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Abstract: Virtual screening can significantly save experimental time and costs for early drug discovery.
Drug multi-classification can speed up virtual screening and quickly predict the most likely class
for a drug. In this study, 1019 drug molecules with actual therapeutic effects are collected from
multiple databases and documents, and molecular sets are grouped according to therapeutic effect
and mechanism of action. Molecular descriptors and molecular fingerprints are obtained through
SMILES to quantify molecular structures. After using the Kennard–Stone method to divide the data
set, a better combination can be obtained by comparing the combined results of five classification
algorithms and a fusion method. Furthermore, for a specific data set, the model with the best
performance is used to predict the validation data set. The test set shows that prediction accuracy can
reach 0.862 and kappa coefficient can reach 0.808. The highest classification accuracy of the validation
set is 0.873. The more reliable molecular set has been found, which could be used to predict potential
attributes of unknown drug compounds and even to discover new use for old drugs. We hope this
research can provide a reference for virtual screening of multiple classes of drugs at the same time in
the future.

Keywords: molecular descriptor; molecular fingerprint; Dempster–Shafer theory; Kennard–Stone division

1. Introduction

The emergence of new diseases (such as COVID-19) and the rise of drug resistance are
constantly forcing researchers to discover and develop new drugs with better therapeutic
effects and fewer side effects. As an important way to find new drugs, drug development
is receiving great attention [1]. It includes a series of procedures, such as the determination
of lead compound, clinical trials, and the final review by the National Medical Products
Administration [1]. As the early key step, the determination of lead compound is also
called drug screening, by which possible candidate drugs to relieve and cure various
diseases [2] are discovered and serve as the object for subsequent research. In traditional
drug development, this step is conducted through constant experimentation and testing of
compounds from small molecule databases, which requires a significant amount of time
and money [3]. However, in the last two decades, virtual screening (VS) has gradually
become more and more popular [3]. Currently, it plays a significant role in the discovery of
small molecule drugs with certain activity [4]. According to different starting points for
identifying desirable drugs, vs. can be classified as structure-based virtual screening (SBVS)
or ligand-based virtual screening (LBVS). Based on these forms of screening, many drugs
with therapeutic effects have been successfully discovered and brought into the market with
shorter development period and less investment, such as scopoletin and aliskiren [2–5].

SBVS identifies a target drug by means of the docking between a target protein and
small molecular drugs. In terms of drugs with certain effects, if the three-dimensional
structure of a target protein is unknown, the search for corresponding drug molecules
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cannot be realized based on SBVS [6]. Differing from SBVS, LBVS pays attention to data
mining on small molecular drugs based on the assumption that compounds with similar
structure have similar properties [7]. All kinds of drug databases have been well established
in the history of drug development, which include a huge number of drugs and their
structure information [8,9]. With the development of structure digitalization, LBVS methods
can accomplish faster computation and predict as many potential candidates as possible.
Currently, machine learning technologies further facilitate SBVS and LBVS research [1,10],
especially LBVS.

There had been many studies employing various machine learning methods to screen
drugs with specific characteristics [11]. Müller et al. used kernel-based classification
methods to reduce the error rate of distinguishing drugs and non-drugs [12]. Focusing
on clinical trials failure and withdrawal caused by drug-induced liver injury, Li et al.
proposed a support vector machine model to identify drugs harmful to the liver [13]. To
decrease the failure rate of drug candidates that bind to the androgen receptor, Gupta
et al. developed an efficient model to predict their toxicity, particularly focusing on liver
injury [14]. For enhancing the hit rate of drugs that are able to treat various diseases by
inhibiting the S100A9 target, Lee et al. established predictive models to classify them by
applying several classifiers and molecular descriptors [15]. In order to recognize drugs that
cause cardiotoxicity by blocking the Kv11.1 channel, Kim et al. applied ensemble models
to predict blockers and non-blockers [16]. In these studies, molecular characteristics have
been described and classified from different perspectives, i.e., drugs for certain diseases,
drugs for certain protein targets, or toxicity induced by certain drugs. In addition, in the
study by Lotsch et al., the functional genomics-based criterion is applied to classify drugs
from pharmacology, which is suitable for drug classification and provides a phenotypic
path for drug discovery and repurposing [17]. Kim et al. constructed a prediction model
to provide new indications for herb compounds for certain diseases [18]. It can be seen
that most studies have been focused on specific diseases or side effects, which are just
properties of drugs. As it is also well known that drugs can be classified by what they
treat, such as analgesics, antibacterial agents, and antitumor drugs, common features can
be extracted from the same drug category [19]. In the early stage of VS, if drug actual
clinical therapeutic effect is taken into account, potential candidates could be screened
more quickly and efficiently by direct drug multi-classification [20].

The Anatomical Therapeutic Chemical (ATC) Classification System is formed by
hierarchically classifying drugs according to their anatomical, therapeutic, and chemical
properties, and many models have been developed to enrich the system [21,22]. Although
the studies on the ATC system have included clinical therapeutic effect, the amount of
drug in the system is much lower than the actual quantity [21], so the existing drug
information has not been fully utilized. Moreover, most prediction models have realized
multi-classification for ATC system only by an individual algorithm. At present, no
individual classifier can show good classification performance for all data sets. To obtain a
more reliable multi-classes prediction model, the fusion method was used to integrate the
information of multiple classifiers [23]. According to different objects, fusion methods can
be divided into class label fusion, support function fusion, etc. [23]. Compared to the label
fusion, the fusion for support functions is more interpretable when similar performance is
achieved. As a support function fusion method, Dempster–Shafer (DS) evidence theory has
been successfully applied to classification [24]. As Kim et al. provided new repositioning for
existing drugs [18], the constructed prediction model identified unknown compounds and
discovered new possibilities for marketed drugs through providing prediction probability.
DS fusion method can merge the predicted probabilities of multiple classifiers to recognize
unknown drugs or even discover new effects of old drugs.

In order to promote drug multi-classification development, seven categories of popular
drugs are chosen as examples to obtain data for research. As much as possible, drug
molecules with corresponding therapeutic effects are collected to ensure the stability of
the model. Differing from simple binary classification, classification for the collected drug
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molecules is a multi-class prediction issue. There are multi-classification algorithms and
multi-classification models combining multiple binary classifiers that can be used to solve
the issue. Not only has previous research proved the advantages of binary classifiers, but
the applicability of the two-classification strategy to achieve multi-classifications has also
been demonstrated by Galar et al. [25].

In this work, a multi-classification method based on DS evidence reasoning theory is
proposed to predict possible clinical therapeutic effects of unknown drugs. First, random
forest (RF), adaptive boosting trees (ABT), support vector machine (SVM), logistic regres-
sion (LR), and linear discriminant analysis (LDA) are selected as the separate classifiers
for fusion due to their wide applicability [5,15,16]. Then, based on the DS fusion method,
predicted probabilities of the five classifiers are fused into final discriminant probability.
The Kennard–Stone (KS) division method [26] is used to divide the data set. The final
statistical mean of the test set is used to pick out the model with good performance, which
provides more reliable information for potential effects of unknown drugs. Furthermore,
the reliability of the obtained model is verified by an external validation set.

The rest of the paper is organized as follows: In Section 2, based on different data
sets, the better prediction model is obtained by comparing classification results, and the
prediction ability of the model for multi-action drugs is also analyzed through external
validation. Section 3 includes data collection and method application. The source of
drug molecules, five description data sets for drug molecular structure (represented by
the descriptors), and the acquisition process of four molecular sets are introduced in
the section on data collection. In method application, five single classifiers, DS fusion
principle, measurement method, and indicators for classification performance evaluation
are presented. Finally, the conclusion is stated in Section 4.

