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Abstract: Investigating novel compounds that may be useful in designing new, less toxic, selective,
and potent breast anticancer agents is still the main challenge for medicinal chemists. Thus, in
the present work, acetylthiophene was used as a building block to synthesize a novel series of
thiazole-bearing thiophene derivatives. The structures of the synthesized compounds were elucidated
based on elemental analysis and spectral measurements. The cytotoxic activities of the synthesized
compounds were evaluated against MCF-7 tumor cells and compared to a cisplatin reference drug,
and against the LLC-Mk2 normal cell line using the MTT assay, and the results revealed promising
activities for compounds 4b and 13a. The active compounds were subjected to molecular modeling
using MOE 2019, the pharmacokinetics were studied using SwissADME, and a toxicity radar was
obtained from the biological screening data. The results obtained from the computational studies
supported the results obtained from the anticancer biological studies.

Keywords: thiophenes; thiazoles; multicomponent synthesis; hydrazonoyl halides; anticancer;
molecular docking; toxicity radar; ADME

1. Introduction

Breast cancer affects 14% of all women living globally [1]. It is the most frequently di-
agnosed neoplasm in female patients. The essential treatments for breast cancer are surgery,
radiotherapy, and chemotherapy, individually tailored to the patient. Unfortunately, one of
the main problems in the pharmacotherapy of cancers, including breast cancer, is the rapid
development of drug resistance. Thus, designing and synthesizing more efficient agents
with fewer adverse effects is essential [2]. Investigating novel compounds that may be
useful in designing new, less toxic, selective, and potent anticancer agents is still the main
challenge for medicinal chemists. Several studies have been carried out using various sulfur
heterocycles, including thiophene and thiazole, directed towards different pathologies. It
is reported in the literature that compounds containing a thiophene core have attracted
considerable interest in drug discovery due to their potential anticancer activity [3–7]. Many
anticancer agents are available on the market that contain a thiophene nucleus, as shown in
Figure 1, and these exhibit their activity via multiple pathways involved in cancer [8,9].

On the other hand, 1,3-thiazole derivatives have been extensively considered by re-
searchers generating novel lead compounds and in drug development. Thiazole derivatives
of thiosemicarbazone are the scaffolds of many natural, synthetic, and semi-synthetic drugs
which exhibit numerous remarkable pharmacological activities, including antiparasitic,
anti-inflammatory, and antineoplastic activities [10–13]. Furthermore, the thiazole ring is
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present in several anticancer drugs (Figure 1), including Tiazofurin, Dasatinib, Dabrafenib,
Bleomycin, Ixabepilone, and Epothilone, making this skeleton an ideal candidate for the
development of more potent and safer anticancer drugs [14–16].

Figure 1. Lead compounds among thiazoles and thiophenes with anticancer activity.

Molecular hybridization is a beneficial approach to structural alteration involving
the integration of a single species of two or more pharmacophores [11,17–23]. Over the
last several years, hybrid drug design has been used as a prime method for developing
novel anticancer therapies that can solve many of the pharmacokinetic disadvantages of
traditional anticancer drugs. Thus, several studies have indicated that thiazole–thiophene
hybrids have important anticancer activity [24].

Based on the above-mentioned promising aspects, and in continuation of our previous
work to synthesise anticancer agents [11,24–28] from readily available, cheap, laboratory
starting materials with anticipated biological activities, the strategy of this present work
involved gathering the two bioactive entities, thiophene and thiazole, into one compact
hybrid structure that may lead to enhanced anticancer activity due to the synergistic effect
of both rings. Therefore, 2-acetylthiophene seemed to be a suitable starting material to
fulfill this objective (Figure 2).

Figure 2. The targeted compounds with anticancer activity.

Apoptosis is essential to normal breast development and homeostasis. Pro- and anti-
apoptotic signals are tightly regulated in normal breast epithelial cells. Dysregulation of this
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balance is required for breast tumorigenesis, and this increases the acquired resistance to
treatments such as molecularly targeted therapies, radiation, and chemotherapies. Members
of the pro- or anti-apoptotic BCL-2 family of proteins are key regulators of the apoptosis
process, and 2W3L is one of the proteins in this family. Therefore, 2W3L is a promising
target to improve the killing of breast cancer tumor cells [29,30]. The docking process was
carried out by simulating the exchange of the most biologically active compounds, 4a,b, 8a,
11b, and 13a,b, with two types of breast cancer proteins (PDB = 2W3L). Moreover, ADME
analysis showed that the compounds have drug-like properties. ProToxII is one of the most
common tools for predicting pharmacokinetic drug toxicity [31].

