Next Issue
Volume 27, August-1
Previous Issue
Volume 27, July-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 27, Issue 14 (July-2 2022) – 344 articles

Cover Story (view full-size image): The temporal activation of siRNA provides a valuable strategy for the regulation of siRNA activity and conditional gene silencing. In this study, siRNA was perfectly caged by 5′-vitamin E-benzonobonadiene and failed to initially exercise the function of RNA silencing. However, by taking advantage of the bioorthogonal bond cleavage reaction between benzonorbonadiene and tetrazine, the archer succeeded in regulating the reactivation of the caged siRNA, using tetrazine arrows to remove the cages. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 2612 KiB  
Article
Paramagnetic Properties and Moderately RapidConformational Dynamics in the Cobalt(II) Calix[4]arene Complex by NMR
Molecules 2022, 27(14), 4668; https://doi.org/10.3390/molecules27144668 - 21 Jul 2022
Cited by 1 | Viewed by 1402
Abstract
1H NMR measurements are reported for the CD2Cl2/CDCl3 solutions of the Co(II) calix[4]arenetetraphosphineoxide complex (I). Temperature dependences of the 1H NMR spectra of I have been analyzed using the line shape analysis, taking into [...] Read more.
1H NMR measurements are reported for the CD2Cl2/CDCl3 solutions of the Co(II) calix[4]arenetetraphosphineoxide complex (I). Temperature dependences of the 1H NMR spectra of I have been analyzed using the line shape analysis, taking into account the temperature variation of paramagnetic chemical shifts, within the frame of the dynamic NMR method. Conformational dynamics of the 2:1 Co(II) calix[4]arene complexes was conditioned by the pinched conepinched cone interconversion of I (with activation Gibbs energy ΔG(298K) = 40 ± 3 kJ/mol. Due to substantial temperature dependence of paramagnetic shifts, complex I can be used as model compound for designing an NMR thermosensor reagent for local temperature monitoring. Full article
(This article belongs to the Special Issue Synthesis and Reactivity of Transition Metal Complexes)
Show Figures

Graphical abstract

13 pages, 3548 KiB  
Article
Pd(II) Binding Strength of a Novel Ambidentate Dipeptide-Hydroxypyridinonate Ligand: A Solution Equilibrium Study
Molecules 2022, 27(14), 4667; https://doi.org/10.3390/molecules27144667 - 21 Jul 2022
Viewed by 1081
Abstract
A novel ambidentate dipeptide conjugate (H(L1)) containing N-donor atoms of the peptide part and an (O,O) chelate at the hydroxypyridinone (HP) ring is synthesized and characterized. It is hoped that this chelating ligand can be useful to obtain multitargeted Co(III)/Pt(II) dinuclear complexes with [...] Read more.
A novel ambidentate dipeptide conjugate (H(L1)) containing N-donor atoms of the peptide part and an (O,O) chelate at the hydroxypyridinone (HP) ring is synthesized and characterized. It is hoped that this chelating ligand can be useful to obtain multitargeted Co(III)/Pt(II) dinuclear complexes with anticancer potential. The Pd(II) (as a Pt(II) model but with faster ligand exchange reactions) binding strength of the ligand was studied in an aqueous solution with the combined use of pH-potentiometry and NMR. In an equimolar solution, (L1) was found to bind Pd(II) via the terminal amino and increasing number of peptide nitrogens of the peptide backbone over a wide pH range. At a 2:1 Pd(II) to ligand ratio, the presence of [Pd2H–x(L1)] (x = 1–4) species, with high stability and with the coordination of the (O,O) chelating set of the ligand, was detected. The reaction of H(L1) with [Co(tren)]3+ (tren = tris(2-aminoethyl)amine) indicated the exclusive binding of (L1) via its (O,O) donor atoms to the metal unit, while treatment of the resulting Co-complex with Pd(II) afforded the formation of a Co/Pd heterobimetallic complex in solution with an (NH2, Namide) coordination of Pd(II). Shortening the peptide backbone in H(L1) by one peptide unit compared to the structurally similar ambidentate chelator consisting of three peptide bonds resulted in the slightly more favorable formation of the N-coordinated Pd(II) species, allowing the tailoring of the coordination properties. Full article
(This article belongs to the Special Issue Novel Functional Hydroxypyridinone-Based Derivatives)
Show Figures

Figure 1

12 pages, 1993 KiB  
Article
Andrographolide Inhibits Epstein–Barr Virus Lytic Reactivation in EBV-Positive Cancer Cell Lines through the Modulation of Epigenetic-Related Proteins
Molecules 2022, 27(14), 4666; https://doi.org/10.3390/molecules27144666 - 21 Jul 2022
Cited by 2 | Viewed by 1533
Abstract
Reactivation of Epstein–Barr virus (EBV) is associated with EBV-associated malignancies and is considered to be a benefit target for treatment. Andrographolide is claimed to have antiviral and anti-tumor activities. Therefore, this study aimed to investigate the effect of andrographolide on the inhibition of [...] Read more.
Reactivation of Epstein–Barr virus (EBV) is associated with EBV-associated malignancies and is considered to be a benefit target for treatment. Andrographolide is claimed to have antiviral and anti-tumor activities. Therefore, this study aimed to investigate the effect of andrographolide on the inhibition of EBV lytic reactivation in EBV-positive cancer cells. The cytotoxicity of andrographolide was firstly evaluated in EBV-positive cancer cells; P3HR1, AGS-EBV and HONE1-EBV cells, using an MTT assay. Herein, the spontaneous expression of EBV lytic genes; BALF5, BRLF1 and BZLF1, was significantly inhibited in andrographolide-treated cells. Accordingly, andrographolide inhibited the expression of Zta and viral production in sodium butyrate (NaB)-induced EBV lytic reactivation. Additionally, proteomics and bioinformatics analysis revealed the differentially expressed proteins that inhibit EBV lytic reactivation in all treated cell lines were functionally related with the histone modifications and chromatin organization, such as histone H3-K9 modification and histone H3-K27 methylation. Taken together, andrographolide inhibits EBV reactivation in EBV-positive cancer cells by inhibiting EBV lytic genes, probably, through the histone modifications. Full article
(This article belongs to the Special Issue Antivirals and Antiviral Strategies)
Show Figures

