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Abstract: Interferons (IFNs) play a major role in the host’s antiviral innate immunity. In response
to viral infection, IFNs bind their receptors and initiate a signaling cascade, leading to the accurate
transcriptional regulation of hundreds of IFN-stimulated genes (ISGs). Porcine rotavirus (PoRV)
belongs to genus Rotavirus of the Reoviridae family; the infection is a global epidemic disease and a
major threat to the pig industry. In this study, we found that IFN-λ3 inhibited the replication of PoRV
in both MA104 cells and IPEC-J2 cells, and this inhibition was dose-dependent. Furthermore, the
antiviral activity of IFN-λ3 was more potent in IPEC-J2 cells than in MA104 cells. Further research
showed that IFN-λ3 and IFN-αmight inhibit PoRV infection by activating ISGs, i.e., MxA, OASL and
ISG15, in IPEC-J2 cells. However, the co-treatment of IFN-λ3 and IFN-α did not enhance the antiviral
activity. Our data demonstrated that IFN-λ3 had antiviral activity against PoRV and may serve as a
useful antiviral candidate against PoRV, as well as other viruses in swine.
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The host innate immune system is the first line of defense against viral infections.
Interferons (IFNs) play a major role in the host’s antiviral innate immunity and are broadly
classified into three distinct types based on their molecular architecture, pathway induction,
and cell-receptor specificity [1,2]. At present, type I IFN (IFN-α, IFNβ, IFN-ε, IFN-κ and
IFN-ω); type II IFN (IFN-γ); and type III IFN (IFN-λ) have been identified [3,4]. Type III
IFNs were recently discovered as a unique class of antiviral factors, which consists of IFN-λ1,
IFNλ2, IFN-λ3 and IFN-λ4 in humans; IFN-λ2 and IFN-λ3 in mice; and IFN-λ1, IFN-λ3 and
IFN-λ4 in swine [3,5,6]. In response to viral infection, IFNs that are produced by the host
bind their receptors and initiate a signaling cascade, leading to the accurate transcriptional
regulation of hundreds of IFN-stimulated genes (ISGs) [7]. Classical ISGs belong to three
gene families: Mx proteins; 2′,5′-oligoadenylate synthetase; or ds RNA-activated protein
kinase [8]. Notably, type I and III IFNs differ greatly in sequence and structure, as well
as using different receptors for their signaling, but the downstream signaling pathways
and transcriptional responses that are activated by them are remarkably similar [9]. The
ISGs that are induced by type III IFNs are a subset of those that are induced by type I
IFNs [10]. However, type I and type III IFNs show differences in terms of both regulation
and biological activity, which may be related to differences in the magnitude and kinetics
of signaling and in the types of cells that respond to type I versus type III IFNs [10]. In
general, type III IFNs have slower kinetics and a lower amplitude of individual ISGs
expression, compared to type I IFNs [11]. However, there are exceptions; for example, the
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expression of IFN-α and IFN-λ in plasmacytoid dendritic cells after infection with influenza
A virus in vitro followed highly similar kinetics [12]. Recent studies have demonstrated
that type I and type III IFNs have tissue- and cell-specific differences due to their respective
receptor distribution. The antiviral effects of type III IFNs rather than type I IFNs are
particularly evident at epithelial barriers, such as the gastrointestinal, respiratory and
reproductive tracts [10].

Porcine rotavirus (PoRV) belongs to genus Rotavirus of family Reoviridae, which infects
pigs of all ages—especially piglets—and causes diarrhea, vomiting and dehydration [13].
Since PoRV was first isolated from swine waste in 1974, PoRV infection has become a
global epidemic disease and is currently a major threat to the pig industry [14]. PoRV
primarily invades the mature enterocytes that line the villi of the jejunum and ileum [15].
The intestinal porcine epithelial cell line J2 (IPEC-J2) derives from the jejunum of newborn
pigs, which preserves most of the characteristics of mature enterocytes and is an appropriate
model for studying the interaction of intestinal immune responses and host-pathogens
in vitro [16,17]. In this study, the antiviral activity of IFN-λ3 against PoRV in MA104 cells
and IPEC-J2 cells was evaluated. The possible role of IFN-α and IFN-λ3 in the replication
of PoRV and the expressions of ISGs genes that are induced by IFNs were also investigated.

In the current study, PoRV SC-R strain was used as a model virus to evaluate the an-
tiviral activity of IFN-α and IFN-λ3. The virus was propagated and titrated in MA104 cells.
Recombinant porcine IFN-α and IFN-λ3 were expressed in E. coli and stored in our labo-
ratory [18]. To explore the anti-PoRV effect of different concentrations of IFN-λ3, MA104
cells and IPEC-J2 cells were untreated or pre-treated with IFN-λ3 (10, 100, 1000 ng/mL)
for 24 h. Then, the cells were infected with PoRV SC-R strain at an MOI of 0.1 for 24 h.
The cytopathic effect (CPE) units in culture plates were counted. To further determine the
antiviral effect of IFN-λ3, the IPEC-J2 cells were pre-treated with 100 ng/mL of IFN-λ3
for 24 h, and then infected with PoRV SC-R strain for 12, 24, 36 h at a MOI of 0.1. The
quantification of PoRV VP6 mRNA was performed on total cellular supernatant RNA. The
primers of the VP6 gene are listed in Table 1. As shown in Figure 1a, IFN-λ3 inhibited the
replication of PoRV in a dose-dependent manner in MA104 cells and IPEC-J2 cells. IFN-λ3
exhibited a more potent activity against PoRV infection in IPEC-J2 cells compared with that
in MA104 cells. Importantly, IFN-λ3 significantly reduced the copies of PoRV infection in
IPEC-J2 cells at different time points (Figure 1b).

