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Abstract: A simple and efficient one-pot, three-component synthetic method for the preparation of
coumarin-3-carboxamides was carried out by the reaction of salicylaldehyde, aliphatic primary/secondary
amines, and diethylmalonate. The protocol employs piperidine-iodine as a dual system catalyst and
ethanol, a green solvent. The main advantages of this approach are that it is a metal-free and clean
reaction, has low catalyst loading, and requires no tedious workup.

Keywords: multicomponent reaction; molecular iodine; coumarin-3-carboxamides

1. Introduction

Today, the development of efficient and environmentally friendly synthesis to obtain
complex and highly substituted molecules is one of the most exciting topics for the synthetic
chemistry community. In this sense, multicomponent reactions (MCRs) have emerged as a
powerful synthetic tool in organic synthesis as an attractive alternative to the conventional
multi-step synthesis. These multicomponent strategies provide great molecular diversity in
a single step and in a highly efficient manner [1–3]. The utility of these processes has been
confirmed by the synthesis of a large number of compounds with remarkable biological
activity [4,5].

Among the pharmacologically active products, coumarin and its derivatives have
attracted attention due to their broad spectrum of applications in medicinal chemistry [6,7].
In particular, coumarin-3-carboxamide has proven to be an important structural core
that exhibits diverse biological activities, such as anticancer [8,9], antioxidant [10,11],
anti-inflammatory [12], and anticoagulant [13] properties, as well as inhibition against β-
secretase (BACE1) [14,15], monoamine oxidase (MAO) [16], acetylcholinesterase [17], and
tumorigenesis [18]. In addition, these compounds have found applications as fluorescent
probes for Cu2+ and Fe3+ detection [19,20] and molecular sensors for monitoring O2 levels
in living cells [21].
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Accordingly, several strategies for the synthesis of this important class of compounds
have been described in the literature. The traditional approach involves multistep elemen-
tary reactions including condensation reactions between activated coumarin derivatives or
methyl cyanoacetate with amines (Figure 1a) [22,23]. Alternatively, MCRs using magnetic
nanoparticles (NPs) such as Ni–NiO and Fe3O4 have also been applied in the synthesis
of a variety of coumarin-3-carboxamides (Figure 1b) [24,25]. Other reported approaches
to the synthesis of coumarin-3-carboxamide involve regioselective carboxamidation of
coumarins at C-3 with formamides by using the radical initiator tert-butyl peroxybenzoate
(TBPB) (Figure 1c) [26], and amidation reactions of coumarin-3-carboxylic acids using
tetraalkylthiuram disulfides as amine sources (Figure 1d) [27].
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However, most of the above-mentioned protocols suffer from several limitations such
as pore functionalization of the substrates, harsh reaction conditions, expensive reagents,
long reaction times, laborious workup, and metal-based catalysis. Therefore, from the
environmental and economic perspectives, the development of an easy-to-implement
protocol for the preparation of coumarin-3-carboxamides would be of great importance in
synthetic organic chemistry.

On the other hand, iodine-catalyzed reactions have attracted great research interest
because of their simplicity in operation, enhanced reaction rates, and great selectivity.
Iodine is also a cheap, non-toxic, and water-tolerant catalyst [28–30], which has been
explored as a powerful catalyst for MCRs, due to its unique catalytic properties [31–34].

Based on the use of iodine and the fact that, to the best of our knowledge, no free metal
and one-pot syntheses of coumarin-3-carboxamides have been reported, we present here
a simple and efficient one-pot, three-component synthetic method for the preparation of
coumarin-3-carboxamides using piperidine and molecular iodine as a dual-catalyst system
(Figure 1e). The notable advantages of this protocol are (a) transition-metal-free protocol,
(b) use of iodine as a catalyst, (c) use of ethanol as a solvent, and (d) workup simplicity.