2. Results and Discussion

An appropriate drug molecular set can provide the basis for reliable prediction of
unknown drugs. According to comparison of classification results, the suitable molecular
set, descriptor set, and classification algorithm are determined. Furthermore, based on the
external validation set, the performance of twelve classification models is further compared
and verified in Section 2.2.

2.1. The Comparison of Different Molecular Sets, Description Sets, and Classification Methods

Based on 240 groups of results obtained from four molecular sets (the acquisition
process of four molecular sets is introduced in Section 3.1.3), five descriptor sets, and
twelve classification methods, firstly, molecular sets that are suitable to discover the corre-
lation between molecular structure and therapeutic effect are determined. Based on the
determined molecular sets, two classification methods are utilized to make a comparison
among ten groups of results to discover descriptor sets that are beneficial to characterize
the molecular structure. Comparing twelve classification results from a suitable molecular
set and descriptor set, the method with good classification performance is obtained.

In Tables A2–A6 of the Appendix A, classification results of five descriptor sets are
shown in detail. These results are obtained by five individual classifiers and seven fusion
methods used on four molecular sets.

2.1.1. The Impact of Molecular Sets

Comparing all results from different molecular sets, the highest Q value, 0.862, is
achieved in molecular set S1. The highest kappa coefficient, 0.81, is obtained in molecular
set S3. For the overall results in the five tables, better classification results appear more
frequently in molecular set S1 and S4. The results from data with Mordred descriptors and
Morgan fingerprints processed by RF method are shown in Figure 1, with (a) classification
performance on Mordred descriptor set and (b) classification performance on Morgan
fingerprint set. When the descriptor set is Mordred descriptors, it can be observed that the
highest Q value is obtained based on S1, and same is true for the largest kappa coefficient.
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When Morgan fingerprints serve as the descriptor set, RF method performs better on S4
with the fewest number of drug molecules, as shown in Figure 1.
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from Morgan fingerprint set.

It can be noticed that the classification performances of RF are different for the studied
data sets. To investigate the root cause for such difference, the content of each data set is not
identical from the very beginning, as can be seen in Section 3.1.3. Each data set is constructed
by checking multifaceted drug information, such as therapeutic effect, mechanism of action,
and phase. Four data sets including different drug molecules are introduced in Section 3.1.3.
It can be observed that not all features can be captured effectively for given descriptors,
leading to different performance on data sets. On the other hand, the numbers for each
drug category are uneven, which could be another reason for the performance difference.
This suggests that a better descriptor is important for the structural characterization of
drugs. It is also noticeable that molecular sets with better results are inconsistent with two
descriptors, which will be discussed in the next section.

2.1.2. The Impact of Descriptor Sets

Comparing the results from different descriptor sets, better classification performance
can be achieved by combinatorial descriptors in most cases. Molecular set S4 is investigated
by single ABT and the classification model fused from RF, SVM, and LR. Correspond-
ing results are shown in Figure 2, where Q and kappa coefficient based on five different
descriptor sets can be observed in Figure 2a,b, respectively. Furthermore, aiming at six
types of descriptor groups, descriptor information included in five descriptor sets is dis-
played in Figure 3. Among these groups, “atom-type counts” and “substructure fragments”
are representation for zero-dimensional and one-dimensional structure information, re-
spectively, and the remaining four types of descriptor groups are all representation for
two-dimensional structure information. Values on the axis for each descriptor represent
the number of this type of descriptor in the descriptor set.

Comparing three descriptor sets with only binary value, i.e., MACCS, topological, and
Morgan fingerprint data, the results obtained by combinatorial and Mordred descriptors
are better, which is attributed to different representation of molecular structure. As shown
in Figure 3, there are distinct differences between the two descriptor sets and the other three
fingerprint sets in terms of six major types of descriptor groups. The three fingerprint sets
are calculated by different principles but all come from digital transformation of molecular
one-dimensional structure information, such as substructure fragments. In contrast, the
two types of descriptor data composed of real numbers not only contain one-dimensional
structure information but also include two-dimensional information, such as topological
and connectivity descriptors.
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Contrasting classification results of combinatorial and Mordred descriptor sets, al-
though the number of descriptors contained in the former is 755 and less than that of the
latter, 1127, the Q value and kappa coefficient achieved by the former are both higher
than those of the latter. That is because the former is acquired by combining descriptors
in ChemoPy and RDKit databases, including one-dimensional information in addition to
two-dimensional information, compared with the latter. On the other hand, it is possible for
the Mordred descriptor set that there is redundant information among descriptors, which
influences extraction of structure information so as to degrade classification performance.
In a word, comparing with other descriptor sets, combinatorial descriptor set is more
appropriate to extract information from the collected drug molecular structure to obtain
better classification performance. The detailed computation procedure for five descriptor
sets is presented in Section 3.1.2.

2.1.3. The Impact of Classification Models

According to results in Tables A2–A6 of the Appendix A, the fusion method obtained
by RF and SVM performs better than single classifiers and other fusion models. The
implementation principles and types of fusion methods are introduced in Section 3.2.2.
The classification results by five single classifiers and seven fusion methods based on
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combinatorial descriptor data from molecular set S4 are displayed in Figure 4. The Q value
and kappa coefficient are represented by different colored bars in the graph. Comparing all
results by single classifiers, it can be found that better classification performance is achieved
through SVM. In particular, classification performance obtained by LDA is far poorer than
that of other classifiers, indicating that the correlation is not a simple linear relationship.
Comparing carefully all fusion results, it can be observed that the DS12 method, fusing RF
and SVM, performs better than other fusion methods and outperforms individual SVM.
However, there are four fusion methods whose results are not better than that of single
SVM, such as the fusion method based on SVM and LR, by which the obtained Q value
and kappa coefficient are both lower than SVM by nearly 0.01.
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Regarding fusion method, theoretically, the greater the number of fusion classifiers, the
better the classification results. In fact, the result obtained by fusion method is limited by the
performance of each classifier and could be worse than that of all classifiers due to evidence
conflict. The result achieved by DS12345, fusing five classifiers, is far poorer than that of
DS1235 fusing four classifiers, owing to the poor performance of LDA. Comparing results
of DS12, DS123, and DS1235, due to the poor performance of LR, result obtained by DS123
is worse than that of DS12, but the result obtained by DS1235 is not as bad as that of DS123,
although the performance of ABT is even poorer. As mentioned in Reference [27], the
relationship between individual classifiers has not been considered in fusion method, while
in Reference [28], only great conflicts between single classifiers are processed according to
an improved method. This may be explained by the fact that there are conflicts between the
result of LR and the two results of RF and SVM, while there is no conflict between the result
of ABT and the three results of LR, RF, and SVM. Additionally, concerning certain cases
where LR performs better than RF, as shown in Table A3 of the Appendix A, the results
still show that the method fusing RF and SVM outperforms that of LR and SVM. This
indicates that there is conflict between the result by LR and the result by SVM. Moreover, it
demonstrates that RF is applicable to deal with uneven data sets, which makes results of
RF and SVM complement each other to achieve better classification performance.

