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Abstract: Trans-resveratrol is a natural polyphenol showing numerous biological properties, espe-
cially anti-tumoral and antioxidant activity. Among numerous resveratrol derivatives, aza-stilbenes,
which bear an imine bound, show interesting biological activities. In the present study, we synthesized
a series of imine analogs of trans-resveratrol (seven aza-stilbenes) following an easy and low-cost
procedure of green chemistry. The toxicity of synthesized aza-stilbenes, which is currently unknown,
was evaluated on murine neuronal N2a cells, comparatively to trans-resveratrol, by considering: cell
density evaluated by staining with sulforhodamine 101; esterase activity, which is a criteria of cell
viability, by staining with fluorescein diacetate; and transmembrane mitochondrial potential, which
is known to decrease during cell death, by staining with DiOCg(3) using flow cytometry. In addition,
the antioxidant activity was quantified with the KRL (Kit Radicaux Libres) assay, the DPPH (2,2'-
diphenyl-1-picrylhydrazyl radical) assay and the FRAP (ferric reducing antioxidant power) assay. The
PAOT (Pouvoir Antioxidant Total) score was also used. The aza-stilbenes provide different cytotoxic
and antioxidant activities, which are either higher or lower than those of trans-resveratrol. Based on
their cytotoxic and antioxidant characteristics, all synthesized aza-stilbenes are distinguished from

trans-resveratrol.

Keywords: trans-resveratrol; aza-stilbenes synthesis; antioxidant activity; cytotoxicity; murine
neuronal N2a cells

1. Introduction

Polyphenolic compounds present in numerous plants exhibit a large variety of bio-
logical properties [1]. Among them, polyphenolic stilbenoids occupy an important place
in the field of health-beneficial molecules. In this series, the most-studied molecule is the
trans-resveratrol (RSV) or 3,4,5-trihydroxystilbene, a phytoalexin, present in numerous
edible plants such as peanuts, red fruit including grapes and therefore in red wine.

RSV is implied in the French paradox [2,3] and in the Mediterranean diet [4,5]. The
interest aroused by RSV since the 1990s [6] is especially due to its pleiotropic antifungal
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and therapeutic activities in the treatment of inflammatory diseases and some cancer.
Unfortunately, the weak bioavailability of RSV does not allow to consider it as a perfect
therapeutic molecule [7]. Indeed, RSV is rapidly metabolized and degraded [5]. Numerous
synthetic derivatives of RSV were elaborated to improve and target more of some biological
activities and to enhance their water solubility. Different ways to modify RSV while keeping
the initial stilbenoid skeleton were reported as transformation of phenolic functions into
ester or ether functions [8-10], or by addition of different substituents on the aromatic
rings [11-14], or by changing a phenyl with an aromatic heterocycle [15] or an aromatic
organometallic cycle [13]. Moreover, the C = C bond may be replaced with an isosteric
fragment as an aromatic heterocycle [16], or with a C = N bond or a N = N bond to provide
aza-stilbenes AZA-ST [17] and azo-stilbenes AZO-ST [18], respectively (Figure 1).

Aza-stilbenes AZA-ST Azo-stilbenes AZO-ST

Figure 1. Structure of trans-resveratrol RSV, aza-stilbenes AZA-ST and azo-stilbenes AZO-ST.

Recently, biological activities of these series of bio-isosteric resveratrol derivatives were
reviewed, especially the antioxidant properties of AZA-ST [19]. Regarding resveratrol,
the replacement of the C = C bond by the isosteric fragment C = N gives noteworthy
behaviors to these derivatives. In addition, the presence of one or more hydroxyl groups
and their position on aromatic cycles bring more or less strong antioxidant properties to aza-
stilbenes. In this report, seven aza-stilbenes 1la—1g were synthesized by using previously
described methods, which were improved by including criteria of green chemistry [20-25]
(Figure 2), and we evaluated their toxicity on murine neuronal N2a cells, comparatively to
trans-resveratrol, by taking into account the following parameters: cell density evaluated
by staining with sulforhodamine 101 (SR101); esterase activity, which is a criteria of cell
viability, by staining with fluorescein diacetate (FDA); transmembrane mitochondrial
potential (A¥m), which is known to decrease during cell death, by staining with 3,3'-
dihexyloxacarbocyanine lIodide (DiOCg4(3)) and flow cytometry; antioxidant activity was
quantified with the KRL (Kit Radicaux Libres) assay as previously described [26,27] as
well as with the DPPH (2,2'-diphenyl-1-picrylhydrazyl radical) assay [28] and the ferric
reducing antioxidant power FRAP (ferric reducing antioxidant power) assay [29,30]. The
PAOT (Pouvoir Antioxydant Total) score was also used [31].

Figure 2. Structure of aza-stilbenes 1a-1g.
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As it is assumed that aza-stilbenes would be less degraded than trans-resveratrol both
in vitro and in vivo, their use for therapeutic purposes could be considered, provided that
these molecules do not exhibit a greater toxicity than that of trans-resveratrol while having
retained the antioxidant properties of this one.