Figure 1

17 pages, 776 KiB  
Review
Formation of Carcinogens in Processed Meat and Its Measurement with the Usage of Artificial Digestion—A Review
Molecules 2022, 27(14), 4665; https://doi.org/10.3390/molecules27144665 - 21 Jul 2022
Cited by 6 | Viewed by 2346
Abstract
Meat is a rich source of various nutrients. However, it needs processing before consumption, what in turn generates formation of carcinogenic compounds, i.a., polycyclic aromatic hydrocarbons (PAH), nitrosamines (NOCs), and the most mutagenic heterocyclic aromatic amines (HAAs). It was widely found that many [...] Read more.
Meat is a rich source of various nutrients. However, it needs processing before consumption, what in turn generates formation of carcinogenic compounds, i.a., polycyclic aromatic hydrocarbons (PAH), nitrosamines (NOCs), and the most mutagenic heterocyclic aromatic amines (HAAs). It was widely found that many factors affect the content of carcinogens in processed meat. However, it has recently been discovered that after digestion free HAAs are released, which are not detectable before enzymatic treatment. It was established that the highest percentage of carcinogens is released in the small intestine and that its amount can be increased up to 6.6-fold. The change in free HAAs content in analyzed samples was dependent on many factors such as meat type, doneness, particle size of meat, and the enzyme concentration used for digestion. In turn, introduction of bacteria naturally occurring in the human digestive tract into the model significantly decreases total amount of HAAs. Contrary, the addition of food ingredients rich in polyphenols, fiber, and water (pepper powder, onions, apples) increases free HAAs’ release up to 56.06%. Results suggests that in vitro digestion should be an integral step of sample preparation. Artificial digestion introduced before chromatographic analysis will allow to estimate accurately the content of carcinogens in processed meat. Full article
(This article belongs to the Special Issue New Developments in In Vitro Digestion and Functional Foods)
Show Figures

Figure 1

17 pages, 2827 KiB  
Article
In Silico Target Identification of Galangin, as an Herbal Flavonoid against Cholangiocarcinoma
Molecules 2022, 27(14), 4664; https://doi.org/10.3390/molecules27144664 - 21 Jul 2022
Viewed by 2417
Abstract
Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the [...] Read more.
Cholangiocarcinoma (CCA) is a heterogenous group of malignancies in the bile duct, which proliferates aggressively. CCA is highly prevalent in Northeastern Thailand wherein it is associated with liver fluke infection, or Opisthorchis viverrini (OV). Most patients are diagnosed in advanced stages, when the cancer has metastasized or severely progressed, thereby limiting treatment options. Several studies investigate the effect of traditional Thai medicinal plants that may be potential therapeutic options in combating CCA. Galangin is one such herbal flavonoid that has medicinal properties and exhibits anti-tumor properties in various cancers. In this study, we investigate the role of Galangin in inhibiting cell proliferation, invasion, and migration in OV-infected CCA cell lines. We discovered that Galangin reduced cell viability and colony formation by inducing apoptosis in CCA cell lines in a dose-dependent manner. Further, Galangin also effectively inhibited invasion and migration in OV-infected CCA cells by reduction of MMP2 and MMP9 enzymatic activity. Additionally, using proteomics, we identified proteins affected post-treatment with Galangin. Enrichment analysis revealed that several kinase pathways were affected by Galangin, and the signature corroborated with that of small molecule kinase inhibitors. Hence, we identified putative targets of Galangin using an in silico approach which highlighted c-Met as candidate target. Galangin effectively inhibited c-Met phosphorylation and subsequent signaling in in vitro CCA cells. In addition, Galangin was able to inhibit HGF, a mediator of c-Met signaling, by suppressing HGF-stimulated invasion, as well as migration and MMP9 activity. This shows that Galangin can be a useful anti-metastatic therapeutic strategy in a subtype of CCA patients. Full article
Show Figures

Figure 1

25 pages, 4505 KiB  
Review
Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach
Molecules 2022, 27(14), 4663; https://doi.org/10.3390/molecules27144663 - 21 Jul 2022
Cited by 1 | Viewed by 2518
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions [...] Read more.
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood–brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach. Full article
Show Figures

Graphical abstract

12 pages, 697 KiB  
Article
Reduced Endocannabinoid Tone in Saliva of Chronic Orofacial Pain Patients
Molecules 2022, 27(14), 4662; https://doi.org/10.3390/molecules27144662 - 21 Jul 2022
Cited by 3 | Viewed by 2184
Abstract
Background: the endocannabinoid system (ECS) participates in many physiological and pathological processes including pain generation, modulation, and sensation. Its involvement in chronic orofacial pain (OFP) in general, and the reflection of its involvement in OFP in salivary endocannabinoid (eCBs) levels in particular, has [...] Read more.
Background: the endocannabinoid system (ECS) participates in many physiological and pathological processes including pain generation, modulation, and sensation. Its involvement in chronic orofacial pain (OFP) in general, and the reflection of its involvement in OFP in salivary endocannabinoid (eCBs) levels in particular, has not been examined. Objectives: to evaluate the association between salivary (eCBs) levels and chronic OFP. Methods: salivary levels of 2 eCBs, anandamide (AEA), 2-arachidonoylglycerol (2-AG), 2 endocannabinoid-like compoundsN-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), and their endogenous precursor and breakdown product, arachidonic acid (AA), were analyzed using liquid chromatography/tandem mass spectrometry in 83 chronic OFP patients and 43 pain-free controls. The chronic OFP patients were divided according to diagnosis into musculoskeletal, neurovascular/migraine, and neuropathic pain types. Results: chronic OFP patients had lower levels of OEA (p = 0.02) and 2-AG (p = 0.01). Analyzing specific pain types revealed lower levels of AEA and OEA in the neurovascular group (p = 0.04, 0.02, respectively), and 2-AG in the neuropathic group compared to controls (p = 0.05). No significant differences were found between the musculoskeletal pain group and controls. Higher pain intensity was accompanied by lower levels of AA (p = 0.028), in neuropathic group. Conclusions: lower levels of eCBs were found in the saliva of chronic OFP patients compared to controls, specifically those with neurovascular/migraine, and neuropathic pain. The detection of changes in salivary endocannabinoids levels related to OFP adds a new dimension to our understanding of OFP mechanisms, and may have diagnostic as well as therapeutic implications for pain. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Figure 1

