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Abstract: Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)
and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown
that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of
CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation
for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells)
were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK.
The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B
and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal
damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells.
The combination of different concentration gradient of nicotine without cytotoxic effects and a
single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional
genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and
genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.

Keywords: NNK; nicotine; cytotoxicity; genotoxicity; cytochrome P450 2A13

1. Introduction

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the strongest carcinogen of
tobacco-specific N-nitrosamines (TSNAs) in cigarette smoke, is listed as a Group 1 hu-
man carcinogen by the International Agency for Research of Cancer. NNK is also a key
component of monitored tobacco carcinogens and is thought to play an important role in
smoking-related cancers in humans [1–4]. NNK must be metabolically activated to exert
its carcinogenic and toxicological properties [2,5]. It is difficult to study the toxic effects
of NNK due to the complexity of NNK metabolism, including the enzyme system and
activation process of the catalysis [1]. NNK leads to the α-hydroxylation of methyl or
methylene carbon via bioactivation of cytochrome P450 enzymes (CYP), and CYP2As play
pivotal roles in the metabolic activation of NNK in the human pulmonary system, such
as CYP2A6, CYP2A7, and CYP2A13. Among these, CYP2A7 is defective in incorporating
heme molecules and therefore is an inactive enzyme in vitro. The tissue distribution of
these enzymes revealed that CYP2A6 is mainly expressed in the liver, and a minimally in
the lungs, and CYP2A13 is predominantly expressed in the respiratory tract, including
lung, trachea, and nasal mucosa [6,7]. The metabolism of NNK form unstable interme-
diates that are then broken down into electrophilic methyl-, pyridine-, oxa-nbutyl-, and
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pyridylhydroxybutyl-diazonium ions. These ions may attack DNA molecules, and lead
to the formation of methyl and butylpyridoxine DNA adducts, other DNA damage and
chromosome damage, which could be involved in the toxicological properties of NNK [7,8].

Of all the human CYP enzymes detected thus far, CYP2A13 is the most active and
efficient enzyme for NNK metabolic activation in vitro and in vivo [2,9]. CYP2A13 is also
a catalyst for nicotine, which is the main alkaloid in tobacco and the primary addictive
substance in cigarette smoke, maintaining the long-term use of tobacco products [10,11].
Previous studies showed that irreversible inactivation of CYP2A13 enzyme activity occurs
in a time and dose-dependent manner after nicotine metabolism [12]. This affects the
metabolic activation of NNK, and then affects the toxic effect of NNK, so it is of great
significance to explore the effect of nicotine on the toxicity of NNK. Nicotine has been
reported to prevent NNK-induced DNA damage in human hepatic-derived cells, possibly
by inhibiting CYP enzymes [13]. However, that study only used a single genotoxicity index
to investigate, and did not conclusively demonstrate that nicotine inhibited NNK-induced
DNA damage mediated by CYP enzyme. NNK is a more potent lung carcinogen than that
of the liver [14], and the main target organ for cancer caused by NNK is the lungs [15].
Therefore, it is necessary to study the effect of nicotine on NNK-induced toxicity in the
lung, especially genotoxicity.

Typically, the ideal system to study lung carcinogenicity would be airway cells with
a metabolic capacity [13]. Immortalized human bronchial epithelial (BEAS-2B) cells can
be used as a substitute in toxicological and pharmacological studies due to their relatively
high homology to human lung tissues and primary cells in gene expression patterns [15],
but studies have demonstrated low activity and low expression of CYP2A13 in BEAS-2B
cells [16]. Moreover, the CYP enzymes required for NNK metabolism are lacking in
conventional test lung cell lines [16,17]. Thus, this study established genetic engineered
BEAS-2B cells that could stably express CYP2A13 (B-2A13) using the lentiviral system, and
BEAS-2B cells and the vector control cells were used as the control. Based on these cell
lines, this study explored the role of CYP2A13 in cytotoxicity and genotoxicity of NNK and
the effect of nicotine on the toxic effects induced by NNK in lung cells.