2. Results and Discussion
2.1. Chemistry

Heterocyclic compounds with three components have been widely exploited to pre-
pare substituted heterocyclic compounds [25,32,33]. Thus, combining 2-acetylthiophene (1)
with thiocarbohydrazide (2) and α-keto hydrazonoyl chlorides (3a–d) in ethanol with a cat-
alytic amount of triethylamine under refluxing conditions led to the formation of 4-methyl-
5-(arylazo)-2-[(1-(thiophen-2-yl)ethylidene)hydrazineylidene]thiazol-3(2H)-amines (4a–d).
Furthermore, this three-component process worked effectively with different substituent
aryl groups on the hydrazonoyl chloride molecule (Scheme 1).

Scheme 1. Synthesis of aminothiazole derivatives 4a–d.

We previously proposed the mechanistic pathway for this transformation starts with
in situ condensations of 2-acetylthiophene (1) and thiocarbohydrazide (2) to give the respec-
tive hydrazone 5 [34]. Subsequent heterocyclization of intermediates 6a–d gave the isolable
products 4a–d (Scheme 1). Assignment of spectral data (via IR, NMR, MS, and elemental
analysis) for the isolated products provided significant indications of their structures. For
example, in the IR spectra of compounds 4a–d, the appearance of characteristic bands at
3414–3420 and 3226–3230 cm−1 confirms the presence of the amino group, and in 1H-NMR,
the singlet signal at approximately δ = 5 ppm is assigned to the resonance of amino protons
on the thiazole ring [35].

Aspects of this methodology were extended to investigate the three-component reac-
tion of 2-acetylthiophene (1), thiocarbohydrazide (2), and ethyl 2-chloro-2-(2-arylhydrazono)
acetate (7a,b). Similarly, this process furnished the respective 3-amino-thiazolidine-4-one
derivatives 8a,b, as illustrated in Scheme 2.
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Scheme 2. Synthesis of 3-amino-thiazolidin-4-one derivatives 8a,b.

The structures of the isolated products 8a and 8b were established from the stretching
vibration signals at 3428, 3340, 3235, and 1680 cm−1 in the IR spectra, which were attributed
to NH2, NH, and C=O groups, respectively. In addition, 1H-NMR revealed two singlet
signals at δ = 5.08–5.11 and 10.76–11.24 ppm (D2O exchangeable) which were assigned to
the NH2 and NH protons.

Compounds 3a and 7a were expeditiously transformed into 4a and 8a, respectively, via
their reactions with N′-[1-(thiophen-2-yl)ethylidene]hydrazinecarbothiohydrazide (5) [34],
as depicted in Scheme 3.

Scheme 3. Alternative synthesis of compounds 4a and 8a.

To exploit the synthetic approach of a three-component system for the preparation of
thiazole-3-amine derivatives, we condensed acetylthiophene (1) and thiocarbohydrazide
(2) with either 2-bromo-1-arylethanone (10a–d) or α-chloro-dicarbonyl compounds (12a,b)
under the previously employed conditions to obtain 11a–d or 13a,b, respectively (Scheme 4).
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Furthermore, the structures of the isolated products 11a–d and 13a,b were elucidated based
on their spectral and analytical data (see Experimental Section).

Scheme 4. Synthesis of thiazole derivatives 12a–d and 14a,b.

2.2. Cytotoxic Potential

The cytotoxicity of the synthesized thiazoles 4a–d, 8a,b, 11a–d, and 13a,b was investi-
gated against the human breast cancer MCF-7 and normal LLC-Mk2 cell lines using the
MTT assay and cisplatin as the reference drug. The % inhibition was plotted against log
concentration, with normalization applied and error bars for the MCF-7 cell line shown, as
represented in Figure 3.

Figure 3. The % inhibition against log concentration, with normalization, and with error bars for
MCF-7 cell line.

The results were used to plot a dose–response curve, from which the concentrations of
the tested samples required to kill half of the cell population (IC50) were determined. In
addition, cytotoxic activities were expressed as the mean IC50 calculated from three indepen-
dent experiments. The results, represented in Table 1, Figures 3 and 4, revealed that most
of the tested compounds showed very variable activity compared to the reference drug.
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Table 1. In vitro cytotoxic activity of the newly synthesized thiazoles 4a–d, 8a,b, 11a–d, and 13a,b
against MCF-7 and LLC-MK2.