12 pages, 2981 KiB  
Article
Super Early Scan of PSMA PET/CT in Evaluating Primary and Metastatic Lesions of Prostate Cancer
Molecules 2022, 27(14), 4661; https://doi.org/10.3390/molecules27144661 - 21 Jul 2022
Viewed by 1410
Abstract
68Ga-prostate specific membrane antigen (PSMA)-11 PET/CT has been widely used in the diagnosis of prostate cancer (PCa); however, the urine lead shielding resulting from the urinary metabolism of tracers may obstruct the detection of surrounding metastasis. In this research, the additive value [...] Read more.
68Ga-prostate specific membrane antigen (PSMA)-11 PET/CT has been widely used in the diagnosis of prostate cancer (PCa); however, the urine lead shielding resulting from the urinary metabolism of tracers may obstruct the detection of surrounding metastasis. In this research, the additive value of super early scanning in diagnosing primary lesions and metastasis in the pelvic cavity was evaluated. Firstly, the differentiation efficiency of 68Ga-PSMA-11 PET scanned at 3 min post-injection (min P.I.) was measured in PSMA-positive (22rv1 cells) and PSMA-negative (PC3 cells) model mice. Secondly, 106 patients were scanned at 3 min P.I. for the pelvic cavity and then scanned as a standard protocol at 45 min P.I. In the results, the differential diagnosis of PSMA expression was completely reflected as early as 3 min P.I. for mice models. For patients, when correlated with the Gleason score, the quantitative results of the super early scan displayed a comparable correlation coefficient with the routine scan. The target to bladder ratios increased from 1.44 ± 2.40 at 45 min to 10.10 ± 19.10 at 3 min (p < 0.001) for the primary lesions, and it increased from 0.99 ± 1.88 to 9.27 ± 23.03 for metastasis. Meanwhile, the target to background ratios increased from 2.21 ± 2.44 at 3 min to 19.13 ± 23.93 at 45 min (p < 0.001) for the primary lesions, and it increased from 1.68 ± 2.71 to 12.04 ± 18.73 (p < 0.001) for metastasis. In conclusion, super early scanning of 68Ga-PSMA-11 PET/CT added referable information for metastasis detection in order to avoid disturbing tracer activity in the urinary system. Full article
(This article belongs to the Special Issue Medicinal Chemistry in China II)
Show Figures

Figure 1

23 pages, 982 KiB  
Review
Potential Natural Biomolecules Targeting JAK/STAT/SOCS Signaling in the Management of Atopic Dermatitis
Molecules 2022, 27(14), 4660; https://doi.org/10.3390/molecules27144660 - 21 Jul 2022
Cited by 12 | Viewed by 3495
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders. Full article
(This article belongs to the Special Issue Biological Activities of Natural Products III)
Show Figures

Figure 1

10 pages, 1385 KiB  
Article
Piperidine-Iodine as Efficient Dual Catalyst for the One-Pot, Three-Component Synthesis of Coumarin-3-Carboxamides
Molecules 2022, 27(14), 4659; https://doi.org/10.3390/molecules27144659 - 21 Jul 2022
Cited by 3 | Viewed by 2148
Abstract
A simple and efficient one-pot, three-component synthetic method for the preparation of coumarin-3-carboxamides was carried out by the reaction of salicylaldehyde, aliphatic primary/secondary amines, and diethylmalonate. The protocol employs piperidine-iodine as a dual system catalyst and ethanol, a green solvent. The main advantages [...] Read more.
A simple and efficient one-pot, three-component synthetic method for the preparation of coumarin-3-carboxamides was carried out by the reaction of salicylaldehyde, aliphatic primary/secondary amines, and diethylmalonate. The protocol employs piperidine-iodine as a dual system catalyst and ethanol, a green solvent. The main advantages of this approach are that it is a metal-free and clean reaction, has low catalyst loading, and requires no tedious workup. Full article
(This article belongs to the Special Issue Multicomponent Reactions (MCRs))
Show Figures

Graphical abstract

10 pages, 905 KiB  
Article
Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy
Molecules 2022, 27(14), 4658; https://doi.org/10.3390/molecules27144658 - 21 Jul 2022
Cited by 1 | Viewed by 1392
Abstract
A series of novel cobalt bis(dicarbollide)—curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other [...] Read more.
A series of novel cobalt bis(dicarbollide)—curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)—curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT). Full article
Show Figures

Graphical abstract

13 pages, 1723 KiB  
Article
Physiology-Based Pharmacokinetic Study on 18β-Glycyrrhetic Acid Mono-Glucuronide (GAMG) Prior to Glycyrrhizin in Rats
Molecules 2022, 27(14), 4657; https://doi.org/10.3390/molecules27144657 - 21 Jul 2022
Cited by 4 | Viewed by 1462
Abstract
To understand that 18β-Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) showed better pharmacological activity and drug-like properties than 18β-Glycyrrhizin (GL); a rapid and sensitive HPLC-MS/MS method was established for the simultaneous determination of GAMG and its metabolite 18β-Glycyrrhetinic acid (GA) in rat plasma and [...] Read more.
To understand that 18β-Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) showed better pharmacological activity and drug-like properties than 18β-Glycyrrhizin (GL); a rapid and sensitive HPLC-MS/MS method was established for the simultaneous determination of GAMG and its metabolite 18β-Glycyrrhetinic acid (GA) in rat plasma and tissues after oral administration of GAMG or GL. This analytical method was validated by linearity, LLOQ, specificity, recovery rate, matrix effect, etc. After oral administration, GAMG exhibited excellent Cmax (2377.57 ng/mL), Tmax (5 min) and AUC0-T (6625.54 mg/L*h), which was much higher than the Cmax (346.03 ng/mL), Tmax (2.00 h) and AUC0-T (459.32 mg/L*h) of GL. Moreover, GAMG had wider and higher tissue distribution in the kidney, spleen, live, lung, brain, etc. These results indicated that oral GAMG can be rapidly and efficiently absorbed and be widely distributed in tissues to exert stronger and multiple pharmacological activities. This provided a physiological basis for guiding the pharmacodynamic study and clinical applications of GAMG. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