Based on the discussion in Section 2.1, the highest Q and K are obtained based on
combinatorial descriptors, which are 0.862 and 0.81, respectively. The obtained standard
deviation of kappa index is also the smallest, 0.028, as shown in Table A2 of the Appendix A.
The result illustrates the applicability and reliability of combinatorial descriptors in predict-
ing unknown compounds. Although a reliable prediction model has been obtained by KS
method, the imbalance in molecular sets does have an influence, so the classification results
based on different molecular sets cannot be more objectively measured and compared.
Hence, according to the obtained results, the prediction performance of single SVM and
two fusion models are further verified by the external validation set.
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2.2. The Analysis on External Validation Set

In order to evaluate models more objectively, the diversity of the external validation
set should be ensured. Aiming at different categories of drug data, partial random data
are added into the external validation data set from S1, S2, S3, and S4. Seven classes of
single-role drugs, whose order is consistent with that of the collected molecular sets, and
all multi-role drugs are also contained in the final validation set, and their amounts are
7, 21, 26, 10, 5, 6, 2, and 10, respectively. The statistical mean obtained by running the
procedure three times is used as the prediction result for the external validation set. Based
on five descriptor data from four molecular sets, prediction results for external validation
molecules are shown in Table 1, which are all obtained by four classification methods that
perform better in Section 2.1.3. The prediction for the validation molecules is shown in
Appendix A Table A7.

Table 1. The number of correct predictions by fusion method in the external validation set.

Descriptor Sets S4 S3 S2 S1

Combinatorial descriptor 73 76 73 70
Mordred descriptor 74 74 75 72
MACCS fingerprint 70 74 74 71
Topological fingerprint 74 75 74 75
Morgan fingerprint 73 69 75 70

In terms of combinatorial descriptors, better prediction for validation molecules is
achieved with molecular set S3. For Mordred descriptor data, good classification for
the external validation set is implemented in molecular set S2. With regard to MACCS
fingerprints, the highest correct prediction number is obtained with molecular sets S2 and S3.
For topological fingerprints, the better prediction result is achieved with molecular sets S1
and S3. When Morgan fingerprints are used as descriptor data, better classification results
are obtained with molecular set S2. From these results, it can be found that the greatest
correct prediction number is achieved based on combinatorial descriptors. Moreover, the
result obtained based on descriptor data from molecular set S3 performs well in most cases,
and the prediction achieved by topological fingerprint data only performs well from S1.

To further conduct comparative analysis, better results, obtained by different descriptor
data and molecular sets, are displayed in Table 2. For both Mordred descriptor set and
topological fingerprint set, the results from molecular set S3 are listed in Table 2. Four
descriptor data calculated from molecular set S4 are all trained by DS12 method to predict
molecules in the validation set. The detailed prediction results for each class are shown
in Table 2. The correct prediction number of single-role drugs for different classes and the
correct prediction number of multi-role drugs are also included. By using combinatorial
descriptor data from molecular set S3 to train DS12 method, the highest correct prediction
number is obtained. However, it can be found that the correct prediction number of DS12
for antiarrhythmics is zero, indicating that prediction performance of DS12 is not balanced.
Comparing carefully the correct prediction rate of each class of single-role drugs, most
results are acceptable. From the aspect of whole prediction performance, four models with
better performance are bolded in the first column of Table 2. Based on them, two multi-role
drug molecules are taken as examples to further verify the four models, whose prediction
probabilities for each class are listed in Table 3.

These two drug molecules are rifampicin and celecoxib. Rifampicin, as an antibiotic,
has antitumor activity [29]. It is consistently correctly predicted as antibiotic by the four
models. Meanwhile, prediction for its second possible activity is also consistent with reality
for all four models. Celecoxib is used as an analgesic at first and then is used as an antitumor
agent because of its favorable antineoplastic properties. Furthermore, studies have verified
antiviral efficacy of celecoxib since 2013 [30–32]. From the prediction probabilities in Table 3,
it can be found that correct prediction for analgesic and antineoplastic activities of celecoxib
cannot be obtained by a single SVM. Prediction only for antiviral efficacy of celecoxib
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is incorrect for these two models based on topological fingerprints. It is worth noting
that celecoxib is considered more likely to be an antidiabetic drug, based on the result of
combinatorial descriptor set, instead of an antitumor and antiviral drug, which needs to be
further confirmed.

Table 2. The correct prediction for each class of drugs by several models. In first column, F1–F5 are
different descriptor data, and detailed information is shown in Table A1 of the Appendix A. The
seven classes of drugs are represented by C1, C2, C3, C4, C5, C6, and C7 in order. The same is true for
Table 4.

Models
Single-Role

Multi-role/10 Total/87C1/7 C2/21 C3/26 C4/10 C5/5 C6/6 C7/2 Total/77

F1—DS12 on S3 4 18 26 8 5 6 0 67 9 76
F1—DS12 on S4 4 16 25 8 4 5 2 64 7 71
F2—SVM on S2 4 16 26 6 5 6 2 65 10 75
F2—DS12 on S3 4 17 26 7 4 3 1 62 10 72
F2—DS12 on S4 4 14 25 8 5 5 2 63 10 73
F3—SVM on S3 4 15 26 7 5 5 2 64 10 74
F3—DS12 on S4 3 15 26 5 5 4 2 60 8 68
F4—DS123 on S3 5 16 25 6 5 6 2 65 10 75
F4—DS12 on S3 5 17 25 5 5 5 2 64 10 74
F4—DS12 on S4 4 16 26 5 5 5 2 63 10 73
F5—SVM on S2 6 13 26 4 3 4 0 56 9 65
F5—DS12 on S4 5 15 26 7 3 6 2 64 9 73

Table 3. The predicted probabilities for the four drugs.

Drugs Models
Classes

C1 C2 C3 C4 C5 C6 C7

Rifampicin F1—DS12 on S3 0 0.005 0.994 0 0 0 0
F2—SVM on S2 0.028 0.079 0.833 0.012 0.023 0.008 0.017
F4—DS123 on S3 0.002 0.005 0.991 0.001 0 0 0
F4—DS12 on S3 0 0.001 0.998 0 0 0 0

Celecoxib F1—DS12 on S3 0.395 0.1 0.003 0.046 0.008 0.447 0
F2—SVM on S2 0.387 0.08 0.15 0.117 0.025 0.236 0.005
F4—DS123 on S3 0.535 0.321 0.053 0.038 0.009 0.041 0.002
F4—DS12 on S3 0.609 0.318 0.021 0.012 0.004 0.035 0.001

Table 4. Drug molecules included in four molecular sets.

Drug Classes Molecular Set S1 Molecular Set S2 Molecular Set S3 Molecular Set S4

Analgesics 228 209 183 164
Antineoplastic 211 209 189 165
Antibacterial drugs 296 294 285 261
Antiviral drugs 108 108 102 99
Antifungals 64 64 57 54
Antidiabetic drugs 70 70 66 63
Antiarrhythmics 42 42 39 38
Total 1019 996 921 844

In summary, drug information included in molecular sets S4 and S3 is more helpful to
establish correlation between drug molecular structure and clinical therapeutic effect, which
provides more reliable prediction for unknown drugs. The combinatorial descriptor and
topological fingerprint are favorable for extracting structure information, which facilitates
the mining of the correlation. Furthermore, compared with single classifier, higher Q value
and kappa coefficient are obtained by fusion method, which is more suitable for predicting
the potential clinical therapeutic effect of unknown drugs.
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3. Materials and Methods

Analgesics, antineoplastic drugs, antibacterial drugs, antiviral drugs, antifungals,
antidiabetic drugs, and anti-arrhythmic drugs are taken as examples to conduct multi-
classification research on drugs. Section 3.1 details the collection of drug molecules and the
acquisition of drug data. The study procedure of classification, the basic theory, and the
fusion method that classification models depend on are introduced in Section 3.2.