Tested
Compounds

IC50 (µM)
MCF-7

CC50 (µM)
LLC-MK2

SI Values
(CC50/IC50)

4a 16.3 ± 1.0 183.05 ± 21.31 11.23
4b 10.2 ± 0.8 175.92 ± 18.24 17.25
4c 19.7 ± 1.3 - -
4d 19.8 ± 0.9 - -
8a 13.6 ± 0.9 149.46 ± 15.86 10.99
8b 23.7 ± 1.6 - -
11a 21.0 ± 0.7 - -
11b 17.9 ± 0.8 231.45 ± 25.03 12.93
11c 38.2 ± 1.4 - -
11d 54.8 ± 1.6 - -
13a 11.5 ± 0.7 162.65 ± 19.06 14.14
13b 16.3 ± 1.4 135.22 ± 9.58 8.29

Cisplatin 13.3 ± 0.61 158.75 ± 4.67 11.93
(-): not measured.

Figure 4. The order of activity toward the MCF-7 cell lines.
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Examination of the SAR leads to the following conclusions:

• The 1,3-thiazole derivatives 4b and 13a (IC50 = 10.2 ± 0.7 and 11.5 ± 0.8 µM, respec-
tively) have promising antitumor activity against the breast carcinoma cell line (MCF-7),
and showed greater activities than the cisplatin reference drug (IC50 = 13.3 ± 0.61 µM);

• The 1,3-thiazole derivatives 11c and 11d have poor antitumor activity (IC50 > 38 µM),
while the rest of the evaluated thiazoles have moderate activity (IC50 = 13.6–23.7 µM);

• For 1,3-thiazoles 4, 8, and 11: the introduction of an electron-donating group (eg.
methyl group) into phenyl group at position 5 in the 1,3-thiazole ring enhances the
antitumor activity, while the introduction of an electron-withdrawing group (chlorine)
decreases the activity (4b > 4a > 4c > 4d; 8a > 8b; and 11b >11a > 11c >11d);

• For the substituent at position 5 of the 1,3-thiazoles: an acetyl group (Ac) gives
higher activity than an ester group (CO2Et). 13a (IC50 = 11.5 ± 0.7 µM) > 13b
(IC50 = 16.3 ± 1.4 µM).

The effects of the cisplatin standard drug and the most active compounds, 4a, 4b,
8a, 11b, 13a, and 13b, against LLC-Mk2 (rhesus monkey normal kidney epithelial cells)
were also measured, to produce a dose–response curve and to calculate the fifty percent
cytotoxic concentration (CC50), as indicated in Table 1. The results showed that all examined
compounds are non-toxic, because their CC50 toward normal cell lines was higher than
100 uM [36].

The selectivity index (SI) was calculated by dividing CC50 by IC50. Our results showed
that most of the derivatives presented good selectivity index values, indicating higher
potency than the cisplatin anticancer drug. When the test compounds were evaluated for
their toxicity against normal cells, they exhibited low toxic effects, indicating the safe use
of most of them, but this may require further in vivo and pharmacological studies.

2.3. Molecular Docking Studies

Molecular docking is computational software routinely used for understanding the
protein–receptor interaction with complexes. The docking process was carried out by
simulating the exchange of the prepared compounds with two types of breast cancer
proteins (PDB = 2W3L) [37] for compounds 4a,b, 8a, 11b, and 13a,b (Figure 5). Owing to
the anticancer biological study results obtained, only these compounds were subjected
to molecular docking because of their higher activity compared to the other synthesized
compounds. Cisplatin energy was not calculated as it is difficult to calculate this using the
software MOE2019, because it appears in the MOE system as a square planner molecule,
not a cis molecule. To solve this issue, we used carboplatin as a reference docking drug,
and the new results have been added to the corrected manuscript.

The docking score energies of compounds 4a, 4b, 8a, 11b, 13a, 13b, and CarboPt were
(−5.911, −6.011, −6.161, −5.65, −5.436, −5.883, and −4.671 kcal/mol), respectively. These
scores are only of moderate activity, not higher, and this can be explained by the following:
only compound 4b showed an interaction of the S(8) atom on the ligand to the receptor
on the O of Arg 66 (B) by hydrogen donation, while all the other compounds had no
measurable interaction, and all of them connected to the dummies by ligand exposure,
as shown in Table 2. Having no measurable interactions depends on the exposure of the
whole ligand to the protein. The results also indicated that compound 4b was the best one,
as its IC50 was closest to cisplatin, with good SI values of 46–30. These results are consistent
with the data which show that 4b was the only one with measurable interactions of high
docking score energy.
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Figure 5. Cont.
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Figure 5. 3D and 2D snapshots showing the hydrophilicity interaction with the (PDB = 2W3L) receptor.

Table 2. Docking interactions of selected compounds with breast cancer cells (PDB = 2W3L).