16 pages, 2189 KiB  
Article
Three New Stigmatellin Derivatives Reveal Biosynthetic Insights of Its Side Chain Decoration
Molecules 2022, 27(14), 4656; https://doi.org/10.3390/molecules27144656 - 21 Jul 2022
Cited by 2 | Viewed by 1606
Abstract
Myxobacteria generate natural products with unique chemical structures, which not only feature remarkable biological functions, but also demonstrate unprecedented biosynthetic assembly strategies. The stigmatellins have been previously described as potent inhibitors of the mitochondrial and photosynthetic respiratory chain and originate from an unusual [...] Read more.
Myxobacteria generate natural products with unique chemical structures, which not only feature remarkable biological functions, but also demonstrate unprecedented biosynthetic assembly strategies. The stigmatellins have been previously described as potent inhibitors of the mitochondrial and photosynthetic respiratory chain and originate from an unusual polyketide synthase assembly line. While previous biosynthetic investigations were focused on the formation of the 5,7-dimethoxy-8-hydroxychromone ring, side chain decoration of the hydrophobic alkenyl chain in position 2 was investigated less thoroughly. We report here the full structure elucidation, as well as cytotoxic and antimicrobial activities of three new stigmatellins isolated from the myxobacterium Vitiosangium cumulatum MCy10943T with side chain decorations distinct from previously characterized members of this compound family. The hydrophobic alkenyl chain in position 2 of the herein described stigmatellins feature a terminal carboxylic acid group (1), a methoxy group at C-12′ (2) or a vicinal diol (3). These findings provide further implications considering the side chain decoration of these aromatic myxobacterial polyketides and their underlying biosynthesis. Full article
Show Figures

Figure 1

12 pages, 3023 KiB  
Article
Mechanistic Insights into the Mechanism of Inhibitor Selectivity toward the Dark Kinase STK17B against Its High Homology STK17A
Molecules 2022, 27(14), 4655; https://doi.org/10.3390/molecules27144655 - 21 Jul 2022
Cited by 3 | Viewed by 1380
Abstract
As a member of the death-associated protein kinase (DAPK) family, STK17B plays an important role in the regulation of cellular apoptosis and has been considered as a promising drug target for hepatocellular carcinoma. However, the highly conserved ATP-binding site of protein kinases represents [...] Read more.
As a member of the death-associated protein kinase (DAPK) family, STK17B plays an important role in the regulation of cellular apoptosis and has been considered as a promising drug target for hepatocellular carcinoma. However, the highly conserved ATP-binding site of protein kinases represents a challenge to design selective inhibitors for a specific DAPK isoform. In this study, molecular docking, multiple large-scale molecular dynamics (MD) simulations, and binding free energy calculations were performed to decipher the molecular mechanism of the binding selectivity of PKIS43 toward STK17B against its high homology STK17A. MD simulations revealed that STK17A underwent a significant conformational arrangement of the activation loop compared to STK17B. The binding free energy predictions suggested that the driving force to control the binding selectivity of PKIS43 was derived from the difference in the protein–ligand electrostatic interactions. Furthermore, the per-residue free energy decomposition unveiled that the energy contribution from Arg41 at the phosphate-binding loop of STK17B was the determinant factor responsible for the binding specificity of PKIS43. This study may provide useful information for the rational design of novel and potent selective inhibitors toward STK17B. Full article
(This article belongs to the Special Issue Computational Strategy for Drug Design)
Show Figures

Figure 1

16 pages, 3733 KiB  
Article
Post-Modification of Copolymers Obtained by ATRP for an Application in Heterogeneous Asymmetric Salen Catalysis
Molecules 2022, 27(14), 4654; https://doi.org/10.3390/molecules27144654 - 21 Jul 2022
Cited by 2 | Viewed by 1530
Abstract
Copolymers are valuable supports for obtaining heterogeneous catalysts that allow their recycling and therefore substantial savings, particularly in the field of asymmetric catalysis. This contribution reports the use of two comonomers: Azido-3-propylmethacrylate (AZMA) bearing a reactive azide function was associated with 2-methoxyethyl methacrylate [...] Read more.
Copolymers are valuable supports for obtaining heterogeneous catalysts that allow their recycling and therefore substantial savings, particularly in the field of asymmetric catalysis. This contribution reports the use of two comonomers: Azido-3-propylmethacrylate (AZMA) bearing a reactive azide function was associated with 2-methoxyethyl methacrylate (MEMA), used as a spacer, for the ATRP synthesis of copolymers, and then post-functionalized with a propargyl chromium salen complex. The controlled homopolymerization of MEMA by ATRP was firstly described and proved to be more controlled in molar mass than that of AZMA for conversions up to 63%. The ATRP copolymerization of both monomers made it possible to control the molar masses and the composition, with nevertheless a slight increase in the dispersity (from 1.05 to 1.3) when the incorporation ratio of AZMA increased from 10 to 50 mol%. These copolymers were post-functionalized with chromium salen units by click chemistry and their activity was evaluated in the asymmetric ring opening of cyclohexene oxide with trimethylsilyl azide. At an equal catalytic ratio, a significant increase in enantioselectivity was obtained by using the copolymer containing the largest part of salen units, probably allowing, in this case, the more favorable bimetallic activation of both the engaged nucleophile and electrophile. Moreover, the catalytic polymer was recovered by simple filtration and re-engaged in subsequent catalytic runs, up to seven times, without loss of activity or selectivity. Full article
Show Figures