2. Results and Discussion

Tobacco is a potent multisite carcinogen with a substantial worldwide impact [18].
Both nicotine and NNK are important components in cigarette smoke that contribute to
cancer development [19,20], and nicotine has been reported to inhibit the metabolism of
NNK by inhibiting CYP2A13 [21,22], so it is of great significance to investigate the effect
of CYP2A13-mediated nicotine on the cytotoxicity and genotoxicity of NNK on lung cells.
Therefore, based on the constructed B-2A13 cells, the toxic effects of NNK alone and NNK
combined with nicotine were studied in this study.

2.1. Identification of BEAS-2B Cells That Stably Express CYP2A13

BEAS-2B cells stably expressing CYP2A13 (B-2A13) or vector (B-Vector) were con-
structed using the lentiviral system. The expression abundance of mRNA of the CYP2A13
gene in BEAS-2B cells, B-Vector cells, and B-2A13 cells was determined by quantitative
Real-Time PCR (qRT-PCR), and the results showed that the expression abundance of the
CYP2A13 in B-2A13 cells was significantly higher than that in B-Vector and BEAS-2B cells
(p < 0.001) (Figure 1A). For example, the expression abundance of the CYP2A13 gene in
B-2A13 cells was 438,836.7 times higher than that in BEAS-2B cells (Figure 1A). Western
blotting showed that the single CYP2A13 protein band was detected in B-2A13 cells, while
there were no obvious bands observed in the B-Vector and BEAS-2B cells (Figure 1B). This
indicates that CYP2A13 was successfully expressed in BEAS-2B cells, which was consistent
with the results obtained by qRT-PCR. It indicated that BEAS-2B cells stably expressing
CYP2A13 were successfully established.
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Figure 1. Identification of BEAS-2B cells that stably express the cytochrome P450 2A13 (CYP2A13).
(A) mRNA expression of CYP2A13 in cells determined with quantitative Real-Time PCR (qRT-PCR).
(B) Characterization of CYP2A13 protein expression in cell lysates. The protein levels of CYP2A13
were detected by Western blotting. Beta-actin gene (ATCB) gene served as a reference gene in the
qRT-PCR experiment. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as a reference
protein in the WB experiment. ***: p < 0.001.

2.2. Effects of Nicotine on NNK-Induced Cytotoxicity in B-2A13 Cells

To obtain suitable dosing concentration ranges for nicotine and NNK, cytotoxicity was
first evaluated using the Cell Counting Kit-8 (CCK-8) assay. NNK induced cytotoxicity in
B-2A13 cells in a dose-dependent manner, and B-2A13 cells were more sensitive to NNK
than B-Vector cells and BEAS-2B cells (Figure 2A). After 24 h of treatment, the IC20 value of
NNK was 24.52 µM, 265.04 µM, and 376.14 µM for B-2A13, B-Vector, and BEAS-2B cells,
respectively. These results showed that CYP2A13 played an indispensable mediating role
in NNK-induced cytotoxicity.
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Figure 2. Nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cyto-
toxicity in B-2A13 cells. Cells were treated with NNK and/or nicotine for 24 h. Cell viability of
BEAS-2B, B-Vector, and B-2A13 cells after treatment with NNK (A) and nicotine (B). B-2A13 cells had
no significant effects on the cell viability (p > 0.05). Cell viability (C), cell count (D), and nucleus area
(E) of B-2A13 cells after treatment with a combination of NNK and nicotine. Vehicle control (VC)
was cells treated with dissolved in dimethyl sulfoxide (DMSO) (0.004%). * Shows comparison with
VC group, * p < 0.05, ** p < 0.01, and *** p < 0.001; # Shows comparison with 20 µM of NNK group,
# p < 0.05, ## p < 0.01, and ### p < 0.001.

The viability of cells exposed to nicotine is shown in Figure 2B. Effects of nicotine on
the viability of BEAS-2B, B-Vector, and B-2A13 cells were similar. There was no significant
difference in the cell viability after 24 h of treatment with nicotine (10–1000 µM) compared
to the control group (p > 0.05) in B-2A13 cells. Accordingly, 10–1000 µM of nicotine was
selected for further experiments for the co-exposure of nicotine and NNK.