2. Results and Discussion
2.1. Chemistry

Aza-stilbenes may be easily synthesized by a one-step condensation reaction between
aromatic aldehydes and primary aromatic amines (Scheme 1). The commercially available
reactants often bear hydroxyl, methoxyl, methyl or halogenated atoms as substituents,
which makes it possible to obtain a large series of aza-stilbenes. The reaction between an
equimolar amount of aromatic aldehydes and primary aromatic amines may be carried out
in refluxing EtOH with a catalytic amount of triethylamine [20] or of HC1 [21,22]. However,
aza-stilbenes may be obtained by stirring an equimolar amount of aromatic aldehydes
and primary aromatic amines in a small volume of water as solvent at room temperature
during 0.5 to 3 h. The products are isolated by filtration with high yields [23]. In this report,
we chose this cost-effective method [24,25] that we have improved by introducing several
criteria of green chemistry.

R

/N
X

AZA-ST
a): refluxing EtOH with Et3N or HCI as catalyst b): in water at room temperature

Scheme 1. Synthetic methods for obtaining aza-stilbenes AZA-ST.

It has been shown that the antioxidant activities of trans-resveratrol (further defined
as resveratrol) are often due to an OH group in position 4’ [32,33]. Thus, to keep a com-
parison setting between resveratrol and aza-stilbenes, AZA-ST 1a-g were prepared from
4-hydroxyaniline (2) and different aromatic aldehydes 3a-g as described in Scheme 2. Com-
pounds 1a-1e have been reported by different authors [20,21]. Among them, Kotora et al.
have characterized aza-stilbenes 1a—d, especially by NMR spectroscopy [25]. In this re-
port, we have carried out 'H, COSY and NOESY NMR experiments of all compounds to
assign chemical shifts of aromatic protons as well as '3C, jmod, HSQC and HMBC NMR
experiments to highlight coupling between the 'H and '3C nucleus.

HO

N

—\ R
H0 HO—< >—N —
—_—
NHy + OHC@ Room Temperature N\ \ 7R
3a-g 4

1a-g
a: R =4-OH; b: R=3-OH; ¢: R =2-OH; d: R = 3,5-di-OH; e: R = 4-OMe; f: R = 4-Br; g: R = 2-Br

Scheme 2. Synthesis of AZA-ST 1a-g.

Towards stilbenes synthesis, preparation of AZA-ST may be carried out in a one-
step sustainable reaction. Indeed, synthesis of hydroxystilbenes derived from resveratrol
requires several steps, including protection and deprotection reactions [11,13]. In addition,
stilbenes are isolated under a mixture of both E and Z isomers, whose proportions depend
on the method used (Heck or Wittig method) [13]. In contrast, in the case of AZA-ST, only
the E isomers are isolated because the Z configuration is not thermally favored [34].
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2.2. Cytotoxicity

Some experiments were realized to determine and compare the cytotoxic activities of
aza-stilbenes 1a to 1g to resveratrol in a range of concentration from 1.5 to 100 uM (48 h).
In this range of concentration, resveratrol is known to have differentiating activities on
N2a cells at low concentrations (6.25 and 12.5 uM, 48 h) [35] and to induce cell death at
concentrations higher than 12.5 uM [36]. In the present study, three complementary assays
(SR101, FDA and DiOCg¢(3) assays) were used to determine the cytotoxic activities of aza-
stilbenes 1a to 1g comparatively to resveratrol. Among these different assays, SR101 gives
information on cell density, which reflects cell growth and cell adhesion. With the different
aza-stilbenes used, as well as with resveratrol, the decrease of fluorescence observed with
the SR101 assay corresponds to a decrease of cell density, which is relied with a loss of cell
adhesion associated with an increasing of floating cells (dead cells) in the culture medium
(Figure 3).

Based on the SR101 test, the cytotoxicity of aza-stilbenes and resveratrol were in the
following range of order: resveratrol > aza-stilbene 1g > aza-stilbene 1b > aza-stilbene 1d
> aza-stilbene 1c >aza-stilbene 1a > aza-stilbene 1d > aza-stilbene 1e (Figure 3). The FDA
assay indicates a loss of esterase activity, obtained in the same range of concentrations as
the loss of cell adhesion observed with SR101 (Figure 4). This supports that aza-stilbenes-
and resveratrol-induced cell death trigger plasma-membrane damages; this agrees with
the concentration-dependent decrease of esterase activity observed with the different
aza-stilbenes studied and with resveratrol.

As it is well established on different cell types, including N2a cells, that resveratrol
triggers mitochondrial dysfunctions in a concentration-dependent manner [36], the effects
of aza-stilbenes have been studied at the mitochondrial level and compared with those
of resveratrol. With the used of DiOCg4(3), which allows quantifying the A¥Ym, a more or
less pronounced loss of AYm was observed with the different aza-stilbenes since 12.5 uM
(Figure 5).

Our data show important differences of toxicity from one aza-stilbene to another. In
addition, based on the different cytotoxic assays used, the most cytotoxic aza-stilbenes are
aza-stilbene 1g and aza-stilbene 1b (Table 1). The toxicity of these two aza-stilbenes evocates
the toxicity observed with resveratrol, whereas the toxicities of the other aza-stilbenes (1a,
1c, 1d, 1e and 1f) are lower than with resveratrol.

Table 1. IC50 values of resveratrol and aza-stilbenes 1a to 1g obtained with the SR101, FDA et
DiOCg(3) assays. Sulforhodamine 101 (SR101, evaluation of cell density), fluorescein diacetate
(FDA, esterase activity /evaluation of cell viability) and DiOCg4(3) (measurement of transmembrane
mitochondrial potential (A¥m)). Aza-stilbenes were compared with resveratrol (trans-resveratrol).