Figure 1

17 pages, 2644 KiB  
Article
Pharmacological Validation for the Folklore Use of Ipomoea nil against Asthma: In Vivo and In Vitro Evaluation
Molecules 2022, 27(14), 4653; https://doi.org/10.3390/molecules27144653 - 21 Jul 2022
Cited by 2 | Viewed by 1593
Abstract
Oxidative stress is the key factor that strengthens free radical generation which stimulates lung inflammation. The aim was to explore antioxidant, bronchodilatory along with anti-asthmatic potential of folkloric plants and the aqueous methanolic crude extract of Ipomoea nil (In.Cr) seeds which [...] Read more.
Oxidative stress is the key factor that strengthens free radical generation which stimulates lung inflammation. The aim was to explore antioxidant, bronchodilatory along with anti-asthmatic potential of folkloric plants and the aqueous methanolic crude extract of Ipomoea nil (In.Cr) seeds which may demonstrate as more potent, economically affordable, having an improved antioxidant profile and providing evidence as exclusive therapeutic agents in respiratory pharmacology. In vitro antioxidant temperament was executed by DPPH, TFC, TPC and HPLC in addition to enzyme inhibition (cholinesterase) analysis; a bronchodilator assay on rabbit’s trachea as well as in vivo OVA-induced allergic asthmatic activity was performed on mice. In vitro analysis of 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) expressed as % inhibition 86.28 ± 0.25 with IC50 17.22 ± 0.56 mol/L, TPC 115.5 ± 1.02 mg GAE/g of dry sample, TFC 50.44 ± 1.06 mg QE/g dry weight of sample, inhibition in cholinesterase levels for acetyl and butyryl with IC50 (0.60 ± 0.67 and 1.5 ± 0.04 mol/L) in comparison with standard 0.06 ± 0.002 and 0.30 ± 0.003, respectively, while HPLC characterization of In.Cr confirmed the existence with identification as well as quantification of various polyphenolics and flavonoids i.e., gallic acid, vanillic acid, chlorogenic acid, quercetin, kaempferol and others. However, oral gavage of In.Cr at different doses in rabbits showed a better brochodilation profile as compared to carbachol and K+-induced bronchospasm. More significant (p < 0.01) reduction in OVA-induced allergic hyper-responses i.e., inflammatory cells grade, antibody IgE as well as altered IFN-α in airways were observed at three different doses of In.Cr. It can be concluded that sound mechanistic basis i.e., the existence of antioxidants: various phenolic and flavonoids, calcium antagonist(s) as well as enzymes’ inhibition profile, validates folkloric consumptions of this traditionally used plant to treat ailments of respiration. Full article
Show Figures

Figure 1

12 pages, 3280 KiB  
Article
Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches
Molecules 2022, 27(14), 4652; https://doi.org/10.3390/molecules27144652 - 21 Jul 2022
Cited by 6 | Viewed by 2081 | Correction
Abstract
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP’s). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the [...] Read more.
Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP’s). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer’s disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson’s disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of −6.9 kcal/mol forming interactions with binding pocket’s critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M−1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs. Full article
(This article belongs to the Special Issue New Advances in the Development of Kinase Inhibitors)
Show Figures

Figure 1

23 pages, 4814 KiB  
Article
Succinimido–Ferrocidiphenol Complexed with Cyclodextrins Inhibits Glioblastoma Tumor Growth In Vitro and In Vivo without Noticeable Adverse Toxicity
Molecules 2022, 27(14), 4651; https://doi.org/10.3390/molecules27144651 - 21 Jul 2022
Cited by 2 | Viewed by 1763
Abstract
SuccFerr (N-[4-ferrocenyl,5-5-bis (4-hydroxyphenyl)-pent-4-enyl]-succinimide) has remarkable antiproliferative effects in vitro, attributed to the formation of a stabilized quinone methide. The present article reports in vivo results for a possible preclinical study. SuccFerr is lipophilic and insoluble in water, so the development of a formulation [...] Read more.
SuccFerr (N-[4-ferrocenyl,5-5-bis (4-hydroxyphenyl)-pent-4-enyl]-succinimide) has remarkable antiproliferative effects in vitro, attributed to the formation of a stabilized quinone methide. The present article reports in vivo results for a possible preclinical study. SuccFerr is lipophilic and insoluble in water, so the development of a formulation to obviate this inconvenience was necessary. This was achieved by complexation with randomly methylated cyclodextrins (RAMEßCDs). This supramolecular water-soluble system allowed the in vivo experiments below to proceed. Application of SuccFerr on the glioblastoma cancer cell line U87 indicates that it affects the cellular cycle by inducing a blockade at G0/G1 phase, linked to apoptosis, and another one at the S phase, associated with senescence. Using healthy Fischer rats, we show that both intravenous and subcutaneous SuccFerr: RAMEßCD administration at 5 mg/kg lacks toxic effects on several organs. To reach lethality, doses higher than 200 mg/kg need to be administered. These results prompted us to perform an ectopic in vivo study at 1 mg/kg i.v. ferrocidiphenol SuccFerr using F98 cells xenografted in rats. Halting of cancer progression was observed after six days of injection, associated with an immunological defense response linked to the active principle. These results demonstrate that the properties of the selected ferrocidiphenol SuccFerr transfer successfully to in vivo conditions, leading to interesting therapeutic perspectives based on this chemistry. Full article
Show Figures