Compound Ligand Receptor Interaction Distance E (kcal/mol)

4a No measurable interaction
4b S (8) O ARG 66 (B) H-donor 3.69 −0.5
8a No measurable interaction

11b No measurable interaction
13a No measurable interaction
13b No measurable interaction

Carbo-Pt No measurable interaction
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The molecular docking studies were also carried out on HAS (Human Serum Albumin)
PDB = 1AO6, but only with 4b, 13a, and carboplatin (Figure 6). This was to validate the
results obtained from the docking studies on PDB=2W3l. The docking score energy of
compound 4b with PDB=1AO6 was −6.3 kcal/mol, while that of compound 13a was
−5.228 kcal/mol. Furthermore, both 4b and 13a showed no measurable interactions with
1AO6. The only interaction was via ligand exposure. In addition, the docking score of
CarboPt with 1AO6 was −4.78 kcal/mol.

Figure 6. 3D and 2D snapshots showing the hydrophilicity interaction with the (PDB = 1AO6)
HAS receptor.

2.4. Toxicity Radar

The ProTox-II data showed that the tested compounds (4a, 4b, 8a, 11b, 13a, and 13b)
were predicted to have oral LD50 values ranging from 159 to 3000 mg/kg in a rat model,
with (1 s, 4 s)-eucalyptol bearing the highest value, and quercetin holding the lowest one
(Figure 7 and Table 3). Therefore, the SI (selectivity index) calculations for these compounds
obtained from the biological studies were adequately compatible with the toxicity radar
calculations, which validates the results obtained. Through screening the toxicity radar
results, we found that compound 4b had a higher predictable LD50, which agrees with the
results obtained from the molecular docking and the biological activities. However, the
prediction accuracy for all compounds was 12%, so these compounds should be further
investigated and screened.
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Table 3. The predicted toxicity for compounds 4a, 4b, 8a, 11b, 13a, and 13b using ProTox-II.

4a 4b 8a 11b 13a 13b

Predicted LD50 (mg/kg) 525 3200 1000 1000 300 1000
Predicted toxicity class 4 5 4 4 3 4
Average similarity (%) 29.02 29.63 33.11 38.09 32.55 37.66

Prediction accuracy (%) 12 12 23 23 23 23

2.5. SwissADME Studies

ADME (absorption, distribution, metabolism, and excretion) studies, including drug-
likeness analysis, are essential in drug discovery, and provide a reasonable decisiveness
on whether or not inhibitors should be progressed to a biological system [31]. A potent
antagonistic interaction of inhibitors with a receptor protein or enzyme can not guarantee
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the ability of an inhibitor to act as a drug; therefore, ADME assessment is essential in
drug development. Inhibitors having low ADME properties and high toxicity effects on
biological systems are often the dominant reasons for the failure of most medicines in the
experimental phase.

Figure 8 shows the output of the ADME studies and the drug-likeness properties (refer
to the Supplementary Materials); it was observed that the 4b and 13a molecules display
one or two violations of Lipinski’s rule, and the first violation is the molecular weight rule,
with a result of 356.47–425.36 g/mol. The drug-likeness parameters are related to aqueous
solubility and intestinal permeability, determining the first step of oral bioavailability [38].
The results also indicated good pharmacokinetic properties, in which compounds 4b and
13a have high gastrointestinal absorption.

Figure 8. Toxicity profiles of the evaluated compounds using the SwissADME server.

2.6. Pred-hERG

Chemically similar compounds often bind to biologically diverse protein targets, and
protein structures do not always recognize identical ligands. Pharmacological and off-
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target relationships between proteins and a ligand set help to improve machine learning
confidence by interpolating the output prediction equalized by the compound similarity
criteria. This pipeline helps to improve predictions of off-target drug effects, reducing
false-negative errors. The Labmole server was used to predict Pred-hERG, and to predict
similar compounds with structure–activity relationships (Table 4, Figure 8).

Table 4. Predicted toxicity for compounds 4b and 13a using Pred-hERG software.

Property
Pred-hERG

4b 13a

Prediction/Potency Weak or Moderate Weak or Moderate
Confidence (%) 60 70

Applicability domain (AD) No (Value = 0.19 and limit = 0.26) No (Value = 0.23 and limit = 0.26)

Chemical similarity is one of the most critical concepts in cheminformatics. One com-
monly used algorithm to calculate these similarity measures is the 2D Tanimoto algorithm
employed here (Figures 9–11). The resulting Tanimoto coefficient is fingerprint-based,
encoding each molecule to a fingerprint “bit” position (MACCS), with each bit recording
the presence (“1”) or absence (“0”) of a fragment of the molecule. Interpretation of the
probability of toxicity for compounds 4b and 13a can be explained by the cytotoxicity
diagram [31].

Figure 9. Similar off-target compounds to compound 4b.
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Figure 10. Similar off-target compounds to compound 13a.

Figure 11. Probability map of HERG for 4b (a) and 13a (b). The more contour lines and the more
intense green color means a higher positive contribution of an atom or a fragment to the hERG
blockage, while pink coloration means that it contributes to a decrease in the hERG blockage, and
gray color means no contribution.