3.1. Drug Collection and Corresponding Descriptor Data Set

After collecting drug molecular information, drug molecular structure is converted
into a form that can be recognized by computer by Python script PubChemPy (https:
//pypi.python.org/pypi/PubChemPy, accessed on 10 March 2022). Based on this form of
structure, five descriptor sets are calculated by embedding ChemoPy [33], Mordred [34],
and RDKit [35] packages into Python.

As mentioned above, all drugs can be considered as certain molecules or a collection of
molecules with certain structures. There are several available databases including known
drug information, such as commercial names, molecules, basic physical-chemical properties,
and structure descriptors, simplified molecular linear specifications (SMILES). Depending
on the area and focus of their developer, these databases may cover different drugs and
corresponding attributes, which are usually presented in different data formats. To include
drugs that are from more categories and described by more universal attributes, drugs
from three databases are collected and grouped into seven classes according to their actual
clinical therapeutic effects.

Many properties are quantitative expressions of molecular structural information,
which can be calculated by software or even just web applications [30–32]. Here, five
different types of description data are chosen to select the best one. The SMILES is often
used as input form for computational programs to calculate the descriptor data, which
include general information on molecular structure. Drug data analyzed in this work are
detailed in the following section.

3.1.1. Drug Molecules

Drug molecules in seven categories are initially collected from World Health Organi-
zation official website and then are checked according to the drug information in KEGG [8],
DrugBank [9], and PubChem [36]. During the collection of drugs, all compounds with
therapeutic effects were included, such as prodrugs and active metabolites. The compre-
hensive coverage of drug molecular sets is ensured, so that more reliable prediction ability
is obtained. According to actual clinical therapeutic information, drug molecules belonging
to one class may be classified as another category or removed from a drug molecular set. It
can be found that drugs with the same molecular structure in different databases may be
named differently. In this case, the repeated ones are removed from the database.

3.1.2. Different Descriptors

Molecular digital representation is varied, including both experimental and computa-
tional properties. The computer-acquired descriptive properties are widely applied due
to their convenience and usability, such as molecular descriptors and molecular finger-
prints [37,38], and they are used to facilitate drug development [13,16]. Although there are
still many types of data for quantifying molecular structure, such as three-dimensional
descriptors and pharmacophore fingerprints, there are limitations to them, such as high
computational complexity and slow computational speed, which have a key impact on
drug screening. In order to achieve better representation of drug molecular structure as
soon as possible, five data sets quantifying molecular structure information from various
aspects are calculated and used as feature data to classify drugs to determine better de-
scription for drug structure. They can be calculated by programming software, as detailed
in the following.

https://pypi.python.org/pypi/PubChemPy
https://pypi.python.org/pypi/PubChemPy
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Two types of molecular descriptor sets, whose data are real numbers, are selected as
description data for drug molecules. Various descriptor groups are formed based on multi-
ple descriptors obtained by different calculation methods. The computation of multiple
descriptor groups has been implemented, and the relationships among them also have been
clearly shown [39]. Here, the combination of ChemoPy [33] and RDKit [35] descriptors is
chosen as a descriptor set. After removing repeated descriptors, the combinatorial descrip-
tor set can be obtained from these two databases. It contains 632 descriptors from ChemoPy
and 123 descriptors from RDKit. In addition, a Mordred descriptor group proposed by
Moriwaki et al. [34], including multiple sets of descriptors, is used as another descriptor
set. To ensure data is processable, a total of 1127 Mordred descriptors are reserved due to
the missing value of other descriptors. Two descriptor sets are calculated by embedding
ChemoPy, Mordred, and RDKit packages into Python.

Data for molecular fingerprints are all binary. Molecular fingerprints are diverse [40,41],
and each fingerprint is a binary vector with certain dimensions. There are three types of fin-
gerprints with fixed dimensions. Morgan fingerprints, MACCS fingerprints, and topological
fingerprints are selected as another three descriptor sets to acquire data for drug molecules.
Especially for Morgan fingerprints, when the selected circle radius is different, the vector di-
mension of the fingerprint is also different. Here, the radius is set to 4, and a 1024-dimensional
Morgan fingerprints is obtained. They are all generated by combining RDKit database and
Python program.

3.1.3. Final Molecular Set

When calculating the above descriptor data, it is found that partial molecular structure
information cannot be converted into complete and processable data, such as mixtures,
ionic compounds, and biological macromolecules. Molecules with molar mass more than
1800 are unsuitable to train models with other drug molecules, because their values are
much higher than others. Drug molecules that match the above conditions are removed.

Although five types of descriptor sets cannot distinguish isomers, they have been
widely used in drug screening [13–16]. Furthermore, they do not perform any worse than
the data for describing three-dimensional structure [42], whose computation procedure
are complex and computation time are long. Therefore, it is suitable to classify drugs
through the calculated data, and isomer pairs are removed during the checking phase of
drug molecule collection.

Additionally, some drugs for the treatment of certain diseases also have other thera-
peutic uses, as shown in References [43,44]. To obtain more explicit classification results,
only molecules with a single therapeutic purpose are kept in the analysis data set, and
drugs with multiple therapeutic effects are collected into an external validation set. After
removing some drugs in the early stage, an original molecular set S1 containing 1019 drug
molecules is obtained.

In order to collect as many drug molecules as possible with a certain therapeutic effect,
namely analgesic effect, analgesics and several anesthetics and antipsychotics that achieve
analgesic effects only because of local anesthesia or muscle relaxation are all contained in
molecular set S1. When carefully checking therapeutic use and mechanism, it was found
that several drugs are just healthcare products or adjuvants, such as radiation adjuvants.
Therapeutic effects of certain drugs also cannot be confirmed according to articles on
PubMed website [45]. Additionally, a molecular set that is appropriate to be used as
basic data set for identifying unknown drugs is currently unable to be determined. It is
necessary to check drug-relevant information and remove some drug molecules to obtain a
molecular set that is more beneficial to discovering the relationship between structure and
properties. Database information and literature information from PubMed are collected
and checked, including ATC code, research phase, target, therapeutic effect, mechanism of
action, and applicable subjects. The original data set is screened layer by layer according to
concrete characteristics of drug molecules, and then four molecular sets containing different
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numbers of drugs are obtained. The detailed process of acquiring four different molecular
sets is as follows.

After removing 19 drugs with weak relief for pain and sedative effect or auxiliary,
2 antineoplastic drugs with only healthcare effect and inhibiting DNA repair, and 2 antiviral
drugs in S1, the molecular set S2 containing 996 drugs is obtained. Based on S2, drugs with
potential therapeutic uses are removed, and then the molecular set S3 containing 921 drugs
is obtained. Based on S3, drugs without known mechanism, still used as veterinary drugs
or just in the clinical trial phase are removed, and thus molecular set S4 with 844 drugs
is obtained. The acquisition process of the four molecular sets is illustrated in Figure 5.
While the seven types of drugs are collected, drug molecules with two or even three
therapeutic uses are identified and stored. Number of drugs included in four molecular
sets is summarized in Table 4. Additionally, an external validation molecular set containing
37 drugs is obtained. For all collected molecules, their name and category can be seen in
Supplementary Tables S1 and S2.
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3.2. Methods for Selection, Combination, and Evaluation

The prediction model is established based on classification method. The performance
of the final model depends on the applied classifier and its parameter setting. For construct-
ing models with better classification performance, multiple classifiers are applied to obtain
classification models based on DS fusion method. For objective comparison and selection,
suitable methods and indicators should be used to evaluate different models. Digitalized
descriptors are generated for further machine learning algorithms.

