from the planktonic form to biofilm mode [7,8]. Moreover, QS is also reported
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within the biofilm and is a major factor in strengthening biofilms [7]. The interconnection
between QS and biofilms was termed sociomicrobiology by Greenberg et al. [9]. However,
biofilms are beneficial to microbes, which in turn, is a serious concern for mankind [1].

The city of microbes i.e., biofilm, causes various severe health consequences to hu-
mans by significantly protecting microbes from antibiotics, macrophages, shear stress,
etc. [10]. In biofilm mode, the bacteria are known to become 10–1000-fold more resistant
to antibiotics [11]. There are various mechanisms by which the biofilms become antibi-
otics resistant namely, slower penetration of antibiotics, the emergence of a zone of slow
growing or non-growing bacteria, expression of the adaptive stress response by some cells,
differentiation of a few cells as highly protected persisters, antibiotics-induced expression
of efflux pumps, protection by the EPS matrix, etc. [12,13]. According to the World Health
Organization (Geneva, Switzerland), antibiotic resistance is considered one of the biggest
threats globally. Therefore, various strategies have been designed to target biofilms (the
major cause of antibiotic resistance). A promising approach is the development of biofilm
inhibitors, which can be used either synergistically with antibiotics or alone to tackle
antibiotics resistance [12,14–16].

Numerous biofilm inhibitors have been designed in the last three decades to degrade
the biofilms with diverse natures and modes of action [15,16]. They are (phyto)chemicals,
peptides, nanoparticles, biosurfactants, bacterial or fungal or algal abstracts, enzymes,
antibodies, phages, and many more [16–18]. Biofilm inhibitors are designed to target
the biofilms in innumerable ways such as matrix components, disrupting the QS within
biofilms, adhesion, cell division, etc. [15]. These inhibitors are natural and (semi)synthetic
and designed to work against bacteria (Gram-positive and Gram-negative) and fungus
or yeast. The biofilm inhibitors have been proven to be a boon towards the global
threat of antibiotic resistance against both ESKAPE [16] and non-ESKAPE pathogens,
Staphylococcus aureus [17], Pseudomonas aeruginosa [19], Staphylococcus epidermidis [20], and
Acinetobacter baumannii [14]. Hence, there is a need to design novel and more effective
biofilm inhibitors to fight against recalcitrant biofilms on medical devices, inside the human
body, water supplies, fermenters, etc.

The development of bioinformatics tools would be of great help in speeding up the
research in the field. In this regard, we developed the first comprehensive repository for
anti-biofilm agents termed “aBiofilm” with a total of 5027 entries over three decades [15].
A few methods are available in the literature to predict the biofilm inhibition efficacy of
peptides and chemicals, but they adopted different approaches than our current study. For
example, for predicting the anti-biofilm peptides, the dPABBs method was developed using
a classification-based approach [21]; Gupta et al., developed a classification-based method to
predict the biofilm inhibiting peptides [22]; the BIPEP method is a sequence-based predictor
for identifying the inhibition efficiency of peptides [23]. However, in the case of chemicals,
only two methods are available, based on a classification approach, namely the aBiofilm
predictor developed by our group using experimentally validated data [15] and the Molib
predictor developed using the data from public repositories such as KEGG [24]. Therefore,
to fine-tune the biofilm inhibition efficacy of molecules, we developed the “biofilm-i”
method using a recursive regression-based approach on experimentally validated molecules
using their percentage inhibition taken from the aBiofilm database [15]. The current study
includes the first quantitative structure–activity relationship (QSAR) based prediction
algorithm named “biofilm-i” to predict the anti-biofilm potential of chemicals. The current
algorithm can predict the biofilm inhibition efficiency of chemicals in regards to different
categories namely, overall generalized chemicals as well as some specific species e.g.,
Staphylococcus aureus (Gram-positive bacteria), Pseudomonas aeruginosa (Gram-negative
bacteria), Candida albicans (fungus or yeast), and Escherichia coli (Gram-negative bacteria).
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2. Material and Methods
2.1. Data Collection

The prediction algorithm for identifying the chemicals targeting the biofilm was
developed using highly curated data from the comprehensive aBiofilm resource [15]. The
quality control was performed in the following steps:

1. Initially, for making the generalized predictor, we extracted 884 unique chemicals
with biofilm inhibition potential that varies from 0–100%.