3. Experimental Section
3.1. Chemistry
3.1.1. Experimental Instrumentation

All melting points were determined using electrothermal apparatus, and were left
uncorrected. IR spectra were recorded (KBr disc method) using a Shimadzu FT-IR 8201 PC
spectrophotometer. 1H NMR and 13C NMR spectra were recorded in DMSO solutions using
a BRUKER 400 FT-NMR spectrometer, and chemical shifts were expressed in ppm using
TMS as an internal reference. Mass spectra were recorded using a Shimadzu GC-MS QP1000
EX. Elemental analyses were carried out at the Microanalytical Center of Cairo University.

3.1.2. General Procedure for Synthesizing the Thiazole Derivatives 4a–d, 8a,b, 11a–d,
and 13a,b

A mixture of 2-acetylthiophene (1) (0.126 g, 1 mmol) and thiocarbohydrazide (2)
(0.106 g, 1 mmol) in ethanol (20 mL) was refluxed with a few drops of hydrochloric acid
for one hour. Then, without extraction of the hydrazone product, either the appropriate
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hydrazonoyl chlorides, 3a-d or 7a,b, or the α-halocarbonyl compounds, 10a–d or 12a,b,
(1 mmol), were added with catalytic amounts of triethylamine, and the reaction mixture
was refluxed for 4 h (monitored by TLC). Finally, the precipitate formed was isolated by
filtration, washed with methanol, dried, and recrystallized from the appropriate solvent to
give products 4a–d, 8a,b, 11a–d, or 13a,b, respectively. The physical properties and spectral
data of the isolated products are listed below.

4-Methyl-5-(phenyldiazenyl)-2-[((1-(thiophen-2-yl)ethylidene)hydrazineylidene]
thiazol-3(2H)-amine (4a). Red solid, 74% yield, m.p. 173–175 ◦C (EtOH); IR (KBr): v 3414,
3229 (NH2), 1602 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.25 (s, 3H, CH3-thiazole), 2.46 (s,
3H, CH3-C=N), 5.08 (s, 2H, Ar-H), 7.07–7.63 (m, 8H, Ar-H); 13C-NMR (DMSO-d6): δ = 13.21
(CH3-thiazole), 15.84 (CH3-C=N), 110.68, 125.11, 126.14, 127.39, 128.25, 129.27, 134.87,
142.47, 144.41, 145.32, 158.24, 161.04; MS m/z (%): 356 (M+, 27). Analysis calculated for
C16H16N6S2 (356.09): C, 53.91; H, 4.52; N, 23.58; S, 17.99; Found: C, 53.80; H, 4.42; N, 23.39;
S, 18.08%.

4-Methyl-2-[((1-(thiophen-2-yl)ethylidene)hydrazineylidene]-5-((p-tolyldiazenyl)
thiazol-3(2H)-amine (4b). Red solid, 76% yield, m.p. 190–192 ◦C (EtOH); IR (KBr): v
3420, 3230 (NH2), 1598 (C=N) cm−1; 1H-NMR (DMSO-d6): δ 2.27 (s, 3H, CH3-thiazole),),
2.39 (s, 3H, Ar-CH3), 2.46 (s, 3H, CH3-C=N), 5.11 (s, 2H, Ar-H), 7.02–7.61 (m, 7H, Ar-H);
13C-NMR (DMSO-d6): δ = 12.89 (CH3-thiazole), 16.14 (CH3-C=N), 21.28 (Ar-CH3), 109.98,
125.13, 126.32, 127.19, 128.64, 130.27, 133.87, 140.47, 143.41, 145.32, 158.74, 160.81; MS m/z
(%): 370 (M+, 39). Analysis calculated for C17H18N6S2 (370.10): C, 55.11; H, 4.90; N, 22.68; S,
17.31; Found: C, 55.03; H, 4.77; N, 22.51; S, 17.25%.

5-((4-Chlorophenyl)diazenyl)-4-methyl-2-[((1-(thiophen-2-yl)ethylidene)hydrazin-
eylidene] thiazol-3(2H)-amine (4c). Dark red solid, 75% yield, m.p. 205–207 ◦C (DMF);
IR (KBr): v 3418, 3226 (NH2), 1600 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.28 (s, 3H,
CH3-thiazole),), 2.46 (s, 3H, CH3-C=N), 5.03 (s, 2H, Ar-H), 7.08–7.63 (m, 7H, Ar-H); 13C-
NMR (DMSO-d6): δ = 12.91 (CH3-thiazole), 16.04 (CH3-C=N), 111.18, 124.81, 125.94, 126.99,
127.53, 128.85, 132.81, 142.49, 143.41, 145.31, 158.17, 160.94; MS m/z (%): 392 (M++ 2, 12),
390 (M+, 32). Analysis calculated for C16H15ClN6S2 (390.05): C, 49.16; H, 3.87; N, 21.50; S,
16.40; Found: C, 49.27; H, 3.71; N, 21.44; S, 16.52%.