Molecular Molecular Weight I1C50 uM IC50 uM IC50 uM
Formula (g/mol) (SR101) (FDA) (DiOC4(3))
Resveratrol C14H120; 228.24 ~125 6.25 < IC50 < 12.5 100
Aza-Stilbene la C13H11NO, 213.228 25 < 1C50 < 50 12.5 50 < IC50 < 100
Aza-Stilbene 1b C13H11NO, 213.228 12.5 12.5 <IC50 < 25 50 < IC50 < 100
Aza-Stilbene 1c Cy13H11NO, 213.228 25 12.5 < IC50 < 25 50 < IC50 < 100
Aza-Stilbene 1d C13H11NO; 229.228 25 6.25 50 < IC50 < 100
Aza-Stilbene 1le C13H19NOBr 227.254 25 < 1C50 < 50 6.25 <IC50 < 12.5 50 < IC50 < 100
Aza-Stilbene 1f C13H190NOBr 276.11 25 <1IC50 < 50 12.5 50 < IC50 < 100

Aza-Stilbenelg C13H1oNOBr 276.11 6.25 ~12.5 50 <IC50 <100
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Figure 3. Evaluation with the sulforhodamine 101 (SR101) assay of the effects of resveratrol and
aza-stilbenes 1a to 1g on cell density. N2a cells were incubated for 48 h with or without resveratrol
or aza-stilbenes 1a to 1g in a range of concentrations from 1.5 to 100 uM. Cell density evaluated
with SR101 reflects the quantity of adherent cells. The dotted red line makes it possible to evaluate
the value of the concentration or the range of concentrations reducing the number of adherent cells
by 50% (IC50). Data are the mean + SD of two independent experiments performed in triplicate.
Significance of the differences between control (untreated cells), Resveratrol (trans-resveratrol) or
aza-stilbenes 1a to 1g-treated cells; Student’s ¢ test: * p < 0.05 or less.
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Figure 4. Evaluation with the fluorescein diacetate (FDA) assay of the effects of resveratrol and

aza-stilbenes 1a to 1g on cell viability. N2a cells were incubated for 48 h with or without resveratrol

or aza-stilbenes 1a to 1g in a range of concentrations from 1.5 to 100 uM. The dotted red line makes

it possible to evaluate the value of the concentration, or the range of concentrations, reducing

cell viability by 50% (IC50). Data are the mean =+ SD of two independent experiments performed

in triplicate. Significance of the differences between control (untreated cells), Resveratrol (trans-

resveratrol) or aza-stilbenes 1a to 1g—treated cells; Student’s t test: * p < 0.05 or less.



Molecules 2022, 27,4713

7 of 16

. ™ Resveratrol (uM) 2 | Aza-Stilbene 1a (pM)  *
3 50 3

Esu-—————————— Em------___--'
z 5

g 8

5 E

#

SAP L P PSS

d""aﬁr'gb
TOm ) ! 70 i

2 o Aza-Stilbene 1b (uM) 2 o Aza-Stilbene 1c (pM) .
Eﬁu----------- Em—————————_—
B =

£ £

S :

# #

& @B b o &
ﬂﬁ'@fﬁ:‘:“f " 45.';" b"-':: ok L

O b
& &€
T ) 70+ )
2 Aza-Stilbene 1d (pM) = L. Aza-Stilbene 1e (uM) .
;5ﬂ4-----------l Eﬁﬂ-——————————
"; 40 , 5.
E 20~ . =
E—Zﬂ— . E
. Q
N all H :
ﬂ—-—#—? Ell '|D T T T T T o o
an ] iy B b6
t‘.%-f" Q‘f':\ "":,h':j:: i:'-c) \'\:': b ‘P \$ ﬂﬁ@{i:?ﬁ% N ﬁ'.\'ﬁ) hJ-L wk L 'ﬁ
& &E
Tl= . 70
= | Aza-Stilbene 1f (uM) 2 Aza-Stilbene 1g (uM) .
ésu----------- Em_——————————
= &
c £
: ;
: :

.
d%ﬂfm \")..,'.:"‘: F o’ v e & 4P g ""Jﬁ'."\") & L
& &

Figure 5. Flow cytometric evaluation of transmembrane mitochondrial potential (A¥Ym) with
DiOC6(3) under treatment with resveratrol and aza-stilbenes 1a to 1g. N2a cells were incubated for
48 h with or without resveratrol or aza-stilbenes 1a to 1g in a range of concentrations from 1.5 to
100 pM. Data are the mean =+ SD of two independent experiments performed in triplicate. Significance
of the differences between control (untreated cells), Resveratrol (trans-resveratrol) or aza-stilbenes 1a
to 1g-treated cells; Student’s ¢ test: * p < 0.05 or less.
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In addition, as resveratrol is also known for its antioxidant properties, the antioxidant
activities of aza-stilbenes 1a to 1g were determined with the KRL assay and compared
with resveratrol. All the aza-stilbenes considered have higher antioxidant activities than
resveratrol (Figure 6). The highest antioxidant activities were observed with aza-stilbenes
1d and 1b; the antioxidant activities of aza-stilbenes (1a, 1c, 1e, 1f and 1g) were similar and
lower (Figure 6).

* Resveratrol

Q
E =0 « Aza-Stilbene 1a
-
7]
2 200 « Aza-Stilbene 1b
Q
Eo P
8 E 150 » Aza-Stilbene 1c
E 8 » Aza-Stilbene 1d
s £ 100
@ + Aza-Stilbene 1e
3] 50 . Aza-Stilbene 1f
=

O 1 T T T T T ° Aza-Stilbene ].g

0 10 20 30 40 50
Concentration
(umol / L)

Figure 6. Quantification of the antioxidant activity of resveratrol and aza-stilbenes 1a to 1g with the
KRL test.