Table 1. Primers used in this study.

Gene Name Primer Name Sequence (5′–3′) Product Size (bp)

VP6
VP6-F TTCGGATTACTTGGCACTA

118VP6-R TAGCCATTTCATCCATACAC

ISG15
ISG15-F ACAAGGGTCGCAGCAACGC

192ISG15-R GCAGATTCATATACACGGTG

MxA
MxA-F GATGAAAGCGGGAAGATG

119MxA-R TTGGTAAACAGCCGACAC

OASL
OASL-F TCCTTCGCCAAGTTACAG

136OASL-R CATAGAGAGGGGGCAGCC

β-actin
β-actin-F ATCGTGCGGGACATCAAG

179
β-actin-R GGAAGGAGGGCTGGAA

As major members of the IFN family, IFN-α and IFN-λ3 play important roles in
innate immunity against various viral infections in pigs [19,20]. Therefore, we wondered
whether a co-treatment of IFN-λ3 and IFN-α could enhance the antiviral efficacy against
PoRV in IPEC-J2 cells. The IPEC-J2 cells were treated with different concentrations of
recombinant IFN-α (10, 100 and 1000 IU/mL); IFN-λ3 (0.1, 1 and 10 ng/mL); and mixtures
of IFN-α + IFN-λ3 (10 IU/mL + 0.1 ng/mL, 100 IU/mL + 1 ng/mL, 1000 IU/mL + 10
ng/mL) for 24 h, respectively. Then, the cells were infected with PoRV SC-R strain for 36 h
at an MOI of 0.01. A low MOI could obtain a higher resolution of the virus yield inhibition
curves. Our previous study showed that after inoculation with 0.01 and 0.1 MOI of PoRV
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SC-R strain, the virus titers increased in the first 36 h. The titer of virus with an MOI of 0.01
was higher than that of virus with an MOI of 0.1 at 36 h (data not shown). The virus titer in
the supernatant was titrated by TCID50. As shown in Figure 2, IFN-λ3 and IFN-α could
both inhibit the replication of PoRV in IPEC-J2 cells in a dose-dependent manner. However,
the co-treatment of IFN-λ3 and IFN-α did not enhance the antiviral efficacy.
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Figure 1. Porcine IFN-λ3 inhibited PoRV infection in MA104 cells and IPEC-J2 cells. (a) MA104 cells
and IPEC-J2 cells were stimulated with porcine IFN-λ3 at different concentrations for 24 h and then
infected with PoRV at 0.1 MOI for 36 h. (b) IPEC-J2 cells were treated or untreated with 100 ng/mL
of IFN-λ3 for 24 h and then infected with PoRV at 0.1 MOI for 12, 24 or 36 h, respectively. PoRV
VP6 mRNA was detected by an RT-PCR. Data were presented as mean ± SEM (n = 3). * p < 0.05;
** p < 0.01 by t test.
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Figure 2. Inhibition of PoRV replication by porcine IFN-α, IFN-λ3 and IFN-α + IFN-λ3. IPEC-J2
cells were stimulated with either one IFN alone or in combination with two IFNs for 24 h, and then
infected with PoRV at 0.01 MOI for 36 h. The PoRV titer in the supernatant was titrated by TCID50.
Dotted lines: IFN-α (�) or IFN-λ3 (•) used individually; continuous line: IFN-α and IFN-λ3 (N) used
in combination. Data were presented as mean ± SEM (n = 3).

To further explore the possible mechanisms of IFN-α and IFN-λ3 anti-PoRV infection,
we examined the expression of ISGs that were induced by IFNs. The IPEC-J2 cells were
incubated with different IFN doses (either individually or in combination) for 24 h. The
total cellular RNA was extracted and the ratio of mRNA for ISG15, MxA and OASL to
β-actin was calculated. These ISGs primers are listed in Table 1. As shown in Figure 3,
a dose-dependent induction of mRNA for ISG15, MxA and OASL was observed in the
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IPEC-J2 cells that were treated with both the single IFN and the co-treatment of IFN-λ3
and IFN-α. These results indicate that IFN-λ3 and IFN-αmight inhibit PoRV infection by
activating ISGs in IPEC-J2 cells. Unfortunately, the potential mechanisms of antagonism
between IFN-α and IFN-λ3 are still not clear.
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Figure 3. Expressions of ISGs induced by IFN-α, IFN-λ3 and IFN-α + IFN-λ3 in IPEC-J2 cells. IPEC-J2
cells were stimulated with either one IFN alone or in combination with two IFNs for 24 h, and the
mRNA levels of OASL (a), MxA (b) and ISG15 (c) were measured by a relative RT-qPCR. The results
were normalized by the β-actin levels of each sample. Dotted lines: IFN-α (�) or IFN-λ3 (•) used
individually; continuous line: IFN-α and IFN-λ3 (N) used in combination. Data were presented as
mean ± SEM (n = 3).

In summary, our data demonstrated that IFN-λ3 had the ability to inhibit the replica-
tion of PoRV in both MA104 cells and IPEC-J2 cells, and this inhibition was dose-dependent.
Furthermore, the antiviral activity of IFN-λ3 was more potent in IPEC-J2 cells than in
MA104 cells. We also found that IFN-λ3 and IFN-αmight inhibit PoRV infection by acti-
vating ISGs, i.e., MxA, OASL and ISG15, in IPEC-J2 cells. However, the co-treatment of
IFN-λ3 and IFN-α did not enhance the antiviral activity. The exact mechanism is yet to be
elucidated. We deduced that the kinetics differences of ISGs that are induced by different
types of IFNs may play a significant role. Our data demonstrated that IFN-λ3 had antiviral
activity against PoRV and may serve as a useful antiviral candidate against PoRV, as well
as other viruses in swine.
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