5-((2,4-Dichlorophenyl)diazenyl)-4-methyl-2-[((1-(thiophen-2-yl)ethylidene)hydra-
zineylidene] thiazol-3(2H)-amine (4d). Brown solid, 79% yield, m.p. 227–229 ◦C (DMF);
IR (KBr): v 3415, 3228 (NH2), 1600 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.28 (s, 3H,
CH3-thiazole),), 2.48 (s, 3H, CH3-C=N), 5.11 (s, 2H, Ar-H), 7.08–7.81 (m, 6H, Ar-H); 13C-
NMR (DMSO-d6): δ = 13.27 (CH3-thiazole), 16.02 (CH3-C=N), 110.54, 124.91, 126.18, 127.89,
128.23, 130.27, 132.58, 134.87, 135.76, 142.43, 144.41, 145.65, 156.24, 162.14; MS m/z (%): 424
(M+, 25). Analysis calculated for C16H14Cl2N6S2 (424.01): C, 45.18; H, 3.32; N, 19.76; S,
15.07; Found: C, 45.03; H, 3.25; N, 19.68; S, 15.14%.

3-Amino-2-[(1-(thiophen-2-yl)ethylidene)hydrazineylidene]-5-(2-(p-tolyl)hydrazi-
neylidene) thiazolidin-4-one (8a). Yellow solid, 70% yield, m.p. 155–157 ◦C (EtOH);
IR (KBr): v 3428, 3340, 3235 (NH2 & NH), 1680 (C=O), 1598 (C=N) cm−1; 1H-NMR (DMSO-
d6): δ = 2.37 (s, 3H, Ar-CH3), 2.47 (s, 3H, CH3-C=N), 5.38 (s, 2H, NH2), 7.08–7.75 (m, 7H,
Ar-H), 10.76 (s, 1H, NH); 13C-NMR (DMSO-d6): δ = 15.12 (CH3-C=N), 21.14 (Ar-CH3),
120.11, 122.13, 124.32, 125.19, 127.64, 128.55, 129.27, 140.47, 146.87, 153.41, 159.74 (Ar-Cs),
168.81 (C=O); MS m/z (%): 372 (M+, 62). Analysis calculated for C16H16N6OS2 (372.08): C,
51.60; H, 4.33; N, 22.56; S, 17.22; Found: C, 51.45; H, 4.19; N, 22.61; S, 17.35%.

3-Amino-5-(2-(4-chlorophenyl)hydrazineylidene)-2-[(1-(thiophen-2-yl)ethylidene)
hydrazineylidene]thiazolidin-4-one (8b). Yellow solid, 74% yield, m.p. 177–179 ◦C(DMF-
EtOH); IR (KBr): v 3428, 3342, 3236 (NH2 & NH), 1681 (C=O), 1599 (C=N) cm−1; 1H-NMR
(DMSO-d6): δ = 2.46 (s, 3H, CH3-C=N), 5.32 (s, 2H, NH2), 7.01–7.62 (m, 7H, Ar-H), 11.24 (s,
1H, NH); 13C-NMR (DMSO-d6): δ = 15.12 (CH3-C=N), 120.08, 121.93, 124.31, 125.21, 127.94,
128.51, 130.17, 141.41, 146.82, 151.87, 159.72 (Ar-Cs), 168.87 (C=O); MS m/z (%): 394 (M++ 2,
6), 392 (M+, 16). Analysis calculated for C15H13ClN6OS2 (392.03): C, 45.86; H, 3.34; N, 21.39;
S, 16.32; Found: C, 45.71; H, 3.45; N, 21.26; S, 16.44%.
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4-Phenyl-2-[((1-(thiophen-2-yl)ethylidene)hydrazineylidene]thiazol-3(2H)-amine
(11a). Yellowish-white crystals, 79% yield, m.p. 166–168 ◦C (EtOH); IR (KBr): v 3424, 3220
(NH2), 1599 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.37 (s, 3H, CH3-C=N), 4.77 (s, 2H,
NH2), 7.02 (s, 1H, thiazole-H), 7.08–7.83 (m, 8H, Ar-H); 13C-NMR (DMSO-d6): δ = 15.12
(CH3-C=N), 112.08, 124.13, 125.31, 126.21, 127.94, 128.53, 135.17, 139.11, 144.54, 151.87,
159.72, 164.87 (Ar-Cs); MS m/z (%): 314 (M+, 51). Analysis calculated for C15H14N4S2
(314.07): C, 57.30; H, 4.49; N, 17.82; S, 20.39; Found: C, 57.16; H, 4.57; N, 17.69; S, 20.51%.