Data obtained with the KRL assay, which integrates the ability of an antioxidant
molecule to neutralize reactive oxygen species and to prevent the peroxidation of membrane
lipids, were associated with two conventional antioxidant assays: the DPPH (2,2’-diphenyl-
1-picrylhydrazyl radical) and the FRAP (ferric reducing antioxidant power) assays. The
data obtained with the DPPH assay, which only take in consideration the ability of an
antioxidant molecule to neutralize a radical, allow to distinguish the different aza-stilbenes
and the resveratrol. With the DPPH assay (at the exception of aza-stilbene 1c and 1g),
as observed with the KRL test, the aza-stilbenes have higher antioxidant activities than
resveratrol (Table 2).

Table 2. Antioxidant activities of resveratrol and aza-stilbenes.

Antioxidant Activities of Resveratrol and Aza-Stilbenes 1a-1g
Evaluated with Different Assays

Compounds KRL DPPH FRAP PAOT Score
(20 uM) (25 uM) (25 uM) (25 uM)

Resveratrol 72.81 £1.10 32.76 + 6.40 10.41 £ 0.05 19.39 £+ 1.06
Aza-stilbene 1la 129.74 + 3.92 35.07 = 1.75 10.52 £ 0.05 42.65 +0.78
Aza-stilbene 1b 141.29 + 4.65 38.84 +1.90 10.02 £ 0.04 34.11 +0.18
Aza-stilbene 1c 128.38 + 2.03 5.51 £2.25 12.32 £ 0.06 13.34 £ 0.54
Aza-stilbene 1d 154.63 + 3.50 47.84 +2.35 11.05 £ 0.07 56.49 + 0.59
Aza-stilbene le 116.06 + 4.40 48.55 4+ 2.40 10.34 £ 0.05 ND
Aza-stilbene 1f 123.78 4+ 5.16 53.69 + 2.65 10.41 + 0.05 ND
Aza-stilbene 1g 125.76 + 3.39 17.23 £ 0.85 10.18 £ 0.04 ND

Aza-stilbenes and resveratrol were used either at 20 or 25 uM. No differences were observed between resveratrol
and aza-stilbenes with the FRAP assays. According to the KRL assay, DPPH assay and PAOT, various antioxidant
properties of aza-stilbenes and resveratrol were identified. The KRL assay is expressed as increase of haemolysis
time (% of control); DPPH assay: % inhibition; FRAP assay: uMol Fe?* reduced per mM of resveratrol and
aza-stilbenes; PAOT score: (PAOT Score/L) of analyzed sample. Data are means of 1-2 independent experiments
realized in triplicate. N.D: not determined.
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As polyphenols are known for their chelating properties towards various metals, in-
cluding Fe [37], it is supposed that the antioxidant and chelating properties of polyphenols,
and probably of aza-stilbenes, could interfere when the FRAP assay is used. For this reason,
in agreement with this hypothesis, it was unable to discriminate the antioxidant properties
of resveratrol and aza-stilbenes with this method.

The PAOT score, which has been recently described [25], was also used and compared
with the KRL and DPPH assay. The PAOT score is based on the measurement of the
scavenging properties of antioxidants with the use of an electrochemical method. The data
obtained with resveratrol and few aza-stilbenes also allow to distinguish the molecules
tested. Based on the simultaneous use of the KRL, DPPH and PAOT assay; it is considered
that the aza-stilbenes 1a and 1d have the highest antioxidant activities, whereas aza-stilbene
1c has the lowest antioxidant characteristics (Table 1).

It is important to underline that some differences were observed from one antioxidant
assay to another, since the different assays used to evaluate the antioxidant activities
measure different parameters.

As aza-stilbenes have antioxidant activities, it will be further of interest to evaluate
their differentiating activities on N2a cells to determine their neurotrophic effect (antiox-
idant activity + differentiating activity on nerve cells) [35,38]. This can have important
applications in the context of regenerative medicine. In addition, as resveratrol has also
been shown to induce the differentiation of murine myoblasts C2C12 in myotubes [39],
there is also an interest to further evaluate the ability of aza-stilbenes to act on the differen-
tiation of skeletal muscle cells. This can also have important applications in the context of
aging for the treatment of sarcopenia, which is characterized by a decrease of the muscular
mass in the elderly [40].

3. Conclusions

Comparatively to resveratrol (trans-resveratrol), the aza-stilbenes synthetized have
either higher or lower cytotoxic and antioxidant activities. Our data show that all aza-
stilbenes synthesized are distinguishable based on their cytotoxic and antioxidant activities.
Thus, the aza-stilbenes produced constitute a new series of molecules for which it is
therefore justified to further specify their pharmacological activities on different in vitro
and in vivo disease models for which the trans-resveratrol has shown some effects such
as some cancer, chronic inflammatory diseases and age-related diseases (cardiovascular
diseases, ocular diseases and neurodegenerative diseases).

4. Materials and Methods
4.1. Chemistry

All reagents and solvents are purchased from commercial suppliers and used with-
out further purifications. 4-aminophenol [123-30-8], 3-hydroxybenzaldehyde [100-83-4],
salicylaldehyde [90-02-8] and 3,5-dihydroxybenzaldehyde [26153-38-8] are purchased
from Alfa Aesar (ThermoFisher Scientific, Waltham, MA USA); 4-hydroxybenzaldehyde
[123-08-0] and para-anisaldehyde [123-11-5] are purchased from Acros Organics (Geel/
Antwerp, Belgium); 2-bromobenzaldehyde [6630-33-7] was purchased from Aldrich and
4-bromobenzaldehyde [1122-91-4] is purchased from TCI Europe (Zwijndrecht, Belgium).