Nicotine reduced NNK-induced inhibition of cell viability in B-2A13 cells in a dose-
dependent manner (Figure 2C). In the High content screening (HCS) approach, after
24 h of treatment with 20 µM of NNK in B-2A13 cells, the number of cells significantly
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decreased (Figure 2D, p < 0.05), and the area of the nucleus significantly increased (Figure 2E,
p < 0.001). However, these adverse changes were mitigated in all the groups co-incubated
with nicotine.

To avoid false positive genotoxic signals due to cell apoptosis or necrosis, experimental
compounds or mixtures are generally considered to be genotoxic when the cell viability of
the experimental compound or mixture is greater than 80%, and the induction of H2AX
phosphorylation is at least 20% higher than that of the control [23,24]. Therefore, this study
used 20 µM of NNK for the combined exposure with nicotine, and the cytotoxicity of this
concentration was not higher than 20% in B-2A13 cells. To investigate the effects of nicotine
with different concentration gradients on the cytotoxicity and genotoxicity of NNK, three
noncytotoxic concentrations of nicotine (10, 100, and 1000 µM) were selected.

2.3. Effects of Nicotine on NNK-Induced Genotoxicity and Cell Cycle Arrest in B-2A13 Cells

γH2AX is widely recognized as a sensitive biomarker of DNA double-strand breaks
(DSBs) [25]. DNA damage was determined using γH2AX assay. After 24 h of treatment
with 1.25–20 µM of NNK, the fluorescence intensity of γH2AX dose-dependently increased
in B-2A13 cells and 1.25 µM of NNK significantly induced γH2AX in B-2A13 cells (p < 0.001)
compared with the vehicle control, while BEAS-2B cells and B-vector cells had no significant
effects on NNK-induced γH2AX compared with the vehicle control (Figure 3A,B). These
results demonstrated that the involvement of CYP2A13 promoted NNK-induced DNA
damage. About 20 µM of NNK increased the fluorescence intensity of γH2AX in cell
nuclei of B-2A13 cells, while the groups incubated with nicotine dose-dependently down-
regulated the fluorescence intensity of γH2AX in B-2A13 cells (Figure 3C,D). Therefore,
nicotine inhibited NNK-induced DNA damage in B-2A13 cells in a dose-dependent manner.

The cytoplasmic block micronucleus (CBMN) and non cytoplasmic block micronucleus
(NCBMN) assay were used to evaluate chromosome damage. Compared with the vehicle
control, CBMN frequency and NCBMN frequency of B-2A13 cells increased in a dose-
dependent fashion. About 5 µM NNK significantly increased CBMN frequency (p < 0.05)
(Figure 4A), and 2.5 µM NNK significantly increased NCBMN frequency in B-2A13 cells
(p < 0.05) (Figure 4B), whereas no significant changes in CBMN frequency and NCBMN
frequency were found in either BEAS-2B or B-Vector cells (p > 0.05) (Figure 4A,B). These
results demonstrated that chromosomal damage induced by NNK needed mediation by
CYP2A13. As expected, nicotine could reduce the CBMN frequency and the NCBMN
frequency, and as the concentration increased, the CBMN frequency and the NCBMN
frequency returned to the basal level (Figure 4C,D). Thus, nicotine inhibited the CYP2A13-
mediated genotoxic effects (DNA damage and chromosome damage) of NNK.

The percentage of cells in the S-phase and G2-phase increased in a dose-dependent
manner after 24 h of NNK treatment in B-2A13 cells (Figure 5A). However, no significant
effect of NNK was found on the cell cycle arrest in BEAS-2B cells and B-vector cells (p > 0.05)
(Figure 5B,C). In concordance with the above results, nicotine restrained NNK-induced cell
cycle arrest in B-2A13 cells in a concentration-dependent manner (Figure 5D).