2-[((1-(Thiophen-2-yl)ethylidene)hydrazineylidene]-4-(p-tolyl)thiazol-3(2H)-amine
(11b). Yellowish-white crystals, 75% yield, m.p. 149–151 ◦C (EtOH); IR (KBr): v 3430, 3214
(NH2), 1598 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.31 (s, 3H, Ar-CH3), 2.37 (s, 3H,
CH3-C=N), 4.81 (s, 2H, NH2), 7.08 (s, 1H, thiazole-H), 7.23–7.79 (m, 7H, Ar-H); 13C-NMR
(DMSO-d6): δ = 14.82 (CH3-C=N), 21.18 (Ar-CH3), 112.08, 124.04, 125.11, 126.18, 127.24,
128.53, 134.21, 139.11, 143.54, 152.87, 159.72, 163.94 (Ar-Cs); MS m/z (%): 328 (M+, 100).
Analysis calculated for C16H16N4S2 (328.08): C, 58.51; H, 4.91; N, 17.06; S, 19.52; Found: C,
58.63; H, 4.80; N, 17.11; S, 19.63%.

4-(4-Chlorophenyl)-2-[((1-(thiophen-2-yl)ethylidene)hydrazineylidene]thiazol-3(2H)-
amine (11c). Yellow solid, 73% yield, m.p. 180–182 ◦C (DMF); IR (KBr): v 3428, 3220 (NH2),
1603 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.41 (s, 3H, CH3-C=N), 4.86 (s, 2H, NH2), 7.08
(s, 1H, thiazole-H), 7.11–7.84 (m, 7H, Ar-H); 13C-NMR (DMSO-d6): δ = 14.82 (CH3-C=N),
110.11, 120.13, 125.31, 126.21, 127.94, 128.53, 132.17, 135.11, 145.54, 149.87, 155.72, 164.87
(Ar-Cs); MS m/z (%): 350 (M++ 2, 19), 348 (M+, 46). Analysis calculated for C15H13ClN4S2
(348.03): C, 51.64; H, 3.76; N, 16.06; S, 18.38; Found: C, 51.50; H, 3.84; N, 15.93; S, 18.44%.

4-(4-Nitrophenyl)-2-[((1-(thiophen-2-yl)ethylidene)hydrazineylidene]thiazol-3(2H)-
amine (11d). Brown solid, 81% yield, m.p. 194–196 ◦C (DMF); IR (KBr): v 3424, 3226 (NH2),
1600 (C=N) cm−1; 1H-NMR (DMSO-d6): δ = 2.43 (s, 3H, CH3-C=N), 4.84 (s, 2H, NH2), 7.05
(s, 1H, thiazole-H), 7.11–7.84 (m, 7H, Ar-H); 13C-NMR (DMSO-d6): δ = 14.59 (CH3-C=N),
110.11, 123.13, 124.31, 125.21, 126.94, 127.53, 142.17, 145.11, 149.54, 151.87, 155.72, 162.87
(Ar-Cs); MS m/z (%): 359 (M+, 73). Analysis calculated for C15H13N5O2S2 (359.05): C, 50.13;
H, 3.65; N, 19.49; S, 17.84; Found: C, 50.05; H, 3.51; N, 19.37; S, 17.72%.

1-[3-Amino-4-methyl-2-((1-(thiophen-2-yl)ethylidene)hydrazineylidene]-2,3-dihy-
drothiazol-5-yl)ethan-1-one (13a). Yellowish-white crystals, 77% yield, m.p. 156–158 ◦C
(EtOH); IR (KBr): v 3416, 3220 (NH2), 1715 (C=O), 1591 (C=N) cm−1; 1H-NMR (DMSO-d6):
δ = 2.25 (s, 3H, CH3-thiazole), 2.41 (s, 3H, CH3-C=N), 2.49 (s, 3H, COCH3), 5.12 (s, 2H, NH2),
7.02–7.62 (m, 3H, Ar-H); 13C-NMR (DMSO-d6): δ = 9.05 (CH3-thiazole), 15.37 (CH3-C=N),
40.52 (COCH3), 126.12, 127.49, 128.18, 142.11, 143.99, 145.66, 157.51, 164.47 (Ar-Cs), 181.91
(C=O); MS m/z (%): 294 (M+, 49). Analysis calculated for C12H14N4OS2 (294.06): C, 48.96;
H, 4.79; N, 19.03; S, 21.78; Found: C, 48.79; H, 4.63; N, 19.01; S, 21.68%.