The characterization of the products was established at the “Chemical Analysis Plat-
form of Molecular Synthesis University of Burgundy (PACSMUB)”. High-resolution mass
spectra (HRMS) were obtained on a Thermo LTQ-Orbitrap XL with ESI source. FTIR spectra
were obtained on a Brucker Alfa spectrometer (diamond ATR, Kontich, Belgium) in the
range of 400-4000 cm 1. 1H (500 MHz) and '3C (126 MHz) NMR spectra were recorded on
Brucker 500 MHz spectrometer. The chemical shifts are given in ppm relative to DMSO
dg (*H, 3.33 and 2.50 ppm and '3C 39.52 ppm). Coupling constants | are given in Hz.
Multiplicities are given as follows: singlet (s), doublet (d), triplet (t), quadruplet (q) and
multiplet (m). “CPh” designates protons and carbons of the aromatic ring bound to the
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carbon atom of imine, and “NPh” designates protons and carbons of the aromatic ring
bound to the nitrogen atom of imine (Figure 7).

( )

5 6
H
4 { y ’
N
N 4
3 2
2 3
CPh NPh

Figure 7. Symbolism for analysis of NMR data.

General procedure for the synthesis of (hydroxyphenyliminomethyl)phenols 1la-1g.
4-aminophenol (2) (1 g, 9.17 mmol) was stirred with an equimolar amount of an aromatic
aldehyde 3a—g in 20 mL of distillated water, during 4 to 5 h at room temperature (20 °C). The
solid product obtained 1a-1g was filtered, washed with water, air dried and recrystallized
from ethanol, acetone, ethyl acetate or acetonitrile.

The 'H and '*C NMR spectra and the HMBC spectra of aza-stilbenes 1a to 1g are
shown in Supplementary Materials Figures S1 and S2, respectively.
4-{[(4-hydroxyphenyl)imino]methyl}phenol (1a): recrystallized from acetone; yield 63%; m.p.
212-214 °C. IR: 3485.4 (v/O-H), 1639.3 (v/C = N), 1239.5 (v/C-O). 'H NMR (DMSO-dj) :
10.00 (s, 1H, CPh OH), 9.38 (s, 1H, NPh OH), 8.43 (s, 1H, CH=N), 7.72 (d, 2H, ] = 8.61 Hz,
CPh 2,6-H), 7.11 (d, 2H, ] = 8.72 Hz, NPh 2,6-H), 6.85 (d, 2H, ] = 8.58 Hz, CPh 3,5-H), 6.77 (d,
2H, | = 8.72 Hz, NPh 3,5-H). 13C NMR (DMSO-dg) é: 160.1 (CPh C-1), 156.9 (C = N), 155.7
(NPh C-1), 143.2 (NPh C-4), 130.1 (CPh C-2,6), 127.9 (CPh C-4), 122.1 (NPh C-2,6), 115.6
(NPh C-3,5), 115.5 (CPh C-3,5). HRMS (ESI+) m/z: 214.0861 [M + H]+ calc. for C13HpNO, ¥,
214.0863, found 214.0861.
3-{[(4-Hydroxyphenyl)imino]methyl Jphenol (1b): no recrystallization; yield 87%; m.p. 193-195
°C.IR: 3296.5 (v/O-H), 1622.2 (v/C = N), 1214.7 (v/C-0O). 1H NMR (DMSO-d6) 5: 9.61 (s,
1H, CPh OH), 9.47 (s, 1H, NPh OH), 8.50 (s, 1H, CH = N), 7.32 (m, 1H, CPh 4-H), 7.28 (s,
1H, CPh 6-H), 7.27 (m, 1H, CPh 2-H), 7.17 (d, 2H, ] = 8.70 Hz, NPh 2,6-H), 6.90-6.86 (m, 1H,
CPh 5-H), 6.79 (d, 2H, ] = 8.70 Hz, NPh 3,5-H). 13C NMR (DMSO-d6) é: 157.6 (CPh C-1),
157.2 (C = N), 156.2 (NPh C-1), 142.6 (NPh C-4), 137.8 (CPh C-3), 129.7 (CPh C-6), 122.5
(NPh C-2,6), 119.9 (CPh C-2), 118.1 (CPh C-5), 115.7 (NPh C-3,5), 113.9 (CPh C-4). HRMS
(ESI+) m/z: 214.0862 [M + H]+ calc. for C13H12NO2+, 214.0863, found 214.0862.
2-{[(4-Hydroxyphenyl)iminolmethyljphenol (1c): no recrystallization; yield 11%; m.p.
138-139 °C. IR: 3392.1 (v/O-H), 3280.5 (v/0O-H), 1613.8 (v/C = N), 1209.1 (v/C-O). 1H
NMR (DMSO-d6) 6: 13.41 (s, 1H, CPh OH), 9.67 (s, 1H, NPh OH), 8.90 (s, 1H, CH = N), 7.59
(dd, 1H, J =7.67, 1.62 Hz, CPh 6-H), 7.37 (m, 1H, CPh 5-H), 7.32 (d, 2H, ] = 8.77 Hz, NPh
2,6-H), 6.96 (d, 1H, ] = 7.40 Hz, CPh 3-H), 6.93 (d, 1H, ] = 8.31 Hz, CPh 4-H), 6.84 (d, 2H,
J =8.75 Hz, NPh 3,5-H). 13C NMR (DMSO-d6) &: 160.7 (C = N), 160.6 (CPh C-1), 157.4 (NPh
C-1), 139.7 (NPh C-4), 133.0 (CPh C-5), 132.7 (CPh C-6), 123.1 (NPh C-2,6), 119.9 (CPh C-2),
119.4 (CPh C-3), 116.9 (CPh C-4), 116.4 (NPh C-3,5). HRMS (ESI+) m/z: 214.0861 [M + H]+
calc. for C13H12NO2+, 214.0863, found 214.0 861.
5-{[(4-Hydroxyphenyl)imino]methyl fbenzene-1,3-diol (1d): washed with hot ethyl acetate; yield
60%; m.p. decomposed at 238 °C. IR: 3481.2 (v/O-H), 3273.2 (v/O-H), 1624.0 (v/C =N),
1213.8 (v/C-0). 1H NMR (DMSO-d6) &: 9.46 (s, 1H, NPh OH), 9.44 (s, 2H, CPh OH), 8.39 (s,
1H,CH=N), 7.16 (d, 2H, ] = 8.71 Hz, NPh 2,6-H), 6.78 (d, 2H, ] = 8.71 Hz, NPh 3,5-H), 6.76
(d, 2H,J =2.20 Hz, CPh 2,6-H), 6.32 (t, 1H, ] = 2.21 Hz, CPh 4-H). 13C NMR (DMSO-d6) é:
158.6 (C = N), 157.4 (CPh C-1), 156.1 (NPh C-1), 142.6 (NPh C-4), 138.3 (CPh C-3,5), 122.5
(NPh C-2,6), 115.7 (NPh C-3,5), 106.4 (CPh C-2,6), 105.2 (CPh C-4). HRMS (ESI+) m/z:
230.0811 [M + H]+ calc. for C13H12NO3+, 230.0812, found 230.0811.
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4-{[(4-Hydroxyphenyl)imino]methyllanisole (1e): recrystallized from ethanol; yield 40%; m.p.
188-190 °C. IR: 1602.8 (v/C = N), 1221.3 (v/C-O). 1H NMR (DMSO-d6) 5: 9.42 (s, 1H, OH),
8.51 (s, 1H, CH = N), 7.83 (d, 2H, ] = 8.75 Hz, CPh 2,6-H), 7.15 (d, 2H, ] = 8.67 Hz, NPh
2,6-H), 7.04 (d, 2H, J = 8.70 Hz, CPh 3,5-H), 6.78 (d, 2H, ] = 8.67 Hz, NPh 3,5-H), 3.82 (s, 3H,
CH3). 13C NMR (DMSO-d6) 6: 161.5 (CPh C-1), 156.6 (C = N), 155.9 (NPh C-1), 143.0 (NPh
C-4), 130.0 (CPh C-2,6), 129.4 (CPh C-4), 122.3 (NPh C-2,6), 115.7 (NPh C-3,5), 114.2 (CPh
C-3,5), 55.4 (CH3). HRMS (ESI+) m/z: 228.1018 [M + H]+ calc. for C14H14NO2+, 228.1019,
found 228.1018.