A systemic toxicity assessment of NNK based on normal lung cells stably expressing
CYP2A13 had not been previously reported. The current study demonstrated that NNK-
induced cytotoxicity was more pronounced in B-2A13 cells compared to BEAS-2B and
B-Vector cells, and NNK dose-dependently increased γH2AX expression, the frequency
of micronuclei, the S/G2-phase cell population, while no differences were observed in
BEAS-2B and B-Vector cells between the treatment and control groups. This indicated
that CYP2A13 played an indispensable mediating role in NNK-induced cytotoxicity and
genotoxicity. Similar results were also found in B-2A13 cells treated with nicotine-free
cigarette smoke extract and total cigarette smoke extract [6]. Previous studies demonstrated
that NNK exposure to A549 and BEAS-2B cells did not have a significant dose/time-
dependent effect on γH2AX at various test concentrations and exposure times [26,27]. This
is because BEAS-2B and A549 cells show very little CYP2A6 and CYP2A13 activity [16],
which are key enzymes in the metabolic activation of NNK [7].
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Figure 3. Nicotine inhibited NNK-induced DNA damage in B-2A13 cells. DNA damage was
determined using γH2AX assay with high content screening. Cells were treated with NNK alone or a
combination of NNK and nicotine for 24 h. (A) Immunostaining and imaging analysis of γH2AX
in B-2A13 cells treated with NNK. (B) Relative γH2AX intensity in BEAS-2B, B-Vector, and B-2A13
cells treated with NNK. (C) Relative γH2AX intensity in B-2A13 cells treated with a combination
of NNK and nicotine. (D) Immunostaining and imaging analysis of γH2AX in B-2A13 cells treated
with a combination of NNK and nicotine. Vehicle control (VC) was cells treated with DMSO (0.004%).
* Shows comparison with VC group, ** p < 0.01, and *** p < 0.001; # Shows comparison with 20 µM of
NNK group, ### p < 0.001.
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Figure 4. Nicotine inhibited NNK-induced chromosome damage in B-2A13 cells. Chromosome
damage was detected using the cytoplasmic block micronucleus (CBMN) and non cytoplasmic block
micronucleus (NCBMN) assays with high content screening. Cells were treated with NNK alone or
a combination of NNK and nicotine for 24 h. CBMN frequency (A) and NCBMN frequency (B) in
BEAS-2B, B-Vector, and B-2A13 cells treated with NNK. CBMN frequency (C) and NCBMN frequency
(D) in B-2A13 cells treated with a combination of NNK and nicotine. Vehicle control (VC) was
cells treated with DMSO (0.004%). * Shows comparison with VC group, * p < 0.05, ** p < 0.01, and
*** p < 0.001; # Shows comparison with 20 µM of NNK group, # p < 0.05, and ### p < 0.001.

Moreover, we found that nicotine dose-dependently inhibited cytotoxicity, DNA
damage, chromosome damage, and cell cycle arrest induced by NNK in B-2A13 cells. This is
in agreement with previous studies in which NNK-induced DNA damage was inhibited by
nicotine in hepatic-derived cell lines, possibly due to nicotine inhibiting CYP enzymes [13].
Previous researches had reported that nicotine or nicotine metabolites inhibit various CYPs
involved in the bioactivation of NNK, including CYP2A13, CYP2A6, and CYP2E1 [21].
Nicotine has a competitive inhibitory effect on CYP2A13-mediated NNK metabolism with
a higher affinity [21,22]. β-nicotyrine, a nicotine-related alkaloid, has also been shown
to inhibit CYP2A13 and CYP2A6 in vitro [28,29]. CYP2E1 activates nitrosamines and is
competitively suppressed by nicotine in the livers of both humans and rats [30]. A molecular
dynamics simulation-based study showed that nicotine had a stronger affinity for CYP2A13
than NNK [31]. Therefore, CYP2A13-catalyzed NNK metabolism may be competitively
inhibited by nicotine, resulting in a decrease in NNK-induced cytotoxicity and genotoxicity.
Moreover, in vitro work using purified enzymes demonstrated that CYP2A6 and CYP2A13
inactivated in the process of nicotine metabolism [12]. Further investigation found that the
nicotine ∆5′(1′) iminium ion is an inactivator of both CYP2A6 and CYP2A13 [32]. Hence
another hypothesis is that nicotine metabolites inactivate CYP2A13 leading to a reduction
in NNK-induced toxicity.
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Figure 5. Nicotine inhibited NNK-induced cell cycle arrest in B-2A13 cells. Cells were treated with
NNK alone or a combination of NNK and nicotine for 24 h. Cell cycle in B-2A13 cells (A), BEAS-2B
cells (B), and B-Vector cells (C) treated with NNK, and cell cycle in B-2A13 cells treated with a
combination of NNK and nicotine (D). Vehicle control (VC) was cells treated with DMSO (0.004%).
* Shows comparison with VC group, * p < 0.05, ** p < 0.01, and *** p < 0.001; # Shows comparison
with 20 µM of NNK group, # p < 0.05, ## p < 0.01, and ### p < 0.001.