2. For the group-specific predictors, 384, 498, and 158 chemicals were retrieved for
Gram-positive, Gram-negative bacteria, and fungus, respectively.

3. For the species-specific algorithms, we selected organisms with a number of non-
redundant biofilm inhibitors >100. Thus, we identified four organisms: Staphylo-
coccus aureus (Gram-positive bacteria), Pseudomonas aeruginosa (Gram-negative
bacteria), Candida albicans (fungus or yeast), and Escherichia coli (Gram-negative
bacteria). S. aureus, P. aeruginosa, C. albicans, and E. coli possess 239, 301, 152 and
103 biofilm inhibiting chemicals, respectively.

2.2. Quantitative Structure–Activity Relationship (QSAR) Based Model Development

QSAR is used to establish the relationship between biological activity and the physico-
chemical properties of a category of molecules [25]. Therefore, we used the QSAR approach
in this study for two important processes. Firstly, the development of the QSAR model
so it is able to describe the relationship between chemical structures and the biological
activity of a set of compounds. Secondly, the developed model is used for the prediction of
activities of new compounds [26]. However, the initial step of model development includes
the division of complete datasets into training/testing and independent validation data
sets. Further, the training data set is used for model development and the validation dataset
is used for cross-checking the developed model [27].

All the datasets were further subdivided into training/testing (T) and independent
validation (V) data sets. For generalized chemicals, Gram-positive bacteria, Gram-negative
bacteria, fungus, S. aureus, P. aeruginosa, C. albicans, and E. coli were separated into
T800 + V84, T350 + V34, T450 + V48, T140 + V18, T210 + V29, T270 + V31, T140 + V12, and
T93 + V10 correspondingly.

2.3. Tenfold Cross-Validation

The training/testing data set is utilized for model development through Mmachine
learning techniques (MLTs) and the performance of MLTs on data was cross-validated
by employing the n-fold cross-validation method [28]. In the current study, we used a
10-fold cross-validation (n = 10) method [29]. In this method, the complete data set is
divided into 10 sets, from which 9 sets are concatenated (training set), and the remaining
1 is a testing set. The performance of the training set is evaluated using a testing set, and
this procedure is iterated 10 times till all of the 10 sets become a testing set. Finally, the
performance of all the 10 sets is averaged out for mean accuracy. Apart from internal
cross-validation (training/testing) during model development, an external authentication
was also performed by exploiting an independent validation dataset which was not used
anywhere in training/testing.

2.4. Support Vector Machine

The support vector machine (SVM) is a supervised MLT which can be implemented
on classification and regression data. It is based on constructing decision planes in multi-
dimensional space that separate two classes of data. The decision planes can be linear or
nonlinear. The effectiveness of SVM is based on kernel selection for efficient optimization.
Some commonly used kernels are linear, polynomial (homogeneous or inhomogeneous),
gaussian radial basis function, hyperbolic tangent, etc. SVMlight is implemented in the
development of various algorithms [29–31].
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2.5. Random Forest

The random forest is an ensemble machine learning approach which operates by con-
structing decision trees from a training dataset. The output results from the mean prediction
of individual trees for regression problems. The random forest has been implemented
previously in various algorithms such as anti-flavi [32], QSPpred [29], anti-Corona [33], etc.

2.6. Data Preprocessing

The preprocessing of the data was performed by converting the chemical SMILES
into the 3D SDF using Open Babel software because, when calculating 3D descriptors, the
3D SDF format is important [34]. The initial SMILES were extracted from the aBiofilm
database. Furthermore, the command line obabel software was employed for the conversion
of SMILES to 3D SDF format in batch mode. Later on, this 3D SDF was used for PaDEL
molecular descriptor calculation.