4-{[(4-Hydroxyphenyl)imino]methyl jbromobenzene (1f): recrystallized from acetonitrile; yield
33%; m.p. 205-206 °C. IR: 1618.7 (v/C = N), 1223.9 (v/C-0). IH NMR (DMSO-d6) 5: 9.54 (s,
1H, OH), 8.61 (s, 1H, CH = N), 7.84 (d, 2H, ] = 8.48 Hz, CPh 2,6-H), 7.70 (d, 2H, ] = 8.40 Hz,
CPh 3,5-H), 7.22 (d, 2H, ] = 8.70 Hz, NPh 2,6-H), 6.80 (d, 2H, ] = 8.70 Hz, NPh 3,5-H). 13C
NMR (DMSO-d6) &: 156.5 (CPh C-1), 155.9 (C = N), 142.2 (NPh C-1), 135.7 (NPh C-4), 131.8
(CPh C-3,5), 130.0 (CPh C-2,6), 124.3 (CPh C-4), 122.7 (NPh C-2,6), 115.7 (NPh C-3,5). HRMS
(ESI+) m/z: 276.0018 [M + H]+ calc. for C13H11NOBr+, 276.0019, found 276.0018.
2-{[(4-Hydroxyphenyl)iminolmethyl}bromobenzene (1g): recrystallized from acetonitrile; yield
35%; m.p. 152-153 °C. IR: 1613.7 (v/C = N), 1236.2 (v/C-0). 1H NMR (500 MHz, DMSO-d6)
§: 9.62 (s, 1H, OH), 8.79 (s, 1H, CH = N), 8.1 (dd, 1H, ] = 7.75 Hz, CPh 6-H), 7.74 (dd,
1H, ] = 7.94 Hz, CPh 63H), 7.50 (t, 1H, ] = 7.43 Hz, CPh 5-H), 7.44 (td, 1H, ] = 7.61 Hz,
CPh 4-H), 7.23 (d, 2H, ] = 8.73 Hz, NPh 2,6-H), 6.83 (d, 2H, ] = 8.73 Hz, NPh 3,5-H). 13C
NMR (126 MHz, DMSO-d6) 6: 156.9 (CPh C-1), 155.0 (C = N), 142.2 (NPh C-1), 134.3 (CPh
C-2), 133.2 (CPh C-3), 132.6 (CPh C-4), 128.5 (CPh C-6), 128.1 (CPh C-5), 125.0 (NPh C-4),
122.7 (NPh C-2,6), 115.9 (NPh C-3,5). HRMS (ESI+) m/z: 276.0018 [M + H]+ calc. for
C13H11NOBr+, 276.0019, found 276.0018.