The whole classification procedure is accomplished with Python. Five different types
of classifiers are utilized to extract drug information by Python program and scikit-learn
packages [46]. They have been described in detail in Reference [47].

3.2.1. Classification Algorithms

In order to achieve multi-classification and ensure interpretability of results, strategy
for multi-classification based on binary classifiers is applied. There are two ways to proceed
according to the strategy, namely “one vs. rest” (“OvR”) and “one vs. one” (“OvO”).
Considering the computational cost and subsequent fusion processing issues, “OvR” is
adopted here. Five algorithms are introduced as follows.

RF had been widely used in classification since the beginning of the 21st century. The
number of decision trees for RF, as a key parameter, has an key impact on the performance
of the algorithm. In order to increase the speed of optimization and computation, the
adjustment range of the parameter is set from 10 to 100 and incremented by 10. As another
parameter that needs to be adjusted, the split criterion can be set as Gini or entropy.

ABT, similar to RF, is also a tree-based classifier. Different from RF, which is conducted
by directly adding and averaging the results of a large number of trees, ABT is trained by
gradually emphasizing the weight of those samples that are difficult to separate based on



Molecules 2022, 27, 4807 12 of 21

the classification of each tree. The changing range of basic classifier number is the same as
that in RF.

SVM is a classifier defined in feature space, which had been widely used in statistical
classification and regression analysis. A hyperplane was constructed by SVM to separate
the training samples. It was employed to process linear and non-linear data through the
kernel function, and its classification accuracy is closely related to the kernel function. The
penalty parameter C is an important parameter, and its range is 1 to 10. After previous
attempts, the polynomial and the radial basis function kernel are more suitable for the
obtained data set. In grid search, the kernel function varies between the above two kernels.

As a standard two-classification method, LR was adopted to realize classification by
similar regression, i.e., to calculate the relationship between the conditional probability
of each sample feature vector and the set threshold to determine the sample class. Its
performance depends on whether the data conform to the predetermined model. Since
“OvR” strategy is applied to achieve multi-classification, “liblinear” is chosen as the solver
according to the preliminary attempts. As the key parameter, the value of penalty factor C
varies between 0.0001, 0.001, 0.01, 0.1, 1, and 10.

LDA was an extension of Fisher discriminant analysis. It was a weighted linear
combination between a set of feature variables. This set was obtained by training data
under the condition that the variance within classes was as small as possible and the
variance between classes was as large as possible. It is used as a decision function to
recognize the category to which the sample belongs. Default parameters for LDA are
adopted in this work [46].

3.2.2. Fusion Methods

After the model framework is established, the best classification model should be
selected by validation methods. The division of data sets affects the prediction results of
the model for the test set and will eventually affect the choice of the best model. As is
well known, a single classifier is usually suitable to a certain scope. Multiple classifiers
are applied to the obtained data set. Moreover, the collected data set is multi-category and
unbalanced, and it is more difficult to obtain proper division for the data set. To achieve
better classification performance, many fusion methods have been proposed. Classifier
fusion methods are different in architectures and ways of fusion, and the DS fusion method
is applied in this study. The DS fusion method was introduced and developed in the work
of Dempster and Shafer [48,49]. This theory has been applied in many fields, such as fault
diagnosis, and there are also examples in the field of classification [27,28].

There are multiple situations for the categories of collected sample data, which are
represented by a limited nonempty set Θ. Enumerating the possible categories of data sam-
ple, Θ = {θ1, θ2, · · · , θc } can be obtained, where c represents the number of hypotheses. In
DS theory, Θ is called the discrimination frame, and 2Θ represents a power set containing
2c cases, namely 2Θ = {φ, {θ1}, · · · , {θc}, {θ1, θ2}, · · · , Θ}. Corresponding mass function
m can be obtained for each case in the set Θ, which is also called basic probability assign-
ment (BPA) ranging from 0 to 1. Under this assumption, BPA should meet the following
two conditions:

m(∅) = 0 (1)

∑
A∈2Θ

m(A) = 1 (2)

where m(A) is the BPA of a certain situation and is also the confidence of its occurrence.
Therefore, when BPA is 0, the confidence of a certain situation is 0, and the opposite is 1.
According to Dempster’s combination rule in [39], the confidence level (in some case A)
obtained by fusion of two pieces of evidence is calculated as follows:

m(A) =

{
0 A = ∅

1
1−Kc

∑
B∩C=A

m1(B)m2(C) A 6= ∅ (3)
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where Kc represents the conflict between the confidence of the two evidences. The calcula-
tion formula is in Equation (4):

Kc = ∑
B∩C=∅

m1(B)m2(C) (4)

where B and C indicate possible situations under the evidence system.
When the number of evidences exceeds 2, the fusion is achieved according to Demp-

ster’s combination rule, and the calculation rule is as follows:

m = m1 ⊕ m2 ⊕ · · · ⊕mn = (((m1 ⊕m2)⊕ · · ·)⊕mn) (5)

where
⊕

represents an operation that can fuse two classification results. As explained in
References [27,28], DS evidence fusion is not applicable when there are conflicts between
evidences. Since the Kc value between the evidences reflects the degree of conflict between
the evidences, for the case where Kc is too large, DS fusion should be replaced by other
methods. In Reference [28], a different fusion method is proposed afterwards for the case
of Kc > 0.95. For this situation, the method mentioned in Reference [28] is also applied in
this paper.

All fusion models applied in Section 3 are shown in Table A1 of the Appendix A.

3.2.3. The Evaluation of Classification Performance

An appropriate model evaluation method is the key to discovering models with very
good classification performance. It compares performance of different methods based on
test sets obtained by dividing data sets. There are many methods for evaluating models
now, such as common leave-one-out and bootstrapping. However, these methods are more
suitable for small and balanced data sets, which are inconsistent with the characteristics of
the collected data sets. In terms of the data set, leave-one-out has high computing cost, and
bootstrapping does not make full use of data information.

To get objective statistical results under the influence of a data set in random sampling,
the KS method was proposed first by Kennard and Stone [26] and applied and compared
in research by Martin et al. [50]. The KS method is selected as the division method of data
sets in this study. The training set and the test set are obtained based on difference between
samples, so that the model obtained by means of the test set with diverse samples can
achieve a more reasonable and reliable classification prediction for unknown drugs.

Because the difference is measured by distance between samples in KS method, the
data need to first be standardized. Based on normalized training set, key parameters for
each classifier are determined by grid search method that is implemented by five-fold
cross-validation. Then, molecules in the test set are classified by classification methods
with the optimized parameters. For comparability of methods and objectivity of results,
KS division is repeated 100 times to obtain statistical results. Moreover, the model for
better and more robust classification can be obtained by comparing the results of different
classification methods.

In addition, it is also important for model evaluation to select appropriate evaluation
indicators, which will determine the reliability of a model. As one of the evaluation
indicators for classification models, prediction accuracy (Q) is most commonly used and
most intuitive. It can be calculated by Equation (6).

Q =
the number o f sample predicted correctly

the total number o f sample
(6)

Compared with various evaluation indicators of two-class classification, there are
fewer indicators that can be used for multi-class. There is currently a metric, Cohen’s
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kappa coefficient (K), which has been widely used to evaluate performance of two-class
and multi-class models. K is calculated as follows:

K =
Q− pe

1− pe
(7)

where pe is quotient obtained by dividing the sum of the products for each class by the
square of the number of samples, and the product refers to the number of samples that
actually belong to a class times the number of samples predicted to be in the class. The
range of K is from −1 to 1. The larger its value, the more consistent the predicted result is
with the real situation.