2.7. Descriptors Calculation

Descriptors are the numerical exemplification of chemical information encoded within
a symbolic representation of a molecule [27]. For the study, molecular descriptors of various
dimensionality, namely 1D, 2D, and 3D, were extracted, along with the fingerprints [27].
We employed PaDEL, a molecular descriptor computing software for converting chemical
structure information into fixed-length numeric vectors. It includes 16,383 dimensionality
descriptors and fingerprints.

2.8. Features Selection

Features selection allows the selection of a subset of features that are relevant for model
development. Feature selection is an important step in simplifying models, decreasing
training time, reducing overfitting, etc. We used “Remove Useless” for preprocessing,
followed by attribute evaluator “CfsSubsetEval” and search method “BestFirst” from the
Waikato Environment for Knowledge Analysis (WEKA) package [35], to fetch out the most
contributing features [27].

2.9. Chemical Analysis

We performed analysis of the biofilm inhibitors using Scaffold Hunter software [36].
All the biofilm inhibitors were visualized through scaffold trees, tree maps, and scaffold
clouds to check their diversity. A scaffold tree allows the user to have an overview of the
structure classification hierarchy and distribution of the structure in a particular database.
Tree map gives the complementary space-filling representation to the established scaffold
tree view of all the biofilm inhibitors on the basis of scaffolds and inhibition efficacies.
The scaffold cloud provides a compact and summarized view of all the molecules in the
database. We plotted the scaffold cloud using the “Ertl” layout algorithm and “EUCLIDE”
distance matrix [37].

2.10. Performance Measures

For regression (quantitative) mode, the correlation between two variables is measured
using Pearson’s correlation coefficient (PCC or R). In bioinformatics, the two variables
are actual and predicted values. The range of PCC varies from −1 to +1. If PCC is −1,
it indicates that observed and actual values are negatively correlated, 0 shows random
prediction, while +1 displayed the positive correlation among them. PCC is calculated
using the formula:

R =
n ∑n

n=1 Eact
i Epred

i −∑n
n=1 Eact

i ∑n
n=1 Epred

i√
n ∑n

n=1
(
Eact

i
)2 −

(
∑n

n=1 Eact
i
)2 −

√
n ∑n
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where n, Epred
i and Eact

i are the size of the test set, predicted and actual efficiencies of biofilm
inhibition respectively.

The coefficient of determination (R2) is the statistical measure for determining the
efficiency of the regression line to estimate the real data. The R2 varies from 0 to 1; if it is
near 1, the estimated rate of regression is perfect, whereas 0 means imperfect estimation.

Mean absolute error (MAE) is the difference between actual and predicted values.

MAE =
1
n

n

∑
n=1
|Epred

i − Eact
i | (2)

where, Epred
i , Eact

i and |Epred
i − Eact

i | are the predicted and actual efficiencies of biofilm
inhibition and absolute error. The negative values of MAE are preferred for better prediction
quality.

Root mean square error (RMSE) is the scoring rule to measure the average magnitude
of the error. Its negative values showed the efficiency of good prediction.

RMSE =

√
1
n

n

∑
n=1

(
Epred

i − Eact
i

)2
(3)

2.11. Webserver

All the prediction models were incorporated in the form of the “Biofilm-i” webserver
(https://bioinfo.imtech.res.in/manojk/biofilmi/, 16 July 2022). The webserver is con-
structed using an apache server and hosted on the Linux operating system. The back end of
the server is optimized using Python and Perl. The front end of the server was developed
using PHP, Javascript, CSS, and HTML.

3. Results

We used the support vector machine technique to develop recursive regression models
for generalized chemicals, group-specific (Gram-positive, Gram-negative bacteria, and
fungus) and species-specific (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albi-
cans, and Escherichia coli). Moreover, we also performed chemical analyses to explore the
interrelationship between chemical structure and inhibition efficacies.