Graphical abstract

3 pages, 195 KiB  
Editorial
Anticancer Inhibitors
Molecules 2022, 27(14), 4650; https://doi.org/10.3390/molecules27144650 - 21 Jul 2022
Cited by 1 | Viewed by 1027
Abstract
Cancer is a multifactorial disorder caused by several aberrations in gene expression that generate a homeostatic imbalance between cell division and death [...] Full article
(This article belongs to the Special Issue Anticancer Inhibitors)
9 pages, 266 KiB  
Article
Occurrence and Characteristics of Staphylococcus aureus Isolated from Dairy Products
Molecules 2022, 27(14), 4649; https://doi.org/10.3390/molecules27144649 - 21 Jul 2022
Cited by 7 | Viewed by 1997
Abstract
Food, particularly milk and cheese, may be a reservoir of multi-drug resistant Staphylococcus aureus strains, which can be considered an important issue in terms of food safety. Furthermore, foods of animal origin can be a cause of staphylococcal food poisoning via the production [...] Read more.
Food, particularly milk and cheese, may be a reservoir of multi-drug resistant Staphylococcus aureus strains, which can be considered an important issue in terms of food safety. Furthermore, foods of animal origin can be a cause of staphylococcal food poisoning via the production of heat-stable enterotoxins (SE). For this reason, we investigated the prevalence of and characterized Staphylococcus aureus strains isolated from milk and fresh soft cheese obtained from farms located in Wielkopolskie and Zachodniopomorskie Provinces in Poland. Overall, 92% of S. aureus isolates were positive for at least one of the 18 enterotoxin genes identified, and 26% of the strains harbored 5 to 8 enterotoxin genes. Moreover, the S. aureus strains contained genes conferring resistance to antibiotics that are critically important in both human and veterinary medicine, i.e., β-lactams (mecA), aminoglycosides (aac(6′)/aph(2″), aph(3′)-IIIa, ant(4′)-Ia) and MLSB (erm(A), msr(A), lun(A)). The antimicrobial susceptibility of S. aureus to 16 antibiotics representing 11 different categories showed that 74% of the strains were resistant to at least 1 antibiotic. Moreover, 28% of the strains showed multidrug resistance; in particular, two methicillin-resistant S. aureus strains (MRSA) exhibited significant antibiotic resistance. In summary, our results show that dairy products are contaminated by S. aureus strains carrying genes encoding a variety of enterotoxins as well genes conferring resistance to antibiotics. Both MRSA strains and MSSA isolates showing multidrug resistance were present in foods of animal origin. Full article
(This article belongs to the Special Issue Improve Food Safety and Quality: Analysis and Methods)
17 pages, 2494 KiB  
Article
Screening and Research on Skin Barrier Damage Protective Efficacy of Different Mannosylerythritol Lipids
Molecules 2022, 27(14), 4648; https://doi.org/10.3390/molecules27144648 - 21 Jul 2022
Cited by 1 | Viewed by 1687
Abstract
Mannosylerythritol lipids (MELs) may prevent skin barrier damage, although their protective mechanisms and active monomeric constituents remain unclear. Here, three MELs were extracted from Candida antarctica cultures containing fermented olive oil then purified using silica gel-based column chromatography and semipreparative HPLC. All three [...] Read more.
Mannosylerythritol lipids (MELs) may prevent skin barrier damage, although their protective mechanisms and active monomeric constituents remain unclear. Here, three MELs were extracted from Candida antarctica cultures containing fermented olive oil then purified using silica gel-based column chromatography and semipreparative HPLC. All three compounds (MEL-A, MEL-B, MEL-C) were well separated and stable, and reliable materials were used for NMR and HRESIMS chemical structure determinations and for assessing MELs’ protective effects against skin damage. Notably, MEL-B and MEL-C effectively protected HaCaT cells from UVB-induced damage by upregulating the contents of filaggrin (FLG) and transglutaminase-1 (TGM1), as determined via ELISA. Moreover, MEL-B treatment (20 μg/mL) of UVB-irradiated HaCaT cells led to the upregulation of both the expression of mRNA genes and the key proteins FLG, LOR, and TGM1, which are known to be decreased in damaged skin cells. Additionally, histopathological analysis results revealed a markedly reduced intracellular vacuolation and cell damage, reflecting improved skin function after MEL-B treatment. Furthermore, immunofluorescence results revealed that MEL-B protected EpiKutis® three-dimensional cultured human skin cells from sodium dodecyl sulfate-induced damage by up-regulating FLG, LOR, and TGM1 expression. Accordingly, MELs’ protection against skin barrier damage depended on MEL-B monomeric constituent activities, thus highlighting their promise as beneficial ingredients for use in skin-care products. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

13 pages, 303 KiB  
Article
Development of Certified Reference Materials for the Determination of Apparent Amylose Content in Rice
Molecules 2022, 27(14), 4647; https://doi.org/10.3390/molecules27144647 - 21 Jul 2022
Cited by 2 | Viewed by 1413
Abstract
Apparent amylose content (AAC) is one of the most important parameters in rice quality evaluation. In this study, four rice reference materials used to test rice AAC were developed. The AAC of rice reference materials were measured by a spectrophotometric method with a [...] Read more.
Apparent amylose content (AAC) is one of the most important parameters in rice quality evaluation. In this study, four rice reference materials used to test rice AAC were developed. The AAC of rice reference materials were measured by a spectrophotometric method with a defatting procedure, calibrated from potato amylose and waxy rice amylopectin at the absorption wavelengths of 620 and 720 nm. Homogeneity test (n = 20) was judged by F-test based on the mean squares of among and within bottles, and short- and long-term stability monitoring was performed by T-test to check if there was significant degradation at the delivery temperature of under 40 °C (14 days) and at 0–4 °C storage condition (18 months), respectively. After joint evaluation by ten laboratories, Dixion and Cochran statistical analyses were presented. The expanded uncertainties were calculated based on the uncertainty of homogeneity, short- and long-term stability, and inter-laboratory validation containing factor k = 2. It found that the four reference materials were homogenous and stable, and had the AAC (g/100 g, k = 2) of 2.96 ± 1.01, 10.68 ± 0.66, 17.18 ± 1.04, and 16.09 ± 1.29, respectively, at 620 nm, and 1.46 ± 0.49, 10.44 ± 0.56, 16.82 ± 0.75, and 24.33 ± 0.52, respectively, at 720 nm. It was indicated that 720 nm was more suitable for the determination of rice AAC with lower uncertainties. The determinations of the AAC of 11 rice varieties were carried out by two methods, the method without defatting and with calibration from the four rice reference materials and the method with a defatting procedure and calibrating from potato amylose and waxy rice amylopectin. It confirmed that the undefatted rice reference materials could achieve satisfactory results to test the rice samples with the AAC ranging from 1 to 25 g/100 g. It would greatly reduce the time cost and improve testing efficiency and applicability, and provide technical support for the high-quality development of the rice industry. Full article
(This article belongs to the Special Issue Recent Advances in Food and Agricultural Products Analysis)
Show Figures