Based on the results from the study, a putative schematic representation of the molecu-
lar mechanism involving the effects of nicotine on NNK-induced toxicity in B-2A13 cells
was suggested (Figure 6). This speculates that NNK is metabolized by CYP2A13 to produce
toxic substances, leading to DNA damage in cells. DNA damage can activate DNA damage
checkpoints, which can slow down or arrest cell cycle progression, so that cells can repair or
prevent the spread of damaged chromosomes [33,34]. If the DNA damage can be repaired,
the cells return to a normal cell cycle and survive, or otherwise they will lead to further
chromosomal damage [35], and eventually lead to cell death [36]. Nicotine can inhibit these
toxic effects of NNK by inhibiting CYP2A13.
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Figure 6. The putative schematic representation of the molecular mechanism involved in the effects
of nicotine on NNK-induced toxicity in B-2A13 cells. The up and down arrows represent rising and
falling respectively.

To our knowledge, this study is the first to investigate the inhibitory effects of nicotine
on the cytotoxicity and genotoxicity of NNK based on normal lung cells stably expressing
CYP2A13. This study clarified the protective effect of nicotine on the toxic effect of NNK.
NNK is the most well-known carcinogen in cigarette smoke, its key metabolic enzyme
CYP2A13 can also metabolize many other carcinogens and/or harmful components in
cigarette smoke, such as benzo-pyrene, naphthalene, and 3-methylindole, polycyclic aro-
matic hydrocarbons (pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene), and
heterocyclic amines [37]. They are also thought to be associated with lung cancer [38].
Therefore, nicotine has a potential protective mechanism against carcinogenesis of various
cigarette smoke components. One limitation of this study is that the molecular mechanism
whereby nicotine inhibits NNK toxicity has not been fully elucidated. Therefore, future
studies should consider the mechanism by which nicotine inhibits NNK-induced toxicity
via enzyme activity and metabolic markers with nicotine present or absent.

3. Materials and Methods
3.1. Chemicals

NNK (>98% purity) was acquired from Toronto Research Chemicals (Toronto, ON,
Canada). Nicotine (>99% purity) was obtained from the Key Laboratory of Tobacco Biolog-
ical Effects (Zhengzhou, China).

3.2. Cell Culture and Treatment

BEAS-2B cells were acquired from the Key Laboratory of Tobacco Biological Effects
(Zhengzhou, China), and cultured in Bronchial Epithelial Cell Growth Medium (BEGM,
Lonza, Walkersville, MD, USA) in a humidified incubator with 5% CO2 at 37 ◦C. NNK
was dissolved in dimethyl sulfoxide (DMSO) before it was used. The final exposure
concentrations of NNK and nicotine were obtained by serial dilutions with the culture
medium, and cells were exposed to NNK or/and nicotine in multi-well plates in a CO2
incubator. The final concentration of DMSO was less than 0.3%.

3.3. Establishment of BEAS-2B Cells Expressing CYP2A13

CYP2A13 overexpression lentivirus and empty lentivirus were purchased from GeneChem
(Shanghai, China). According to the manufacturer’s instructions, BEAS-2B cells (1 × 105)
were cultured in six-well plates, and when the cell density reached 20%, BEAS-2B cells were
infected with lentivirus. The multiplicity of infection (MOI) value was 50. The medium in
the plates was discarded and complete culture medium containing lentiviral stock solution
and HitransG A (Genechem, Shanghai, China) was added into plates. The medium was
replaced after 16 h and the cells were observed under fluorescence microscopy to evaluate
the efficiency of the infection after 72 h. Empty lentivirus and non-infected cells were used
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as negative controls. About 1 µg/mL of puromycin was added to each well for screening
the robust cells expressing CYP2A13.