3.2.4. Study Process of Classifying Drugs

The overall flow of this study is shown in Figure 6. Different data sets compared
in Figure 6a come from the collocation and combination of different molecular sets and
different descriptor sets in the study. The different types of molecular sets and descriptor
sets and all applied classification models can be found in Table A1 of the Appendix A, and
the details of the classification process are as follows.
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An example for model selection is obtained by randomly choosing a molecular set
and a descriptor set from the first two columns of Table A1. Their combination with all the
classification models in the third column of Table A1 is used to implement classification
procedures as shown in Figure 6a. The molecular set is input for calculating the descriptors
set. The calculated descriptor set is grouped into training set and test set by KS method. The
training set is used to tune parameters of the classification algorithms and fit classification
models. Then, the test set is classified by fitted models, and their results are evaluated and
saved. This process, from grouping to evaluation, is run 100 times to obtain a statistical
average result from different models. By comparing classification indicators, the better
model based on chosen molecular set and descriptor set will be discovered. In this way,
the better models for each combination of molecular set and descriptor set are selected to
identify the molecules of the external validation set.
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The whole prediction procedure for external validation is displayed in Figure 6b.
Similarly, an example for external validation is obtained by randomly choosing a molecular
set and a descriptor set in Table A1. Classification models are selected from those that
perform well in Figure 6a. The chosen molecular set and molecular set for external valida-
tion are used as the input for calculating the descriptor set at the same time. In order to
ensure the class diversity of final validation molecules, descriptor data of partial molecules
are randomly selected for the external validation descriptor set from the descriptor set
calculated based on chosen molecular set. Afterwards, the rest of the descriptor set is
utilized to tune parameters of the classification algorithm and fit the classification models.
The renewed external validation descriptor set is predicted by the fitted model, and the
prediction probabilities of different models for it are saved. Differing from the study flow
in (a), this procedure is run 3 times to obtain a final statistical predicted probability result.

4. Conclusions

Compared with the traditional virtual screening of a single class of drugs, virtual
screening based on multiple classes of drugs not only enhances the screening efficiency
but also discovers multiple possible uses of a drug at one time. In this study, seven
classes of drugs are taken as examples to obtain enough drug structure information from
various databases. Structural information on drug molecules can be converted into feature
information such as descriptors and fingerprints based on SMILES. Then, a DS fusion model
based on five classifiers is proposed to make full use of descriptor data for good prediction
performance. Subsequently, by comparing the classification results, better methods for
classifying multi-class drugs are found, including the drug structure description method
and the machine learning method. Based on the above results and discussions, it is found
that combinatorial descriptor data is more appropriate to extract drug information to obtain
better classification performance. Compared to the single classification methods, SVM
performed better in multi-class drugs classification, indicating that there is a nonlinear
correlation between drug molecular structure and treatment effect. Additionally, the
established fusion methods outperform the single machine learning methods, especially the
DS12 method fusing RF and SVM. The final results suggest that the combination descriptor
data and DS12 classification method can make a better prediction for multi-class drugs,
which is also verified by the results from the external verification set. This study provides a
methodological basis for simultaneous screening of multi-class drugs and a new direction
for speeding up virtual screening.

Although a good classification result is obtained, the study is only focused on discov-
ering correlation between a drug’s therapeutic effect and its two-dimensional structure,
ignoring the effect of drug isomers on therapeutic effects, which needs further research.
In addition, the current classification of drug therapeutic uses is rough. In fact, there are
far more than seven classes of real drugs, and each class can be further subdivided. These
problems can be gradually explored and solved through in-depth research, such as adding
a non-drug class and further expanding the drug classes.
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Appendix A

Drug molecular sets, descriptor sets, and classification methods that are used in this study
are sorted in Table A1. In terms of five different descriptor data, classification results obtained
by twelve different methods for four molecular sets are shown in Tables A2–A6, respectively.

Table A1. Different classes of molecule sets, descriptor sets, and classification methods.

Molecule Sets Descriptor Sets Classification Methods

S1 with 1019 molecules Combinatorial descriptors (F1) RF (1)
S2 with 996 molecules Mordred descriptors (F2) SVM (2)
S3 with 921 molecules MACCS fingerprints (F3) LR (3)
S4 with 844 molecules Topological fingerprints (F4) LDA (4)

Morgan fingerprints (F5) ABT (5)
Fusion of RF and SVM (DS12)
Fusion of RF and LR (DS13)
Fusion of SVM and LR (DS23)
Fusion of RF, SVM, and LR (DS123)
Fusion of RF, SVM, LR, and LDA (DS1234)
Fusion of RF, SVM, LR, and ABT (DS1235)
Fusion of five single classifiers (DS12345)

Table A2. Performance based on combinatorial descriptor data. The results are displayed as the
mean plus or minus the standard deviation. The same is true for Tables A3–A6.

Indicators Algorithms S4 S3 S2 S1

Q

RF 0.824 ± 0.03 0.834 ± 0.023 0.828 ± 0.026 0.832 ± 0.027
SVM 0.849 ± 0.025 0.856 ± 0.022 0.852 ± 0.021 0.857 ± 0.024
LR 0.808 ± 0.031 0.811 ± 0.025 0.808 ± 0.025 0.811 ± 0.027

LDA 0.693 ± 0.029 0.736 ± 0.03 0.751 ± 0.027 0.758 ± 0.029
ABT 0.803 ± 0.03 0.812 ± 0.03 0.807 ± 0.027 0.808 ± 0.027
DS12 0.854 ± 0.025 0.861 ± 0.021 0.858 ± 0.023 0.862 ± 0.025
DS13 0.833 ± 0.025 0.843 ± 0.023 0.837 ± 0.023 0.842 ± 0.023
DS23 0.843 ± 0.026 0.851 ± 0.021 0.845 ± 0.025 0.847 ± 0.024
DS123 0.851 ± 0.024 0.858 ± 0.021 0.853 ± 0.022 0.858 ± 0.024

DS1234 0.794 ± 0.028 0.808 ± 0.024 0.813 ± 0.024 0.823 ± 0.027
DS1235 0.851 ± 0.024 0.859 ± 0.021 0.853 ± 0.022 0.858 ± 0.024
DS12345 0.834 ± 0.024 0.84 ± 0.022 0.84 ± 0.022 0.847 ± 0.023

K

RF 0.761 ± 0.04 0.772 ± 0.03 0.761 ± 0.035 0.763 ± 0.037
SVM 0.797 ± 0.032 0.804 ± 0.029 0.798 ± 0.029 0.802 ± 0.033
LR 0.743 ± 0.04 0.744 ± 0.032 0.739 ± 0.033 0.74 ± 0.036

LDA 0.599 ± 0.037 0.649 ± 0.038 0.667 ± 0.035 0.673 ± 0.039
ABT 0.736 ± 0.039 0.746 ± 0.039 0.737 ± 0.035 0.736 ± 0.036
DS12 0.803 ± 0.033 0.81 ± 0.028 0.805 ± 0.031 0.808 ± 0.035
DS13 0.775 ± 0.032 0.786 ± 0.03 0.776 ± 0.032 0.78 ± 0.032
DS23 0.789 ± 0.033 0.797 ± 0.028 0.789 ± 0.033 0.789 ± 0.033
DS123 0.799 ± 0.032 0.807 ± 0.028 0.799 ± 0.03 0.802 ± 0.033

DS1234 0.725 ± 0.035 0.741 ± 0.031 0.746 ± 0.032 0.756 ± 0.036
DS1235 0.799 ± 0.031 0.808 ± 0.029 0.799 ± 0.03 0.803 ± 0.033
DS12345 0.777 ± 0.031 0.782 ± 0.029 0.781 ± 0.029 0.787 ± 0.032

https://www.kegg.jp/
https://go.drugbank.com/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Table A3. Performance based on Mordred descriptor data.