2. Results

Initially, we explore the multicomponent reaction involving 2-hydroxybenzaldehyde
(1), ethanolamine (2), and diethyl malonate (DEM). The reaction was carried out in reflux
ethanol in the presence of iodine (10 mol%) and piperidine (10 mol%) over the course of
8 h. As a result, the 3-amidocoumarin 3a was afforded at a 79% yield (Scheme 1).
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In view of this success, the optimization of the reaction was performed. Thus, the
effects of the solvent, base, and catalyst were studied (Table 1). The solvent effect was
studied in the first place, and in a general way, protic solvents produced superior results to
aprotic solvents in terms of selectivity (Table 1, entries 1–4 vs. 6–10), since the coumarin-3-
carboxamide 3a was the only product detected, though in regular yields (37–79%). Among
the protic solvents, the green solvent ethanol [35] was the most effective (Table 1, entry 1),
because compound 3a was obtained with the best yield (79%). Otherwise, the use of
water and aprotic polar solvents such as CH2Cl2, MeCN, EtOAc, THF, and DMF provided
a mixture of coumarin-3-carboxamide 3a, imine 4a, and ethyl coumarin-3-carboxylate 5
(Table 1, entries 5–10). The solvent-free synthesis was found to be interesting (Table 1,
entry 11); unfortunately, it required a high temperature (250 ◦C) and up to 14 h to complete
the reaction. In order to establish the role of piperidine, different bases such as Et3N,
1,8-diazabicycloundec-7-ene (DBU), and L-proline were tested, and none of them were
effective for the obtention of compound 3a (Table 1, entries 12−14), sadly. Finally, the ratio
of base to iodine was investigated (Table 1, entries 15−21). We observed that increasing
the amount of iodine from 10 mol% to 20 mol% resulted in a slight decrease in the reaction
yield from 79% to 75% (Table 1, entry 1 vs. entry 15). The use of 15 mol% did not affect the
product yield (Table 1, entry 16). Fortunately, when using 5 mol% of iodine, the highest
yield (85%) for the reaction was found (Table 1, entry 17). However, on reducing the amount
of iodine, the product yield decreased (Table 1, entry 18).



Molecules 2022, 27, 4659 4 of 10

Table 1. Optimization of the reaction conditions a.
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Having established the optimal reaction conditions, we subsequently explored the scope
for the synthesis of various coumarin-3-carboxamides 3a–n and 7a–e (Schemes 2 and 3) for
this methodology. Accordingly, differently functionalized 2-hydroxy-benzaldehydes 1 were
subjected to the multicomponent reaction with diverse aminoalcohols, primary amines 2,
and DEM (Scheme 2). Starting with aminoalcohols, the results showed good to very good
yields of products 3a, 3d, and 3e (85%, 76%, and 85%, respectively) when ethanolamine,
a primary, unhindered amine was used. The yield diminished (3b, 50%) when (R)-(–)-2-
phenylglycinol, a hindered amine was used, and surprisingly, the yield obtained using
2-amino-2-(hydroxymethyl)propane-1,3-diol was very good (3c, 88%). This result may
be due to the formation of a hydrogen bond between hydroxyl groups of 2-amino-2-
(hydroxymethyl)propane-1,3-diol and the carbonyl group of DEM (SI, Scheme S1). Primary
amines attached to methylene carbons (i.e., benzylamine and tryptamine) reacted satis-
factorily, and the corresponding products 3f–k were obtained with regular to very good
yields (66–90%). The coumarin-3-carboxamide 3l, derived from aniline (an aromatic amine)
was isolated in regular yield (70%). As expected, yields diminished when the primary
amine was attached to a methine carbon, due to the increase in steric hindrance. For
example, (S)-(–)-α-methylbenzylamine produced 3m at a 50% yield, while isopropylamine
delivered 3n in 43% yield. Additionally, the influence of substituents on the aromatic
ring of aldehydes was tested. A soft decrease in yield (3d, 76%) was observed when
using 3-methoxysalicylaldehyde (with an electron-releasing group). In contrast, a very
good yield (3e, 85%) was obtained when using 5-bromosalicylaldehyde (with an electron-
withdrawing group).



Molecules 2022, 27, 4659 5 of 10Molecules 2022, 27, x FOR PEER REVIEW 6 of 11 
 

 

 
Scheme 2. Substrate scope for the multicomponent reaction of salicylaldehyde, primary amines, and 
DEM. 

 
Scheme 3. Substrate scope for the multicomponent reaction of salicylaldehyde, secondary amine, 
and DEM. 

Scheme 2. Substrate scope for the multicomponent reaction of salicylaldehyde, primary amines,
and DEM.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 11 
 

 

 
Scheme 2. Substrate scope for the multicomponent reaction of salicylaldehyde, primary amines, and 
DEM. 

 
Scheme 3. Substrate scope for the multicomponent reaction of salicylaldehyde, secondary amine, 
and DEM. 
Scheme 3. Substrate scope for the multicomponent reaction of salicylaldehyde, secondary amine,
and DEM.



Molecules 2022, 27, 4659 6 of 10

To further explore the substrate scope, we investigated the multicomponent reaction
with secondary amines (including cyclic and aliphatic) 6 (Scheme 3). Unfortunately, yields
were from low to regular (22%–54%); for instance, a 23% yield of 7a was obtained when
using dimethylamine, and only a 54% yield of compound 7e was isolated when using piperi-
dine, a cyclic amine. Indeed, no reaction occurred when diethylamine, diisopropylamine,
or diphenylamine was used (not shown). Again, some unfavorable steric factors may be
responsible for both the low yield and not the formation of coumarin-3-carboxamides from
long chain secondary amines [24].