3.1. Performance of Quantitative Structure—Activity Relationship (QSAR) Based Models Using
Support Vector Machine

All the sequences of chemicals were used for feature selection by PaDel software,
which resulted in 16,383 descriptors. Further, the feature selection resulted in 265, 177,
387, 111, 81, 90, 76, and 52 features among overall chemicals, Gram-positive bacteria,
Gram-negative bacteria, fungus, P. aeruginosa, S. aureus, C. albicans, and E. coli respectively.

From training/testing data sets, the Pearson’s correlation coefficient (PCC) of overall
chemicals, Gram-positive bacteria, Gram-negative bacteria, fungus, P. aeruginosa, S. aureus,
C. albicans, and E. coli were 0.60, 0.77, 0.62, 0.77, 0.73, 0.83, 0.70, and 0.71 respectively.
Furthermore, all the models were tested using independent/validation data sets, which
resulted in PCC of 0.53, 0.76, 0.60, 0.71, 0.78, 0.86, 0.82, and 0.82 correspondingly in all the
above-mentioned categories. Detailed results are tabulated in Table 1.

3.2. Performance of Quantitative Structure–Activity Relationship (QSAR) Based Models Using
Random Forest

We employed the Random Forest machine learning technique against eight predictors
like overall chemicals, Gram-positive bacteria, Gram-negative bacteria, Fungus/Yeast,
P. aeruginosa, S. aureus, C. albicans and E. coli with PCC of 0.52, 0.68, 0.57, 0.65, 0.65, 0.80,
0.63, 0.63 respectively. However, the independent datasets performed equally well as
shown in Supplementary Table S1.

https://bioinfo.imtech.res.in/manojk/biofilmi/
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Table 1. Performance of all the eight predictors (both training/testing and independent validation)
using a regression-based approach developed using the support vector machine method, along with
the final descriptors employed individually.

Models Used Data Sets Features Pearson’s Correlation Coefficient

Chemicals (Overall)
Training/Testing data set (T800)

265
0.60

Independent Validation data set (V84) 0.53

Gram-positive bacteria
Training/Testing data set (T350)

177
0.77

Independent Validation data set (V34) 0.76

Gram-negative bacteria
Training/Testing data set (T450)

387
0.62

Independent Validation data set (V48) 0.60

Fungus/Yeast
Training/Testing data set (T140)

111
0.77

Independent Validation data set (V18) 0.71

Pseudomonas aeruginosa
Training/Testing data set (T270)

81
0.73

Independent Validation data set (V31) 0.78

Staphylococcus aureus
Training/Testing data set (T210)

90
0.83

Independent Validation data set (V29) 0.86

Candida albicans
Training/Testing data set (T140)

76
0.70

Independent Validation data set (V12) 0.82

Escherichia coli
Training/Testing data set (T93)

52
0.71

Independent Validation data set (V10) 0.82

3.3. Analyses

Three types of analyses were performed, and overall biofilm inhibitors were presented
in the form of scaffold tree, tree map, and scaffold cloud. The scaffold tree results in diverse
branches with a combination of singlet and multiplex branches. The most cluttered branch
has a backbone of benzene with 159 molecules, followed by pyridine, tertrahydropyran,
azetidinone and pyran-4-one with 22, 21, 14, and 3 different chemicals respectively. Further-
more, the tree map view (Figure 1) depicts a more detailed view of the correlation between
scaffold and biofilm inhibition efficiency. The scaffold of a benzene ring was available
in 260 chemicals with the majority showing inhibition efficacy between 10 and 50%, the
azetidinone backbone was available in 13 chemicals, showing an inhibition efficiency with
most chemicals above 60%, and the pyran-4-one was available in 31 compounds, possessing
an inhibition efficiency of 30–100% in the majority of cases.