Indicators Algorithms S4 S3 S2 S1

Q

RF 0.807 ± 0.027 0.818 ± 0.025 0.816 ± 0.03 0.823 ± 0.025
SVM 0.841 ± 0.024 0.852 ± 0.023 0.847 ± 0.025 0.853 ± 0.021
LR 0.811 ± 0.024 0.82 ± 0.024 0.811 ± 0.026 0.818 ± 0.024

LDA 0.555 ± 0.045 0.609 ± 0.043 0.637 ± 0.033 0.656 ± 0.031
ABT 0.775 ± 0.032 0.781 ± 0.03 0.777 ± 0.028 0.784 ± 0.029
DS12 0.843 ± 0.025 0.855 ± 0.024 0.85 ± 0.025 0.857 ± 0.023
DS13 0.831 ± 0.024 0.841 ± 0.025 0.834 ± 0.026 0.845 ± 0.024
DS23 0.834 ± 0.021 0.844 ± 0.023 0.839 ± 0.025 0.846 ± 0.022
DS123 0.843 ± 0.023 0.851 ± 0.024 0.845 ± 0.027 0.855 ± 0.022

DS1234 0.769 ± 0.031 0.779 ± 0.033 0.781 ± 0.031 0.791 ± 0.028
DS1235 0.844 ± 0.023 0.851 ± 0.023 0.846 ± 0.027 0.855 ± 0.022

DS12345 0.828 ± 0.025 0.833 ± 0.027 0.83 ± 0.027 0.841 ± 0.024

K

RF 0.74 ± 0.035 0.752 ± 0.033 0.747 ± 0.039 0.754 ± 0.034
SVM 0.787 ± 0.031 0.8 ± 0.03 0.791 ± 0.033 0.796 ± 0.029
LR 0.748 ± 0.031 0.757 ± 0.032 0.744 ± 0.033 0.751 ± 0.031

LDA 0.435 ± 0.054 0.495 ± 0.052 0.527 ± 0.039 0.548 ± 0.039
ABT 0.701 ± 0.041 0.706 ± 0.04 0.699 ± 0.036 0.705 ± 0.038
DS12 0.789 ± 0.033 0.804 ± 0.031 0.794 ± 0.033 0.801 ± 0.03
DS13 0.774 ± 0.031 0.784 ± 0.033 0.774 ± 0.034 0.786 ± 0.032
DS23 0.779 ± 0.027 0.789 ± 0.031 0.781 ± 0.033 0.789 ± 0.03
DS123 0.79 ± 0.03 0.798 ± 0.031 0.789 ± 0.035 0.799 ± 0.029

DS1234 0.694 ± 0.039 0.705 ± 0.043 0.705 ± 0.04 0.716 ± 0.036
DS1235 0.791 ± 0.03 0.798 ± 0.031 0.789 ± 0.036 0.8 ± 0.029

DS12345 0.77 ± 0.033 0.775 ± 0.037 0.77 ± 0.035 0.781 ± 0.033

Table A4. Performance based on MACCS fingerprint data.

Indicators Algorithms S4 S3 S2 S1

Q

RF 0.812 ± 0.026 0.816 ± 0.027 0.81 ± 0.023 0.819 ± 0.022
SVM 0.807 ± 0.027 0.808 ± 0.025 0.806 ± 0.026 0.815 ± 0.023
LR 0.716 ± 0.031 0.722 ± 0.029 0.718 ± 0.026 0.727 ± 0.027

LDA 0.711 ± 0.033 0.719 ± 0.029 0.715 ± 0.025 0.727 ± 0.027
ABT 0.691 ± 0.034 0.689 ± 0.034 0.673 ± 0.027 0.686 ± 0.028
DS12 0.819 ± 0.029 0.819 ± 0.026 0.819 ± 0.023 0.822 ± 0.022
DS13 0.78 ± 0.029 0.787 ± 0.027 0.785 ± 0.026 0.793 ± 0.025
DS23 0.791 ± 0.032 0.791 ± 0.027 0.789 ± 0.027 0.8 ± 0.024
DS123 0.806 ± 0.03 0.807 ± 0.027 0.806 ± 0.027 0.812 ± 0.022

DS1234 0.774 ± 0.03 0.78 ± 0.025 0.78 ± 0.023 0.79 ± 0.025
DS1235 0.806 ± 0.029 0.806 ± 0.027 0.805 ± 0.027 0.811 ± 0.022

DS12345 0.774 ± 0.03 0.78 ± 0.025 0.78 ± 0.024 0.79 ± 0.025

K

RF 0.75 ± 0.035 0.753 ± 0.036 0.742 ± 0.031 0.751 ± 0.029
SVM 0.745 ± 0.035 0.745 ± 0.032 0.739 ± 0.034 0.749 ± 0.03
LR 0.627 ± 0.04 0.632 ± 0.037 0.622 ± 0.034 0.631 ± 0.035

LDA 0.623 ± 0.041 0.63 ± 0.037 0.621 ± 0.033 0.633 ± 0.035
ABT 0.596 ± 0.042 0.59 ± 0.042 0.566 ± 0.035 0.579 ± 0.037
DS12 0.761 ± 0.038 0.759 ± 0.033 0.755 ± 0.031 0.758 ± 0.028
DS13 0.709 ± 0.038 0.716 ± 0.035 0.709 ± 0.034 0.717 ± 0.032
DS23 0.725 ± 0.041 0.723 ± 0.035 0.717 ± 0.036 0.728 ± 0.031
DS123 0.744 ± 0.038 0.742 ± 0.035 0.737 ± 0.035 0.743 ± 0.029

DS1234 0.703 ± 0.039 0.708 ± 0.032 0.703 ± 0.031 0.714 ± 0.032
DS1235 0.744 ± 0.038 0.742 ± 0.035 0.737 ± 0.035 0.743 ± 0.029

DS12345 0.703 ± 0.039 0.708 ± 0.032 0.703 ± 0.031 0.714 ± 0.032
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Table A5. Performance based on topological fingerprint data.