3.4. qRT-PCR Analysis

qRT-PCR was performed as previously described [39]. Briefly, total RNA was extracted
from cells using Trizol reagent (Pufei, Shanghai, China). The RNA was reverse-transcribed
into cDNA using M-MLV reverse transcriptase (Promega, Madison, WI, USA). qRT-PCR
was performed using SYBR Premix Ex Taq (Takara, Shiga, Japan). The primers used were:
for CYP2A13, 5′-CGCTACGGTTTCCTGCTGCTC-3′(forward) and 5′- CATCTTGGCCCG-
GTCCTCAA -3′ (reverse); and for beta-actin (ACTB), 5′- GCGTGACATTAAGGAGAAGC
-3′ (forward) and 5′- CCACGTCACACT TCATGATGG -3′ (reverse). CYP2A13 mRNA
expression was normalized to ACTB mRNA expression.

3.5. Western Blot Analysis

WB analysis was performed according to previously described procedures [40]. The
primary antibodies against CYP2A13 (Invitrogen, PA5-101310) and GAPDH (Cell Signaling
Technology, 97166S) were diluted at a ratio of 1:1000. The secondary antibodies, Goat
anti-rabbit IgG-HRP (Cell Signaling Technology, 7074S,) and Horse anti-mouse IgG-HRP
(Cell Signaling Technology, 7076S), were diluted at a ratio of 1:3000. The reference protein
GAPDH was used to calibrate the errors generated by sample loading.

3.6. Assessment of Cytotoxicity

CCK-8 assay: Cell cytotoxicity was determined using the Cell Counting Kit-8 (CCK-8,
Dojindo, Kumamoto, Japan) [41]. Approximately 1 × 104 cells were plated into each well
of a 96-well microplate. After 24 h of incubation in a CO2 incubator at 37 ◦C, the original
medium was aspirated and a fresh medium containing NNK and/or nicotine was added.
After 24 h of treatment, 10% (v/v) CCK-8 solution was added and incubated at 37 ◦C for 3 h.
The optical density (OD value) was measured at a wavelength of 450 nm with a microplate
reader (Molecular Devices LLC, San Jose, CA, USA).

HCS: The experimental protocol for HCS was previously described [42,43]. Ap-
proximately 1 × 104 cells were plated into each well of a PhenoPlate 96-well microplate
(PerkinElmer, Waltham, MA, USA). After 24 h of incubation in a CO2 incubator at 37 ◦C,
the original medium was aspirated and a fresh medium containing a combination of NNK
and nicotine was added. After 24 h of treatment, the B-2A13 cells were stained with
Hoechst 33342 (Beyotime, Shanghai, China). Hoechst 33342 can measure features such
as cell count and nuclear area by labeling DNA. Cell imaging with fluorescence analysis
was performed on a PerkinElmer Operetta CLS High Content Screening platform with
Harmony 4.5 software (PerkinElmer, Waltham, MA, USA).

3.7. γH2AX Assay

The γH2AX assay was modified on the basis of the previous experimental method [44].
Approximately 1 × 104 cells were plated into each well of a PhenoPlate 96-well microplate
(PerkinElmer, Waltham, MA, USA), and 24 h later cells were continuously exposed to
NNK or a combination of NNK and nicotine for 24 h. The cells were then washed with
phosphate-buffered saline (PBS) fixed with 4% paraformaldehyde (Beyotime, Shanghai,
China), permeabilized with immunostaining permeable fluid (Beyotime, Shanghai, China),
and blocked with 5% bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA).
After blocking, the cells were incubated with 100 µL of 0.1% (v/v) Phospho-Histone H2A.X
(Ser139) Antibody (Cell Signaling Technology, Danvers, MA, USA) in 1% BSA overnight
at 4 ◦C. After being washed three times with PBS, the cells were incubated with 100 µL
of 0.1% (v/v) Anti-rabbit IgG (H + L), F(ab’)2 Fragment (Alexa Fluor® 647 Conjugate)
(Cell Signaling Technology, Danvers, MA, USA) in 1% BSA for 2 h at room temperature in
darkness. Next, 100 µL of Hoechst 33342 (Beyotime, Shanghai, China) was added to each
well for 10 min. After the wells were washed with PBS, 100 µL of PBS was added per well
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and the plates were immediately placed on the PerkinElmer Operetta CLS High Content
Screening platform for analysis.