Moreover, the molecular cloud view (Figure S1) represents a brief and compact view
of all the experimentally validated biofilm inhibitors on the basis of their distribution
and inhibition. It displayed that the scaffolds of benzene, pyridine, tertrahydropyran,
azetidinone, and pyran-4-one, are available in most of the biofilm inhibitors and possess an
average inhibition efficacy of 50%.

3.4. Web Server

All the predictors and analysis tools were integrated into the form of an open-access
web portal named Biofilm-i (https://bioinfo.imtech.res.in/manojk/biofilmi/, 16 July 2022).
It contains eight predictors, three tools, and data visualization modules. The overall
architecture of the biofilm-i is provided in Figure 2.

https://bioinfo.imtech.res.in/manojk/biofilmi/
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Predictors: The Biofilm-i web portal contains eight algorithms for predicting gener-
alized chemicals, Gram-positive bacteria, Gram-negative bacteria, fungus, P. aeruginosa,
S. aureus, C. albicans, and E. coli. The input can be provided in (multi) SDF format. The
job ID would be assigned to every query for checking the job status and retrieving the
results. The user can wait until the completion of the job or can use our “Check Job Status”
facility provided in the “Predictor” menu for fetching the results. The input–output of the
generalized predictor is provided in Figure S2. The results are displayed in a tabulated
format including query ID provided by the user, converted simplified molecular-input
line-entry system (SMILES), biofilm inhibition efficiency, important drug-like properties,
and similarity search in the aBiofilm resource.

Tools: The biofilm-i web server comprises three tools i.e., conversion, similarity, and
analog generator. The “conversion” tools aid the user(s) to draw the chemical and re-
trieve the output as SMILES, SDF, and mol format along with the 3-D view of the query
chemical. Furthermore, the user can use the SDF file as input in any of the predictor(s).
The “similarity” tool helps the user to scan the aBiofilm database and retrieve the similar
chemical(s) with a query. However, the “analog generator” tool provides the facility to
the user(s) to generate the analogs of the provided scaffold, building blocks, and linkers.
The designed analogs can be predicted for biofilm inhibition potential in any of the eight
algorithms i.e., generalized chemicals, Gram-positive bacteria, Gram-negative bacteria,
fungus, P. aeruginosa, S. aureus, C. albicans, and E. coli.
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4. Discussion

Biofilms are the most robust colonization form of microbes and showed up to 1000-fold
resistance to antibiotics [38]. It encompasses a highly specialized form of approaches to fight
against environmental cues, including antibiotics, such as an expression of efflux pumps,
polysaccharide enriched matrix, oxygen gradients, and many more [39–41]. Hence, it is
important to target biofilms to overcome the menace of antibiotic resistance globally [42].
Therefore, we developed a web-based platform named “Biofilm-i” for predicting the
potential of (un)known chemicals to degrade biofilms. It also encompasses various analysis
tools for exploring the query compounds.

Biofilm-i is the first regression-based prediction algorithm that possesses the ability
to identify the biofilm inhibition efficacy of chemicals (generalized group-specific and
species-specific) on a single platform. However, we also developed a tool integrated
into the aBiofilm resource for predicting the biofilm inhibition potential in classification
mode (qualitative), i.e., low and high [15]. Only one chemical can be predicted at a time
by the predictor tool in aBiofilm. Contrary to that, our present web portal is typically
quantitative and possesses a facility for predicting multiple chemicals in batch mode.
Moreover, it incorporates various analysis tools to explore the query chemical(s) in more
detail such as scanning for similar compounds in the comprehensive aBiofilm resource,
fetching different chemical formats by merely drawing on the canvas of JSME editor,
and designing the analogs of the query chemicals and predicting their biofilm inhibition
efficiency. High-performance models are integrated into the webserver for predicting the
(un)known chemical in the Biofilm-i.