Structures of synthesized compounds were confirmed by analytical and spectral data
(see SI). In a representative example, the 1H-NMR spectrum of N-(2-hydroxyethyl)-2-oxo-
2H-chromene-3-carboxamide (3a) showed one singlet signal at δ = 8.90 ppm, corresponding
to H-4 (alkene) of the coumarin nucleus. Signals at 8.00, 7.76, 7.52, and 7.45 ppm were
assigned to aromatic protons of the coumarin core. NH and OH protons appear as triplet
signals at δ = 8.86 and 4.92 ppm, respectively. Two quadruplet signals at δ = 3.55 and
3.41 ppm were assigned to the protons of the two methylene. The 13C NMR spectrum of 3a
exhibited 12 distinct signals in agreement with the suggested structure [36].

In order to show the applicability of this methodology, compound 3g was synthesized
at a 5 mmol scale. As a result, compound 3g was afforded at a 87% yield (1.34 g). This
result further proved the feasibility to apply this methodology to a larger-scale process
(Scheme 4).
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To gain insight into the reaction mechanism, control experiments were conducted
as shown in Scheme 5. Initially, 2-hydroxybenzaldehyde (1) and ethanolamine (2) were
stirred in ethanol at reflux for 2 h, and the imine 4a could be isolated at a 90% yield. Then,
imine 4a was further reacted with DEM under standard conditions; this way, the target
product 3a could be obtained at a 65% yield (Scheme 5a). Next, the ester 5 was employed
in the direct reaction with ethanolamine, and under the standard conditions, a mixture of
the 3-amidocoumarin 3a, imine 4a, and N1,N3-bis(2-hydroxyethyl)malonamide 8 (4:60:36)
was obtained (Scheme 5b). The obtained result indicates that the formation of 3a from the
coumarin 5 is not efficient, mainly due to a competitive reaction involving the attack at
the 4-position of coumarin [37] and also due to the fact that imine 4a is the most likely
intermediate of the reaction.

Based on the above results, a plausible mechanism is proposed (Scheme 6). Firstly,
the condensation between 1 and ethanolamine 2, in the presence of iodine, leads to imine
4a. Secondly, imine 4a undergoes a Mannich-type reaction with DEM in the presence
of piperidine to form intermediate I. Thirdly, an intramolecular cyclization produces
intermediate chroman-2-one II, which suffers a second intramolecular cyclization to afford
intermediate beta-lactam III. Finally, a [1,3]-amino rearrangement involving the β-lactam
results in the formation of the target molecule 3a [38]. During the reaction mechanism,
iodine is proposed to activate the imine and carbonyl groups as it behaves as a mild Lewis
acid [39], thus facilitating the transformations, as long as piperidine acts as a base, which
allows for protonic transferences [32].
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3. Materials and Methods
3.1. General Information

All chemicals were purchased from Sigma Aldrich (Toluca, Mexico). Melting points
were determined on a Stuart SMP10 apparatus by the open capillary technique and are
uncorrected. 1H and 13C NMR spectra were recorded at 600 MHz and 150 MHz, respectively,
in CDCl3 or DMSO-d6 using a Bruker AscendTM Spectrometer. Chemical shifts are given
in ppm and reported to the residual solvent peak (CDCl3: 7.26 ppm for 1H and 77.16 ppm
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for 13C; DMSO-d6: 2.50 ppm for 1H and 39.51 ppm for 13C). Data are reported as follows:
chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
br s = broad singlet), coupling constant(s) (J, Hz), and integration. Analytical TLC was
performed on silica gel 60 F254 plates. IR spectra were obtained using an FT-IR spectrometer,
Spectrum One, Perkin Elmer.

3.2. General Procedures and Compound Characterization Data for Coumarin-3-carboxamides 3a–n
and 7a–e

To a stirred solution of salicylaldehyde (0.122 g, 1 mmol), primary or secondary
amine (1.2 mmol) and diethyl malonate (1.2 mmol) in absolute ethanol (2 mL) was treated
with piperidine (10 mol%) and iodine (5 mol%) and refluxed for 8h. After completion,
the mixture was filtered and the precipitate was washed with cold ethanol (4 mL) to
afford the pure products 3a–n and 7a–e. If necessary, further purification was performed
by recrystallization from ethanol. The identity of the known products was confirmed
by a comparison of their spectroscopic data and physical properties [20,24,40–46]. The
characterization data of synthesized compounds are given in the Supplementary Materials.

4. Conclusions

We have developed a piperidine/iodine-promoted three-component reaction for the
synthesis of various coumarin-3-carboxamides. The simplicity of the synthetic protocol
and availability of diverse starting materials make this an attractive strategy for the syn-
thesis of this class of compounds. Further applications of this catalytic system to other
multicomponent reactions are now underway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27144659/s1, characterization data, and 1H-NMR and
13C-NMR of compounds 3a–n and 7a–e.
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