4.2. Cell Culture and Treatments

The mouse neuro-2a (N2a) neuroblastoma cell line (Ref: CCL-131, American Type
Culture Collection (ATCC), Manassas, VA, USA) was maintained in Dulbecco’s modified
Eagle medium (DMEM, Lonza, Amboise, France) containing 10% (v/v) of heat-inactivated
fetal bovine serum (FBS) (Pan Biotech, Aidenbach, Germany) (30 min, 56 °C) and 1% (v/v) of
penicillin (100 U/mL)/streptomycin (100 mg/mL) (Pan Biotech). The cells were incubated
at 37 °C in a humidified atmosphere (5% CO,, 95% air) and passaged twice a week. The
cells were seeded at 60,000 cells per well containing 1 mL of DMEM supplemented with
10% (v/v) heat-inactivated FBS and 1% antibiotics (penicillin, streptomycin) in 24-well plates
(FALCON, Becton Dickinson, Franklin Lakes, NJ, USA). The stock solutions of resveratrol
(trans-resveratrol, RSV) and aza-stilbenes (AZA-ST 1a to 1g) were prepared as follows:
resveratrol (reference of the product: 501-36-0; purity 99%; Sigma-Aldrich, St Quentin-
Fallavier, France) was prepared at 50 mM in absolute ethanol (EtOH; Carlo Erba Reagents,
Val de Reuil, France); AZA-ST 1a to 1g were prepared at 50 mM in dimethyl sulfoxide
(DMSO; Sigma-Aldrich). The aspects of resveratrol and aza-stilbenes in solution are shown
in supplementary Figure S3. In order to evaluate the effects of aza-stilbenes on N2a cells
comparatively to resveratrol (effects on cell density, esterase activity and transmembrane
mitochondrial potential (A'¥m)), the growth medium was removed after 24 h of culture
and the N2a cells were incubated either with resveratrol or aza-stilbenes used at various
concentrations ranging from 1.5 to 100 uM for 48 h. The highest concentration of 100 uM
is obtained by diluting 16 uL of stock solution (resveratrol or aza-stilbene; stock solution
at 50 mM) in 8 mL of culture medium. Concentrations of 50 to 1.5 uM are obtained by
successive dilution in cascade of two by two in culture medium. The effects of vehicles
(DMSO, ethanol) were evaluated at their highest concentration (0.2% v/v).

4.3. Measurement of Cell Density: Sulforhodamine 101 (SR101) Assay

Sulforhodamine 101 (SR101) (reference of the product: 57635, Sigma Aldrich) assay
was used to assess the cytotoxic effect of resveratrol and AZA-ST on N2a cells at different
concentrations ranging from 1.5 to 100 uM. SR101 is an anionic dye that electrostatically
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binds to cellular proteins [35,36]. SR101 permits the quantification of adherent cells, con-
sidered as viable cells, since cell death is associated with a loss of cell adhesion. The
experiments were realized four times in triplicate. The data were expressed as percentage
of the control.

4.4. Measurement of Esterase Activity: Fluorescein Diacetate (FDA) Assay

Cell viability was measured with the fluorescein diacetate (FDA) (reference of the
product: F1303, Invitrogen/Molecular Probes) assay, which considers esterase [35,41].
The N2a cells, previously cultured for 24 h in 24-well plates in DMEM containing 10%
FBS, were further incubated for 48 h, with and without resveratrol, or AZA-ST, used at
different concentrations (1.5 to 100 uM). At the end of treatment, cells were incubated in
the dark with 15 pg/mL FDA for 5 min at 37 °C, rinsed twice with phosphate buffered
saline (PBS), then lysed with 10 mM Tris-HCl solution containing 1% sodium dodecyl
containing 1% sodium dodecyl sulfate (SDS) for 10 min. Using a TECAN fluorescence
microplate reader (Sunrise spectrophotometer, TECAN, Lyon, France), the fluorescence
intensity was measured with an excitation at 485 nm and an emission at 528 nm. All assays
were performed in three independent experiments and performed in triplicate. Data were
expressed as percentage of untreated cells (control).

4.5. Measurement of Transmembrane Mitochondrial Potential (A¥m):
3,3'-Dihexyloxacarbocyanine IODIDE (DiOCg(3)) Assay

The variation of the mitochondrial transmembrane potential (AYm) was measured
using 3,3'-dihexyloxacarbocyanine iodide (DiOCy(3)) (D273, Invitrogen/Thermo Fisher
Scientific, Montigny le Bretonneux, France). This fluorochrome accumulates in the mito-
chondria proportionally to the AYm value [42]. The higher the AYm, the more the probe
accumulates. After 48 h of treatment, adherent cells collected by trypsinization were pooled
with non-adherent cells and stained with a solution of DiOCg(3) at 40 nM (15 min; 37 °C).
The cells were immediately analyzed on a BD Accuri™ C6 flow cytometer (BD Biosciences,
San Jose, CA, USA). The loss of A¥m is indicated by a decrease in the intensity of the green
fluorescence collected through a band pass filter of 520 & 10 nm. For each sample, 10,000
cells were acquired, and the data were analyzed with FlowJo (Tree Star Inc., Carrboro, NC,
USA) software. All assays were performed in triplicate.