We used a 10-fold cross-validation approach for all the models developed through the
support vector machine technique. We utilized 2D, 3D descriptors, and fingerprints for
the development of models so as to harbor all the topological and geometric properties of
chemicals. Among all the models, the performance of the species-specific predictor was
better than the group-specific and generalized predictors because a specific type of chemical
is active against a particular group of microbes. The over-optimization issue during the
model development was managed by taking only the relevant and most contributing
features rather than all features. The internal, as well as external, validation of the models
was carried out during training/testing and independent validation data sets. Both the
validation methods performed almost equally well. Therefore, all the developed models are
very robust in all aspects and have the ability to predict the percentage inhibition efficiency
of (un) known chemicals with high accuracy.

Despite the predictors, we are providing the facility to the users to perform various
analyses on their data. For example, through the analog design option, users can design
various analogs of the query molecule(s), predict the inhibition potential, and then fetch the
most active biofilm degrading analog, rather than the original chemical. Furthermore, users
can check for similar compounds (if available) in the aBiofilm repository, which are already
experimentally validated against specific microbial biofilms. To make the web server more
user friendly, we incorporated a format conversion facility for the chemicals. Moreover,
we explored all the experimentally validated biofilm inhibiting chemicals and tried to
correlate their common scaffold and reported biofilm inhibition efficacy. We concluded
that chemicals having scaffolds of cyclic or aromatic rings such as benzene, pyridine,
tertrahydropyran, azetidinone, and pyran-4-one, are more preferred than aliphatic chains
and possess high inhibition potential. Therefore, researchers can focus on developing
efficacious inhibitors enriched with cyclic or aromatic rings.

There are a few software packages available for predicting the biofilm inhibition
efficacy of peptides and chemicals e.g., dPABBs [21], BIPEP [23], aBiofilm predictor [15],
and Molib [24]. However, they are developed using classification-based approaches and
some use publicly available data from various repositories. For the first time, we are using a
regression-based approach to the experimentally validated data of the percentage inhibition
of biofilm inhibition chemicals which is named ‘Biofilm-i’ (https://bioinfo.imtech.res.in/
manojk/biofilmi/, 16 July 2022). Moreover, the current study is developed for overall

https://bioinfo.imtech.res.in/manojk/biofilmi/
https://bioinfo.imtech.res.in/manojk/biofilmi/
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generalized chemicals, as well as for specific species, e.g., Staphylococcus aureus (Gram-
positive bacteria), Pseudomonas aeruginosa (Gram-negative bacteria), Candida albicans (fungus
or yeast), and Escherichia coli (Gram-negative bacteria).

Biofilm inhibitors can disrupt biofilms and also enhance conventional antibiotics
through synergistic effects similar to that of adjuvants increasing the efficacy of vaccines.
They have demonstrated even greater promise by killing multidrug-resistant strains, in-
cluding ESKAPE pathogens [43]. Researchers have been working hard to develop various
biofilm inhibitors for the last three decades due to their immense therapeutic potential.
However, computational resources in this important field are lacking. In this regard, the
Biofilm-i prediction algorithm would be of tremendous help to researchers in developing
novel biofilm inhibitors speedily and effectively. It would reduce the time spent and cost of
experimental biologists screening a large library of compounds. Researchers can use our
web resource to initially filter out the highly efficient compounds from the library rather
than experimentally screen them. They can also in-silico design and predict the compounds
and their respective analogs. We hope that our Biofilm-i web portal will be a one-stop
solution to the problem of designing novel and efficient biofilm inhibitors. It would prove
to be a powerful computational tool for the scientific community to curb the problem of
antibiotic resistance.
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884 experimentally validated biofilm inhibitors where biofilm inhibition efficiency shown in col-
ors (blue color depicts 0% and green color displays 100%). Figure S2. Input output of generalised
predictor available in biofilm-i web portal. Table S1. Performance of all the eight predictors (both
training/testing and independent validation) using regression based approach developed using
Random Forest along with the final descriptors employed individually.
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