Ethyl 3-amino-4-methyl-2-[((1-(thiophen-2-yl)ethylidene)hydrazineylidene]-2,3-
dihydro thiazole-5-carboxylate (13b). Yellowish-white crystals, 71% yield, m.p. 141–143
◦C (EtOH); IR (KBr): v 3420, 3222 (NH2), 1721 (C=O), 1595 (C=N) cm−1; 1H-NMR (DMSO-
d6): δ = 1.14 (t, 3H, CH3-CH2), 2.28 (s, 3H, CH3-thiazole), 2.46 (s, 3H, CH3-C=N), 3.02 (q,
2H, CH2CH3), 5.11 (s, 2H, NH2), 7.02–7.62 (m, 3H, Ar-H); 13C-NMR (DMSO-d6): δ = 9.11
(CH3-thiazole), 15.05 (CH3-CH2), 15.36 (CH3-C=N), 56.52 (CH2CH3), 126.51, 127.45, 128.04,
143.11, 144.19, 145.68, 157.52, 163.47 (Ar-Cs), 182.61 (C=O); MS m/z (%): 324 (M+, 27).
Analysis calculated for C13H16N4O2S2 (324.07): C, 48.13; H, 4.97; N, 17.27; S, 19.76; Found:
C, 48.06; H, 4.83; N, 17.19; S, 19.61%.

3.1.3. Alternate Synthesis of 4a and 8a

A mixture of N′-[1-(thiophen-2-yl)ethylidene]hydrazinecarbothiohydrazide (5) (0.214 g,
1 mmol) with the appropriate 2-oxo-N′-phenylpropanehydrazonoyl chloride (3a) or ethyl
2-chloro-2-(2-(p-tolyl)hydrazineylidene)acetate (7a) (1 mmol) in ethanol (20 mL) containing
a catalytic amount of TEA was refluxed for 4 h (monitored by TLC). The precipitate formed
was isolated by filtration, washed with methanol, dried, and recrystallized from EtOH to
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ensure the product was identical in all respects (m.p., mixed mp, and IR spectra) with the
products 4a or 8a, respectively.

3.2. In Vitro Cytotoxic Activity

The cytotoxic potentials of the newly synthesized compounds was carried out at the
Regional Center for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt.
Cells were purchased from the Egyptian Holding Company for Biological Products and
Vaccines (VACSERA, Giza, Egypt) and kept in a tissue culture unit. Cells were grown
in Roswell Park Memorial Institute (RPMI)-1640 medium supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 50 units/mL penicillin, and 50 mg/mL streptomycin,
and maintained in a humidified atmosphere containing 5% CO2 [11,25]. Cells were main-
tained as monolayer cultures using serial subculture. Cell culture reagents were obtained
from Lonza (Basel, Switzerland). The anticancer activities of the rest of the compounds
were evaluated in MCF-7 (breast cancer) cells. In addition, the sulforhodamine B (SRB)
assay method, as described previously in [39,40], was used to determine cytotoxicity. Expo-
nentially growing cells were collected using 0.25% trypsin–EDTA and seeded in 96-well
plates at 1000–2000 cells/well in RBMI-1640 supplemented medium. After 24 h, cells were
incubated for 72 h with various concentrations of the compounds tested. Following 72 h
of incubation, the cells were fixed with 10% trichloroacetic acid for 1 h at 4 ◦C. Wells were
stained for 10 min at room temperature with 0.4% sulforhodamine B (SRBC) dissolved in
1% acetic acid. Plates were air-dried for 24 h, and the dye was solubilized with Tris–HCl
for 5 min on a shaker at 1600 rpm. The optical density (OD) of each well was measured
spectrophotometrically at 564 nm using an ELISA microplate reader (ChroMate-4300, Palm
City, FL, USA). IC50 values were calculated using a Boltzmann sigmoidal concentration–
response curve using non-linear regression fitting models (Graph Pad, Prism Version 9,
GraphPad Software, San Diego, CA, USA).

4. Conclusions

In summary, acetylthiophene was employed as a critical intermediate to synthesize
a novel series of thiazole-bearing thiophene derivatives. The assigned structure for all
of the newly synthesized compounds was elucidated by elemental and spectral analysis
data, and the mechanisms accounting for their formation were discussed. The in vitro
growth inhibitory activity of the synthesized compounds against MCF-7 tumor cells was
investigated in comparison with cisplatin as a standard drug using the MTT assay, and the
results revealed promising activities for compounds 4b and 13a. The results obtained from
the computational studies, including molecular modeling, pharmacokinetics, and toxicity
radar, supported the results obtained from the anticancer biological studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27130000/s1, Figure S1: The extra ADME results.
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