Indicators Algorithms S4 S3 S2 S1

Q

RF 0.813 ± 0.029 0.821 ± 0.029 0.819 ± 0.024 0.821 ± 0.029
SVM 0.837 ± 0.026 0.835 ± 0.029 0.827 ± 0.028 0.828 ± 0.028
LR 0.796 ± 0.027 0.804 ± 0.028 0.795 ± 0.025 0.797 ± 0.024

LDA 0.599 ± 0.064 0.588 ± 0.065 0.571 ± 0.059 0.577 ± 0.059
ABT 0.759 ± 0.034 0.761 ± 0.031 0.753 ± 0.03 0.755 ± 0.032
DS12 0.832 ± 0.027 0.834 ± 0.026 0.833 ± 0.025 0.834 ± 0.024
DS13 0.816 ± 0.027 0.825 ± 0.028 0.825 ± 0.025 0.827 ± 0.025
DS23 0.828 ± 0.029 0.825 ± 0.027 0.818 ± 0.026 0.822 ± 0.025

DS123 0.832 ± 0.026 0.829 ± 0.027 0.828 ± 0.025 0.829 ± 0.025
DS1234 0.774 ± 0.031 0.771 ± 0.032 0.751 ± 0.029 0.752 ± 0.029
DS1235 0.832 ± 0.027 0.829 ± 0.028 0.828 ± 0.025 0.829 ± 0.025

DS12345 0.794 ± 0.029 0.796 ± 0.03 0.777 ± 0.026 0.779 ± 0.027

K

RF 0.753 ± 0.037 0.761 ± 0.038 0.756 ± 0.033 0.759 ± 0.039
SVM 0.786 ± 0.034 0.781 ± 0.036 0.77 ± 0.037 0.771 ± 0.036
LR 0.736 ± 0.034 0.745 ± 0.035 0.731 ± 0.033 0.735 ± 0.032

LDA 0.5 ± 0.07 0.483 ± 0.072 0.459 ± 0.066 0.464 ± 0.067
ABT 0.687 ± 0.043 0.686 ± 0.039 0.676 ± 0.039 0.678 ± 0.04
DS12 0.78 ± 0.034 0.781 ± 0.034 0.778 ± 0.034 0.779 ± 0.032
DS13 0.76 ± 0.034 0.769 ± 0.036 0.768 ± 0.033 0.77 ± 0.032
DS23 0.776 ± 0.036 0.77 ± 0.034 0.76 ± 0.035 0.765 ± 0.032
DS123 0.78 ± 0.034 0.775 ± 0.034 0.772 ± 0.033 0.774 ± 0.032

DS1234 0.707 ± 0.039 0.7 ± 0.04 0.673 ± 0.038 0.674 ± 0.038
DS1235 0.78 ± 0.034 0.775 ± 0.035 0.772 ± 0.033 0.774 ± 0.032

DS12345 0.732 ± 0.036 0.733 ± 0.037 0.706 ± 0.035 0.709 ± 0.036

Table A6. Performance based on Morgan fingerprint data.

Indicators Algorithms S4 S3 S2 S1

Q

RF 0.781 ± 0.028 0.767 ± 0.026 0.765 ± 0.028 0.772 ± 0.029
SVM 0.775 ± 0.034 0.766 ± 0.029 0.763 ± 0.029 0.772 ± 0.031
LR 0.753 ± 0.03 0.73 ± 0.031 0.725 ± 0.026 0.732 ± 0.031

LDA 0.586 ± 0.051 0.563 ± 0.038 0.505 ± 0.041 0.513 ± 0.042
ABT 0.652 ± 0.035 0.645 ± 0.036 0.642 ± 0.034 0.646 ± 0.033
DS12 0.788 ± 0.029 0.774 ± 0.028 0.773 ± 0.028 0.78 ± 0.028
DS13 0.785 ± 0.026 0.767 ± 0.027 0.763 ± 0.026 0.773 ± 0.03
DS23 0.771 ± 0.033 0.76 ± 0.028 0.757 ± 0.029 0.764 ± 0.029
DS123 0.786 ± 0.03 0.771 ± 0.027 0.771 ± 0.027 0.778 ± 0.029

DS1234 0.696 ± 0.034 0.681 ± 0.032 0.66 ± 0.028 0.666 ± 0.035
DS1235 0.785 ± 0.03 0.77 ± 0.026 0.771 ± 0.028 0.777 ± 0.028

DS12345 0.725 ± 0.033 0.714 ± 0.032 0.699 ± 0.027 0.705 ± 0.03

K

RF 0.705 ± 0.036 0.683 ± 0.034 0.672 ± 0.038 0.676 ± 0.04
SVM 0.698 ± 0.044 0.683 ± 0.037 0.672 ± 0.038 0.679 ± 0.041
LR 0.671 ± 0.039 0.636 ± 0.04 0.622 ± 0.036 0.623 ± 0.044

LDA 0.466 ± 0.061 0.433 ± 0.047 0.363 ± 0.046 0.371 ± 0.049
ABT 0.545 ± 0.044 0.531 ± 0.043 0.522 ± 0.044 0.522 ± 0.044
DS12 0.716 ± 0.038 0.695 ± 0.036 0.687 ± 0.037 0.69 ± 0.038
DS13 0.711 ± 0.033 0.682 ± 0.036 0.67 ± 0.035 0.677 ± 0.041
DS23 0.697 ± 0.043 0.679 ± 0.036 0.668 ± 0.038 0.673 ± 0.04
DS123 0.713 ± 0.039 0.691 ± 0.035 0.683 ± 0.037 0.688 ± 0.038

DS1234 0.599 ± 0.043 0.576 ± 0.041 0.542 ± 0.034 0.547 ± 0.046
DS1235 0.713 ± 0.039 0.69 ± 0.034 0.684 ± 0.037 0.687 ± 0.038

DS12345 0.635 ± 0.041 0.618 ± 0.041 0.591 ± 0.033 0.596 ± 0.04



Molecules 2022, 27, 4807 19 of 21

Table A7. Prediction results of “F1—DS12 on S3”model for external validation set.

Drugs True Categories Predicted Categories

Oliceridine analgesics antineoplastic drugs
Cyproheptadine analgesics analgesics

Methylergometrine analgesics analgesics
Ubrogepant analgesics antineoplastic drugs
Lasmiditan analgesics antineoplastic drugs
Talaporfin antineoplastic drugs antineoplastic drugs

Avapritinib antineoplastic drugs antineoplastic drugs

Tazemetostat antineoplastic drugs antineoplastic drugs
Capmatinib antineoplastic drugs antineoplastic drugs

Lurbinectedin antineoplastic drugs antineoplastic drugs
Abiraterone acetate antineoplastic drugs antineoplastic drugs

Sotorasib antineoplastic drugs antineoplastic drugs
Tamoxifen antineoplastic drugs analgesics
Fulvestrant antineoplastic drugs antineoplastic drugs
Anastrozole antineoplastic drugs antiviral drugs

Letrozole antineoplastic drugs antifungals
Exemestane antineoplastic drugs antineoplastic drugs

Zanubrutinib antineoplastic drugs antineoplastic drugs
Apalutamide antineoplastic drugs antineoplastic drugs
Darolutamide antineoplastic drugs antineoplastic drugs

Glasdegib antineoplastic drugs antineoplastic drugs
Duvelisib antineoplastic drugs antineoplastic drugs
Tofacitinib antineoplastic drugs antineoplastic drugs

Enzalutamide antineoplastic drugs antineoplastic drugs
Berzosertib antineoplastic drugs antineoplastic drugs

Mobocertinib antineoplastic drugs antineoplastic drugs
Vebicorvir antiviral drugs antineoplastic drugs
Rifampicin antineoplastic drugs, antibacterial drugs antibacterial drugs
Cytarabine antineoplastic drugs, antiviral drugs antineoplastic drugs
Seliciclib antineoplastic drugs, antiviral drugs antineoplastic drugs
Celecoxib analgesics, antineoplastic drugs antidiabetic drugs

Pomalidomide analgesics, antineoplastic drugs analgesics
Acetylcysteine analgesics, antineoplastic drugs,

antiviral drugs
antineoplastic drugs

Salicylic acid analgesics, antineoplastic
drugs, antifungals

analgesics

Suxibuzone analgesics, antineoplastic drugs analgesics
Promethazine analgesics, antiviral drugs analgesics
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