Graphical abstract

13 pages, 3257 KiB  
Article
In Silico Analysis of PORD Mutations on the 3D Structure of P450 Oxidoreductase
Molecules 2022, 27(14), 4646; https://doi.org/10.3390/molecules27144646 - 21 Jul 2022
Cited by 1 | Viewed by 1720
Abstract
Cytochrome P450 oxidoreductase (POR) is a membrane-bound flavoprotein that helps in transferring electrons from its NADPH domain to all cytochrome P450 (CYP450) enzymes. Mutations in the POR gene could severely affect the metabolism of steroid hormones and the development of skeletal muscles, a [...] Read more.
Cytochrome P450 oxidoreductase (POR) is a membrane-bound flavoprotein that helps in transferring electrons from its NADPH domain to all cytochrome P450 (CYP450) enzymes. Mutations in the POR gene could severely affect the metabolism of steroid hormones and the development of skeletal muscles, a condition known as Cytochrome P450 oxidoreductase deficiency (PORD). PORD is associated with clinical presentations of disorders of sex development, Antley and Bixler’s syndrome (ABS), as well as an abnormal steroid hormone profile. We have performed an in silico analysis of POR 3D X-ray protein crystal structure to study the effects of reported mutations on the POR enzyme structure. A total of 32 missense mutations were identified, from 170 PORD patients, and mapped on the 3D crystal structure of the POR enzyme. In addition, five of the missense mutations (R457H, A287P, D210G, Y181D and Y607C) were further selected for an in-depth in silico analysis to correlate the observed changes in POR protein structure with the clinical phenotypes observed in PORD patients. Overall, missense mutations found in the binding sites of POR cofactors could lead to a severe form of PORD, emphasizing the importance of POR cofactor binding domains in transferring electrons to the CYP450 enzyme family. Full article
Show Figures

Figure 1

17 pages, 4212 KiB  
Article
Mass Spectrometry-Based Peptide Profiling of Haemolymph from Pterostichus melas Exposed to Pendimethalin Herbicide
Molecules 2022, 27(14), 4645; https://doi.org/10.3390/molecules27144645 - 21 Jul 2022
Cited by 2 | Viewed by 1790
Abstract
Pendimethalin-based herbicides are used worldwide for pre-emergence selective control of annual grasses and weeds in croplands. The endurance of herbicides residues in the environment has an impact on the soil biodiversity and fertility, also affecting non-target species, including terrestrial invertebrates. Carabid beetles are [...] Read more.
Pendimethalin-based herbicides are used worldwide for pre-emergence selective control of annual grasses and weeds in croplands. The endurance of herbicides residues in the environment has an impact on the soil biodiversity and fertility, also affecting non-target species, including terrestrial invertebrates. Carabid beetles are known as natural pest control agents in the soil food web of agroecosystems, and feed on invertebrates and weed seeds. Here, a mass spectrometry untargeted profiling of haemolymph is used to investigate Pterostichus melas metabolic response after to pendimethalin-based herbicide exposure. Mass spectrometric data are examined with statistical approaches, such as principal component analysis, for possible correlation with biological effects. Those signals with high correlation are submitted to tandem mass spectrometry to identify the associated biomarker. The time course exposure showed many interesting findings, including a significant downregulation of related to immune and defense peptides (M-lycotoxin-Ls4a, Peptide hormone 1, Paralytic peptide 2, and Serine protease inhibitor 2). Overall, the observed peptide deregulations concur with the general mechanism of uptake and elimination of toxicants reported for Arthropods. Full article
Show Figures

Graphical abstract

20 pages, 1014 KiB  
Review
Inosine in Neurodegenerative Diseases: From the Bench to the Bedside
Molecules 2022, 27(14), 4644; https://doi.org/10.3390/molecules27144644 - 21 Jul 2022
Cited by 8 | Viewed by 3002
Abstract
Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress [...] Read more.
Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress can be strongly involved in neurodegenerative diseases, the potential use of inosine, known for its antioxidant properties, in this context deserves particular attention. The protective action of inosine treatment could be mediated by its metabolite urate. Here, we review the current preclinical and clinical studies investigating the use of inosine in AD, PD, ALS, and MS. The most important properties of inosine seem to be its antioxidant action and its ability to raise urate levels and to increase energetic resources by improving ATP availability. Inosine appears to be generally safe and well tolerated; however, the possible formation of kidney stones should be monitored, and data on its effectiveness should be further explored since, so far, they have been controversial. Overall, inosine could be a promising potential strategy in the management of neurodegenerative diseases, and additional studies are needed in order to further investigate its safety and efficacy and its use as a complementary therapy along with other approved drugs. Full article
Show Figures

Figure 1

15 pages, 4077 KiB  
Article
Qualitative and Quantitative Analysis of Ejiao-Related Animal Gelatins through Peptide Markers Using LC-QTOF-MS/MS and Scheduled Multiple Reaction Monitoring (MRM) by LC-QQQ-MS/MS
Molecules 2022, 27(14), 4643; https://doi.org/10.3390/molecules27144643 - 21 Jul 2022
Cited by 4 | Viewed by 2182
Abstract
Donkey-hide gelatin, also called Ejiao (colla corii asini), is commonly used as a food health supplement and valuable Chinese medicine. Its growing popular demand and short supply make it a target for fraud, and many other animal gelatins can be found as adulterants. [...] Read more.
Donkey-hide gelatin, also called Ejiao (colla corii asini), is commonly used as a food health supplement and valuable Chinese medicine. Its growing popular demand and short supply make it a target for fraud, and many other animal gelatins can be found as adulterants. Authentication remains a quality concern. Peptide markers were developed by searching the protein database. However, donkeys and horses share the same database, and there is no specific marker for donkeys. Here, solutions are sought following a database-independent strategy. The peptide profiles of authentic samples of different animal gelatins were compared using LC-QTOF-MS/MS. Fourteen specific markers, including four donkey-specific, one horse-specific, three cattle-specific, and six pig-specific peptides, were successfully found. As these donkey-specific peptides are not included in the current proteomics database, their sequences were determined by de novo sequencing. A quantitative LC-QQQ multiple reaction monitoring (MRM) method was further developed to achieve highly sensitive and selective analysis. The specificity and applicability of these markers were confirmed by testing multiple authentic samples and 110 batches of commercial Ejiao products, 57 of which were found to be unqualified. These results suggest that these markers are specific and accurate for authentication purposes. Full article
Show Figures