4.6. Measurement of Antioxidant Activity with the KRL (Kit Radicaux Libres) Assay

The KRL (Kit Radicaux Libres) test was used to assess the oils” overall antioxidant
activity by their ability to protect erythrocytes against a controlled free radical attack at
varying concentrations [20,21]. Diluted control blood samples were exposed to organic
free radicals generated at 37 °C from the thermal decomposition of a solution of 2.2'—
azobis (2-amidinopropane) dihydrochloride (AAPH). In order to record haemolysis, the
turbidimetric optical density decline at 620 nm was measured using a 96-well microplate
reader (KRL Reader, Kirial International; Couternon, France). The antioxidant activity
of the tested oil samples was expressed in Trolox equivalents and gallic acid equivalent.
Lara-Spiral laboratory performed the KRL test (Couternon, France).

4.7. Measurement of Antioxidant Activity with the DPPH (2,2'-Diphenyl-1-Picrylhydrazyl
Radical) Assay

The DPPHe radical is a stable soluble molecule characterized by its deep-violet color,
with an absorption maximum at 515 nm. Antioxidants (AH) or other radical species (Re)
are able to react with this stable radical (DPPHe) by providing an electron or hydrogen
atom, thus reducing it to 2,2-diphenyl-1-hydrazine (DPPH-H) or a substituted analogous
hydrazine (DPPH-R) characterized by colorless or pale-yellow color that could be easily
monitored with a spectrophotometer. In the present study, the free radical scavenging activ-
ity was determined by the DPPH assay as previously described [22]. DPPHe was prepared
in 95% methanol and protected from light. In 96-well plates, 40 uL of DPPH (0.2 mmol/L)
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was added to 160 pL of sample or blank, and the mixture was homogenized and left to
stand in the dark for 30 min. Absorbance was measured using a spectrophotometer at 517
nm, and DPPHe radical scavenging activity was expressed as a percent of inhibition (PI)
using the following equation:

PI = [(AO — A1)/A0] x 100

where AOQ is the absorbance of the DPPH solution, and A1l is the absorbance of the DPPH
solution after the addition of the sample. All assays were performed in three independent
experiments and performed in triplicate.

4.8. Measurement of Antioxidant Activity with the Ferric Reducing Antioxidant (FRAP) Assay

Ferric reducing antioxidant power (FRAP) is based on the reduction of Fe?* (ferric ions)
to Fe?* (ferrous ions), and the assay was carried using previously described methods [23,24].
At low pH, in the presence of 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ, Sigma Aldrich, France),
the ferric-tripyridyltriazine complex (Fe3*-TPTZ) is reduced to ferrous (Fe**-TPTZ) with
the formation of an intense blue color with an absorption maximum at 593 nm. Briefly,
2.3 mL of FRAP reagent (contains 100 mL of 0.3 M acetate buffer, pH 3.6; 20 mL of 10 mM
TPTZ solution in 40 mM HCI; and 20 mL of 20 mM FeCls) was mixed with 0.7 mL of the
product (resveratrol or aza-stilbene 1a-1g) at different concentrations. The mixture was
then incubated at 37 °C for 30 min in the dark. The absorbance was measured at 593 nm
against a blank containing all the reagents, except the sample, using a spectrophotometer
(Safas Xenus, Monaco). The increase in absorbance of the reaction mixture indicates an
increase in reduction capacity. Results of the samples were expressed as Mol Fe?* reduced
per mM of resveratrol and aza-stilbenes from a standard calibration curve of FeSO,4-7H,0.

4.9. Measurement of Antioxidant Activity with the PAOT Liquid® Technology Assay

The total antioxidant power of resveratrol and aza-stibenes was also determined by
PAOT Liquid® Technology (patent FR1871986; 11.28.2018; https:/ /worldwide.espacenet.
com/patent/search/family/066776410/publication/US2022031230A1?q=FR1871986; ac-
cessed on 19 July 2022). This method was based on an electrochemical reaction with a
molecule in a free radical state (mediator Me), following Equation 1 (Equation (1)) [25].

Oxidized mediator Me + AOX — Reduced mediator M + oxidized AOX 1

Analysis was started with electrochemical potential measurement (EP control t0) of
the reaction medium (1 mL), and then 20 pL of sample was added. The potential product
(EP product t4) was registered after 4 min of interaction between the sample that contains
antioxidants and reduced mediator Me

The variation ratio of the oxidized and reduced forms of the mediator Me during
reaction gives an estimation of antioxidant activity in the sample by using Equation 2
(Equation (2))

Antioxidant activity = X 100% 2)

The results were expressed as PAOT score per liter (PAOT Score/L) of the analyzed
sample.

4.10. Statistical Analysis

The experimental results were statistically analyzed with GraphPad Prism 8.0 software
(GraphPad Software, San Diego, CA, USA). Data were expressed as the mean + standard
deviation (SD) and compared with a Student’s t-test. A p-value less than 0.05 was consid-
ered statistically significant.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /molecules27154713 /s1, 1H (500 MHz), 13C (126 MHz) NMR and
HMBC-NMR spectra of the seven aza-stilbenes synthethized; aspects of resveratrol and aza-stilbenes
in solution.
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