3.8. Micronucleus Assay

The experimental protocol was modified according to the method previously de-
scribed [43,45,46]. CBMN assay: Approximately 1 × 104 cells were plated into each well of
a PhenoPlate 96-well microplate (PerkinElmer, Waltham, MA, USA). After 24 h of incuba-
tion in a CO2 incubator at 37 ◦C, the original medium was aspirated and a fresh medium
containing NNK or a combination of NNK and nicotine with cytochalasin B (4 µg/mL) was
added. After 24 h of treatment, cells were washed with PBS, fixed with 4% paraformalde-
hyde (Beyotime, Shanghai, China), and stained with Hoechst 33342 (Beyotime, Shanghai,
China) and Cell Mask Red (Life Technology, Carlsbad, CA, USA).

NCBMN assay: Approximately 1× 104 cells were plated into each well of a PhenoPlate
96-well microplate (PerkinElmer, Waltham, MA, USA). After 24 h of incubation in a CO2
incubator at 37 ◦C, the original medium was aspirated and a fresh medium containing
NNK or a combination of NNK and nicotine was added for 24 h. The cells were then
washed with PBS and stained with Hoechst 33342 for 10 min in the dark.

After being washed with PBS, 100 µL of PBS was added to each well and the plates
were immediately placed on the PerkinElmer Operetta CLS High Content Screening plat-
form for analysis. Frequencies of micronuclear cells were measured in at least 2000 binuclear
cells (CBMN assay) or at least 2000 cells (NCBMN assay) per sample.

3.9. Cell Cycle Analysis

The cell cycle distribution was measured using the cell cycle and apoptosis analysis
kit (Beyotime, Shanghai, China) [47]. Approximately 3 × 105 cells were seeded into each
well of a 6-well culture plate, and 24 h later the cells were continuously exposed to NNK
or a combination of NNK and nicotine for 24 h. Cells were harvested by trypsinization,
centrifuged, and the pellets were resuspended in 1 mL of cold PBS. They were then
centrifuged and the pellet was fixed in 75% ice-cold ethanol at 4 ◦C overnight. After the
fixative solution was aspirated, the cells were centrifuged and the pellet was incubated in
propidium iodide (PI) and RNase for 30 min. The cell cycle was analyzed by FACS flow
cytometer Accuri TM C6 Plus (BD Biosciences, San Jose, CA, USA), and the results were
processed using the FlowJo (v10.8.1, BD Bioscience, San Jose, CA, USA) software program.

3.10. Statistical Analysis

GraphPad Prism 8.0 software (GraphPad Software, San Diego, CA, USA) was used for
data analysis, the results were presented as mean ± standard deviation (SD). A two-tailed
Student’s t-test was used to determine significant differences (p < 0.05). All experiments
were repeated at least three times.

4. Conclusions

To elucidate the effect of nicotine on the cytotoxicity and genotoxicity of NNK in lung
cells, BEAS-2B cells stably expressing CYP2A13 were constructed and a variety of in vitro
toxicological indicators were tested in this study. The results showed that CYP2A13 played
an indispensable mediating role in cytotoxicity and genotoxicity of NNK. Nicotine inhibited
cytotoxicity and multi-dimensional genotoxicity in NNK-induced B-2A13 cells, possibly
by inhibiting CYP2A13. This study provided mechanistic insights into the protective
effects of nicotine, and suggested that nicotine has a potential protective mechanism
against carcinogenesis of various cigarette smoke components metabolized by CYP2A13.
In addition, it suggested that nicotine may influence toxic effects of some non-carcinogenic
harmful ingredients activated by CYP2A13 and CYP2A6 enzymes, and then affect the
health risks of tobacco products.
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