Figure 1

16 pages, 2854 KiB  
Article
Structural Insights into the Role of β3 nAChR Subunit in the Activation of Nicotinic Receptors
Molecules 2022, 27(14), 4642; https://doi.org/10.3390/molecules27144642 - 20 Jul 2022
Cited by 1 | Viewed by 1380
Abstract
The β3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other β neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While β3 has for several years been considered an accessory [...] Read more.
The β3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other β neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While β3 has for several years been considered an accessory subunit without direct participation in the formation of functional binding sites, recent electrophysiology data have disputed this notion and indicated the presence of a functional (+) side on the extracellular domain (ECD) of β3. In this study, we present the 2.4 Å resolution crystal structure of the monomeric β3 ECD, which revealed rather distinctive loop C features as compared to those of α nAChR subunits, leading to intramolecular stereochemical hindrance of the binding site cavity. Vigorous molecular dynamics simulations in the context of full length pentameric β3-containing nAChRs, while not excluding the possibility of a β3 (+) binding site, demonstrate that this site cannot efficiently accommodate the agonist nicotine. From the structural perspective, our results endorse the accessory rather than functional role of the β3 nAChR subunit, in accordance with earlier functional studies on β3-containing nAChRs. Full article
Show Figures

Figure 1

14 pages, 2388 KiB  
Article
Correlation between Irradiation Treatment and Metabolite Changes in Bactrocera dorsalis (Diptera: Tephritidae) Larvae Using Solid-Phase Microextraction (SPME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS)
Molecules 2022, 27(14), 4641; https://doi.org/10.3390/molecules27144641 - 20 Jul 2022
Cited by 2 | Viewed by 1291
Abstract
The metabolites produced by the larvae of Bactrocera dorsalis (Diptera: Tephritidae) exposed to different doses of irradiation were analyzed using solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), and a metabonomic analysis method of irradiated insects based on GC-MS was established. The [...] Read more.
The metabolites produced by the larvae of Bactrocera dorsalis (Diptera: Tephritidae) exposed to different doses of irradiation were analyzed using solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), and a metabonomic analysis method of irradiated insects based on GC-MS was established. The analysis revealed 67 peaks, of which 23 peaks were identified. The metabolites produced by larvae treated with different irradiation doses were compared by multivariate statistical analysis, and eight differential metabolites were selected. Irradiation seriously influenced the fatty acid metabolic pathway in larvae. Using the R platform combined with the method of multivariate statistical analysis, changes to metabolite production under four irradiation doses given to B. dorsalis larvae were described. Differential metabolites of B. dorsalis larvae carried chemical signatures that indicated irradiation dose, and this method is expected to provide a reference for the detection of irradiated insects. Full article
Show Figures

Figure 1

12 pages, 1758 KiB  
Article
Discrimination and Prediction of Lonicerae japonicae Flos and Lonicerae Flos and Their Related Prescriptions by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy Combined with Multivariate Statistical Analysis
Molecules 2022, 27(14), 4640; https://doi.org/10.3390/molecules27144640 - 20 Jul 2022
Viewed by 1313
Abstract
LJF and LF are commonly used in Chinese patent drugs. In the Chinese Pharmacopoeia, LJF and LF once belonged to the same source. However, since 2005, the two species have been listed separately. Therefore, they are often misused, and medicinal materials are [...] Read more.
LJF and LF are commonly used in Chinese patent drugs. In the Chinese Pharmacopoeia, LJF and LF once belonged to the same source. However, since 2005, the two species have been listed separately. Therefore, they are often misused, and medicinal materials are indiscriminately put in their related prescriptions in China. In this work, firstly, we established a model for discriminating LJF and LF using ATR-FTIR combined with multivariate statistical analysis. The spectra data were further preprocessed and combined with spectral filter transformations and normalization methods. These pretreated data were used to establish pattern recognition models with PLS-DA, RF, and SVM. Results demonstrated that the RF model was the optimal model, and the overall classification accuracy for LJF and LF samples reached 98.86%. Then, the established model was applied in the discrimination of their related prescriptions. Interestingly, the results show good accuracy and applicability. The RF model for discriminating the related prescriptions containing LJF or LF had an accuracy of 100%. Our results suggest that this method is a rapid and effective tool for the successful discrimination of LJF and LF and their related prescriptions. Full article
(This article belongs to the Special Issue Chemometrics in Analytical Chemistry)
Show Figures

Figure 1

19 pages, 9624 KiB  
Article
Synthesis, Molecular Docking Study, and Cytotoxic Activity against MCF Cells of New Thiazole–Thiophene Scaffolds
Molecules 2022, 27(14), 4639; https://doi.org/10.3390/molecules27144639 - 20 Jul 2022
Cited by 14 | Viewed by 1768
Abstract
Investigating novel compounds that may be useful in designing new, less toxic, selective, and potent breast anticancer agents is still the main challenge for medicinal chemists. Thus, in the present work, acetylthiophene was used as a building block to synthesize a novel series [...] Read more.
Investigating novel compounds that may be useful in designing new, less toxic, selective, and potent breast anticancer agents is still the main challenge for medicinal chemists. Thus, in the present work, acetylthiophene was used as a building block to synthesize a novel series of thiazole-bearing thiophene derivatives. The structures of the synthesized compounds were elucidated based on elemental analysis and spectral measurements. The cytotoxic activities of the synthesized compounds were evaluated against MCF-7 tumor cells and compared to a cisplatin reference drug, and against the LLC-Mk2 normal cell line using the MTT assay, and the results revealed promising activities for compounds 4b and 13a. The active compounds were subjected to molecular modeling using MOE 2019, the pharmacokinetics were studied using SwissADME, and a toxicity radar was obtained from the biological screening data. The results obtained from the computational studies supported the results obtained from the anticancer biological studies. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop