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Abstract: This article presents a new way to determine odor nuisance based on the proposed odor
air quality index (OAQII), using an instrumental method. This indicator relates the most important
odor features, such as intensity, hedonic tone and odor concentration. The research was conducted
at the compost screening yard of the municipal treatment plant in Central Poland, on which a self-
constructed gas sensor array was placed. It consisted of five commercially available gas sensors:
three metal oxide semiconductor (MOS) chemical sensors and two electrochemical ones. To calibrate
and validate the matrix, odor concentrations were determined within the composting yard using the
field olfactometry technique. Five mathematical models (e.g., multiple linear regression and principal
component regression) were used as calibration methods. Two methods were used to extract signals
from the matrix: maximum signal values from individual sensors and the logarithm of the ratio
of the maximum signal to the sensor baseline. The developed models were used to determine the
predicted odor concentrations. The selection of the optimal model was based on the compatibility
with olfactometric measurements, taking the mean square error as a criterion and their accordance
with the proposed OAQII . For the first method of extracting signals from the matrix, the best model
was characterized by RMSE equal to 8.092 and consistency in indices at the level of 0.85. In the case of
the logarithmic approach, these values were 4.220 and 0.98, respectively. The obtained results allow
to conclude that gas sensor arrays can be successfully used for air quality monitoring; however, the
key issues are data processing and the selection of an appropriate mathematical model.

Keywords: gas sensors; sensor matrix; odor concentration; field olfactometry; odor index

1. Introduction

The dynamic development of modern civilization and the increasing level of con-
sumption generate the problem of a huge amount of waste, which is a deadly threat to the
environment and human health. Currently, in addition to depositing waste in municipal
landfills, great emphasis is placed on the issues related to their sorting, recycling and
composting. However, all these processes can cause some negative consequences. One of
them is the introduction of solid, liquid or gaseous pollutants to the natural environment,
which poison the soil, water and the atmosphere [1–7]. Among gaseous air pollutants,
there is a group of compounds characterized additionally by odor nuisance. This group
includes the volatile components of air pollutants that have toxic properties, are detectable
at relatively low concentrations, and cause undesirable odor sensations. Volatile chemicals
that make up the gases emitted into the atmosphere can be divided into volatile organic
compounds (VOCs) and volatile inorganic compounds (VICs).

Odorants emitted to the atmosphere may be of natural or anthropogenic origin.
Sources of odor-forming substances, which are a side effect of human activity, are mainly
the chemical industry [8], food industry [9], fuel industry [10], municipal sewage treat-
ment plants [11,12], fragrance industry [13,14], composting facilities [15–17], municipal
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landfills [18,19] and swine farming and breeding [20–22]. The nature of odors generated by
municipal waste management facilities depends on many factors, such as type of waste,
method of storage, compost production techniques, etc. However, all these facilities emit
pollutants of similar qualitative composition, and the odor nuisance is mainly related to
the presence of the following compounds: disulfides, amines, sulfides, ammonia, thiols,
alcohols, carboxylic acids, aldehydes, ketones, phenols, and aliphatic amines [13,19,23–35].
The ranges of olfactory detection threshold and the perceived odor character for exemplary
odorants are presented in Table 1.

Table 1. The olfactory threshold for exemplary odorants [36–39].

Chemical Compound Olfactory Threshold Unit Odor Character

Acetaldehyde 0.015–0.066 ppm Fruity, apple
Formaldehyde 0.50–0.80 ppm Pungent, suffocating

Acrolein 0.0036–0.16 ppm Pungent, suffocating
Phenol 0.0056–0.040 ppm Pungent

Hydrogen sulfide 0.41–0.81 ppb Rotten eggs
Carbon disulfide 0.11–0.21 ppm Rotten vegetables
Dimethyl sulfide 2.70–3.00 ppb Rotten vegetables, garlic

Ammonia 1.50–5.20 ppm Sharp, pungent
Methylamine 0.035–4.70 ppm Fish, piscine

Dimethylamine 0.033–0.34 ppm Fish, piscine
Acetone 13.00–42.00 ppm Fruity, sweet

Acetic acid 0.0060–0.48 ppm Vinegar
Acetonitrile 13–170 ppm Etheric

Propionic acid 0.0057–0.16 ppm Pungent
Acrylonitrile 1.60–17.0 ppm Etheric

Sulfur dioxide 0.87–1.10 ppm Pungent, suffocating
Ethyl mercaptan 0.0087–0.76 ppb Rotten eggs, rotten cabbage
Nitrogen dioxide 0.12–0.36 ppm Harsh

Pyridine 0.063–0.17 ppm Strong sickening
Hexane 1.5–130 ppm slightly disagreeable

Cyclohexane 2.5–25 ppm Sweet
Toluene 0.33–2.50 ppm Paint thinners
Benzene 2.70–12.00 ppm Sweet, aromatic, gasoline

In order to properly assess the environmental effects of odorants emitted into the
atmosphere, measurement techniques are used that allow for both quantitative and qual-
itative analyses of the composition of polluted air. There are two basic techniques for
determining odor nuisance: sensory techniques and instrumental (analytical) ones. In
sensory techniques, such as dynamic olfactometry or field olfactometry, the role of the
detector is played by the human sense of smell. Analytical techniques focus primarily on
the use of gas chromatography or gas sensor arrays that are gaining in popularity. They
enable a holistic analysis of the composition of the gas mixture without dividing it into
individual components, and the analysis time is much shorter. Gas sensor matrices also
provide the ability to monitor industrial processes continuously without any sampling.
Obviously, in terms of the accuracy of the obtained results, they do not match the chromato-
graphic techniques; however, in cases requiring, for example, quick reaction of industrial
facilities, staff sensor arrays are an excellent alternative. Their high application potential
has been proven for processes such as monitoring of biofiltration [40–46], monitoring of
methane reforming process [47], monitoring of sanitary conditions [48], monitoring and
identification of air pollutants and hazardous substances [49–52], quality assessment of
food products [53–58], detection of drugs and explosives [59–61], in medicine as a non-
invasive diagnostics systems for analysis of breath or urine [62–66], to control indoor air
quality [67–69] or in the perfume industry to confirm the authenticity of products [55,70].

The main difference between the sensory and instrumental techniques is that the
analytical measurements focus on individual odorants, while sensory measurements are
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mainly concerned with general odor sensations. However, in order to develop innovative
and effective odor quality monitoring systems, a complementary and integrated approach
based on the synergy of their operation is necessary. Attempts to combine the advantages
of both groups of techniques were already being made, for example in the form of gas
chromatography coupled with olfactometry (GC-O) [71–75] or by trying to demonstrate
the validity of using sensor arrays for odor monitoring by comparing them with gas
chromatography–mass spectrometry (GC-MS) [30,76,77].

As mentioned before, determining the impact of the industrial or municipal plants on
the odor nuisance of a given area requires taking into account several key parameters of
the smell. Among them, the following should be particularly distinguished:

• Hedonic tone—pleasant or unpleasant sensations during inhalation of a gaseous mixture;
• Odor intensity—relative strength of the odor stimulus induced by a particular odorant;
• Odor threshold—the minimum concentration of a substance at which most test sub-

jects can identify the odor.

These three parameters are crucial to establish the relationship between odor concen-
tration and the odor nuisance, and they make it possible to better understand the interaction
between emitted odorants. For this reason, in order to estimate the odor nuisance of a
municipal plant, it is necessary to use indices and indexes embodying all of them. So
far, several indexes have already been proposed and presented, showing the correlation
between sensorial and analytical characterization of odors. The most common indices used
to assess odor nuisance include the following:

• Specific odor emission rate (SOER)

SOER =
Qair ∗ Cod

Abase
(1)

where:
Abase—base area [m2]
Cod—odor concentration

[ ou
m3

]
Qair—air flow

[m3

s
]

• Odor emission rate (OER)

OER = SOER ∗ Aland f ill (2)

where:
Aland f ill—emitting surface of the considered area [m2]

• Odor emission factor (OEF)

OEF =
OER

AI
(3)

where:
AI—representative “activity index” of the plant. It can be represented by e.g., plant
capacity, landfill surface, mass of processed material or yearly treatment capac-
ity [78–82].

• Analytical odor index (AOI)/odor activity value (OAV)

AOI/OAV =
n

∑
i=1

(
Cy

OTy

)
(4)

where:
Cy—concentration of y-th substances detected by GC techniques [ppm]
OTy—relative Odor Threshold [ppm]

• Sensorial odor index (SOI)

SOIi =
Ui
Us

(5)



Molecules 2022, 27, 4180 4 of 25

where:
Ui—concentration of odor at i-th sampling point

[ ou
m3

]
Us—standard concentration of odor detectable by sensorial analysis

[ ou
m3

]
• Odor index (OI)

OI = 10log(Cod) (6)

where:
Cod—odor concentration

[ ou
m3

]
• Odor annoyance index (OAI)

OAI =
1

Nt

n

∑
i=1

wi Ni (7)

where:
Nt—total number of observations for the investigated zone or period
Ni—number of observations corresponding to the odor rating i (i = 0–6)
wi—corresponding weighting factors

Table 2 provides examples of industrial and municipal facilities for which an odor
nuisance assessment was conducted using the indicators listed above.

Table 2. Indicators and indexes used for evaluation of odor nuisance of exemplary industrial and
municipal facilities.

Facility Index Scope of Research References

WWTP 1 AOI SOI
Investigation of correlation between odors concentration
measured by means of dynamic olfactometry (DO) and
chromatographic GC-MS-FID analysis

[83]

MSWTP 2 SOEF OER OEF
A study of large anaerobic–aerobic treatment plant,
identifying its odor sources, characterizing them in terms of
odor concentration and emissions using dynamic olfactometry

[78]

Industrial park OAI
13 potential odor emitting facilities; assessment of the odor
annoyance using the residents as measuring tools—resident
diary method

[84]

MSWTP OER OEF

Mechanical and biological MSWTPs; calculation of OEFs,
based on the results of olfactometric measurements, as a
function of plants capacity which differ in constructional
features, in type of treated waste and geographical locations
in Italy

[79]

Compost facility OAI
Assessment of odor annoyance generated by the composting
facility and demonstration of the feasibility of gas sensor array
to monitor the emission of the odorous substances

[85]

MSW landfills SOER OER OEF
Estimation of odor emissions from landfills, focusing on the
odor related to the emissions of landfill gas (LFG) from
plant surface

[80]

MSW landfills SOER OEF
Seven dimensionally different landfills, the odor concentration
was calculated as the geometric mean of the odor threshold
values of each panelist, using dynamic olfactometry

[81]

MRP 3 SOER OER OEF

Determination of odor nuisance from the rendering industry
based on experimental data obtained by means of dynamic
olfactometry, mass of processed material was used as “activity
index” for OEF calculation

[82]
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Table 2. Cont.

Facility Index Scope of Research References

WWTP OEF

Calculation of OEFs based on the results of olfactometric
measurements that were carried out on a significant number
of WWTPs, which differ in constructional features, in type of
treated wastewater and in geographical locations in Italy;
yearly treatment plant capacity was used as “activity index”

[86]

WWTP OI
Investigation of the relationship odor index assessed by
Japanese standard methods (triangle odor bag method) and
odor concentrations measured with dynamic olfactometry

[87]

WWTP OI

Relationship between odor concentrations emitted by WWTP
assessed by Japanese standard methods and odor
concentrations measured with dynamic olfactometry and
compared to the measurement carried out by novel prototype
of e-nose

[87]

WWTP AOI SOI

Comparison and evaluation of the principal odor
measurement methods (GC-MS, dynamic olfactometry,
electronic nose) used to identify and characterize the odor
emission from a WWTP with the aim of analyzing the
weaknesses and strengths of the different techniques

[88]

Compost facility OAV

The ability of OAV to predict odor concentrations during
composting of six solid wastes and three digestates was
evaluated, dynamic olfactometry and GC-MS were used as
measurement methods

[89]

MSW landfills OAV

Evaluation of odorant interaction effect to accurately estimate
the contribution of odors, samples from a food waste
treatment plant were analyzed by instrumental and olfactory
methods, an odorant coefficient was proposed to assess the
type and level of binary interaction effects based on
OAV variation

[90]

1 Wastewater Treatment Plant, 2 Municipal Solid Waste Treatment Plant, 3 Meat Rendering Plant.

This article presents a proposal for a new odor air quality index (OAQII) which was
determined on the basis of the emission measurements of odorants in the environment.
The basic assumption of the proposed index is the ability to simultaneously interpret all of
the major odor features: hedonic tone, intensity and odor concentrations. In other words,
based on the proposed index, the determination of one of these parameters enables the
estimation of the others. The first two parameters were determined using parametric
sensory measurements (numerical scales). The odor load that was released into the air as a
result of the emission (odor concentration) was measured using field olfactometry and a
gas sensor array.

The application of a gas sensor matrix to estimate odor concentration would enable
air quality monitoring in terms of odor nuisance continuously (online mode) with easy
and quick access to the collected data. Such usages of sensor arrays have already been
reported in the literature, for example, for quantitative evaluation of pond odors from
piggeries [91]. Odor concentrations were determined by dynamic olfactometry, and an
artificial neural network (ANN) was used to correlate them with the signals received from
sensors. It has been shown that a sensor matrix connected to a trained ANN is able to
predict odor concentrations with a low root mean square error (RMSE) and a coefficient of
determination (R2) between olfactometric measurements and the predicted concentrations
in unknown samples at the level of 0.92.
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Another example could be sensor-based measurements of odor concentrations in
grasslands after using cattle slurry on them [92]. In this study, a comparison was made
between a commercially available gas sensor array and self-built device. In order to
determine the odor concentrations in the analyzed samples, dynamic olfactometry (DO)
was used again. On the basis of the principal component analysis (PCA) of actual sensor
response patterns, linear relationships were established between odor concentrations and
average response of conductive polymer type sensors. A single line fitted to the data from
all experiments had a percentage of the variance accounted for 59% and 62% depending on
the device.

In other literature reports, the possibility of using sensor arrays for continuous moni-
toring of odors from wastewater treatment plant or composting plant (WWTP) was inves-
tigated [93,94]. In these works, a lot of attention was paid to the selection of appropriate
identification methods, definitions and optimization of the process of creating a dataset for
training the sensor array to enhance its ability to correctly estimate odor concentrations.
In addition, qualitative classification of the analyzed samples was performed using three
different sensor arrays, consisting of six metal oxide semiconductor (MOS) type sensors
each. The application of this type of sensors had made the devices sensitive to many groups
of volatile chemicals, which is decent in terms of the complex gas mixtures found in this
type of plants. After selecting the optimal algorithm, a qualitative classification accuracy of
96.4% and a correlation between actual and predicted odor concentrations expressed by a
determination coefficient of 0.90172 were obtained.

The study conducted in [95] also assessed the odors from WWTP with the use of
12 conductive polypyrrole polymer sensors. As a statistical technique for data analysis,
canonical discriminator (CD) and canonical correlation (CC) were used, which are similar
to the assumptions of PCA, except that CC is the correlation that is maximized instead of
variance. Linear relationships were created between odor concentrations (determined by
DO) and explanatory variables (sensor signals). The research was carried out in several
WWTPs in an attempt to create and demonstrate one generalized relationship between
sensor array response and odor concentration from such facilities. It was noted that such a
correlation is extremely difficult to achieve; however, when the approach was changed and
the odor concentrations from individual treatment plants were analyzed, much stronger
relationships were obtained.

Sensor matrices applications for continuous odor monitoring in poultry are also
known [96]. The approach in this work is similar to the previously cited studies and involves
determining odor concentrations using DO and modeling the correlation between them
and a sensor array composed of 24 MOS type detectors. Data were collected continuously
and due to the large number of them, PCA was applied to reduce the multidimensionality
of the dataset. Then, a linear model for odor concentrations prediction was developed using
partial least square regression (PLSR). Sensor resistances were used as input to the model.
RMSE and root-mean square error of cross validation (RMSECV) were used to evaluate the
accuracy of the prepared model. Their values were 179.9 and 182.23, respectively, which,
with the coefficient of determination of the calibration curve at the level of 0.94, confirmed
that it is possible to create a mathematical model that, when implemented in a sensor array,
will enable the real-time measurements of odor concentrations.

All these studies demonstrated the possibility of using gas sensor arrays to predict
the odor concentrations in various plants associated as sources of odor emissions. Ad-
ditionally, all of them used dynamic olfactometry to determine the odor concentrations
of the analyzed samples. The undoubted advantage of this method is that it is only one
that is fully standardized, but on the other hand, a sampling stage is required, which is
always troublesome, as well as the need for a trained team of assessors. Another thing
they have in common is the development of linear predictive mathematical models of odor
concentrations based on various methods of analyzing sensor array data. The purpose
of this research was to develop such a predictive model for a self-constructed gas sensor
matrix, but as a reference technique, field olfactometry was used. The constructed gas



Molecules 2022, 27, 4180 7 of 25

sensor array was located in the compost screening yard and consisted of commercially
available chemical sensors. The article describes the calibration of the prepared matrix
using five mathematical models and the subsequent validation of the models developed.
The calibration and validation of the models were carried out on the basis of periodic
olfactometric measurements; therefore, the odor concentration was a dependent variable
(model response), while the signals from the sensors were treated as explanatory variables.

The applicability and accuracy of the prepared models with respect to olfactometric
measurements and their compatibility with the proposed OAQII were evaluated. The
main presumption of the suggested index was to correlate and combine the predicted odor
concentrations with other air quality parameters, which may be more transparent to the
majority of the society unfamiliar with the concept of odor concentrations.

2. Materials and Methods

The measurements and research were conducted at a municipal solid waste treatment
plant in Central Poland (Figure 1).

Figure 1. A map showing the location of the municipal treatment plant where the research was conducted.

The sensor array was placed in the compost screening yard. This localization provided
episodic high odor concentrations associated with the operation of the compost screening
process, while during the rest of the time, the odor concentrations were relatively low.
Periodically, the field olfactometry measurements were carried out at the sensor matrix
location using a Nasal Ranger olfactometer. Data processing, analysis and other calculations
were performed using RStudio Desktop (v.1.0.143) software. The concept of the conducted
research is presented graphically in the Figure 2.

Figure 2. The concept of the conducted research.

2.1. Field Olfactometry

The gas sensor matrix was calibrated using the Nasal Ranger field olfactometers (St.
Croix Sensory, Inc., Stillwater, MN, USA). This approach was aimed at linking signals
from gas sensors with specific odor concentrations. The olfactometric measurements were
carried out each time with the participation of at least two people. During the analysis,
all recommendations regarding the measurement procedure were followed. The result
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of the field olfactometry measurement is the numerical value of the dilution to olfactory
threshold (D/T) ratio, read from the dilution dial on the front of the olfactometer. This
parameter should be interpreted as the number of dilutions needed to make the odor of
contaminated air undetectable [97]. The D/T values correspond, after conversion, to the
ZITE value (individual estimation of the dilution to threshold) defined in EN 13725. ZITE
was calculated for each team member separately according to the relationships:

ZYES = (D/T)YES + 1 (8)

ZNO = (D/T)NO + 1 (9)

ZITE =
√

ZYES ∗ ZNO (10)

where:
ZYES—the dilution level at which the odor is detectable
ZNO—the dilution level at which the odor is undetectable

The odor concentration value was calculated as the geometric mean of the set of
individual estimates collected by the team.

Cod = n

√
n

∏
i=1

ZITEn (11)

where:
n—number of people participating in olfactometric measurements

In total, 60 series of olfactometric measurements were performed, which were divided
into three stages. In each stage, 20 series were performed, divided equally into two
measurement days. The first 20 measurements were taken in September 2021 (autumn
period), the second phase was conducted in December 2021 (winter period) and the third in
March 2022 (spring period). The first two stages were used to calibrate the matrix, and the
third one was used to validate the proposed models. The field olfactometry measurements
taken in April 2022 were used to check the reliability of odor concentrations returned by
the models, with the actual condition occurring at the site.

2.2. Sensory Matrix Development and Measurement

Five commercially available chemical gas sensors were chosen for operation in the
constructed sensor array. Three metal oxide semiconductor sensors (TGS2602, TGS2603
and TGS2612) and two electrochemical sensors (NH3 and H2S) were selected. The basic
characteristics of the selected sensors are presented in Table 3.

Since the constructed gas sensor array was placed on the compost screening site, the
gas sensors were selected to best match the characteristics of the investigated environment.
Therefore, two electrochemical sensors were used that were able to detect hydrogen sulfide
and ammonia, gases whose concentrations were expected to exceed their olfactory thresh-
old. The other sensors were non-selective semiconductor sensors that respond to organic air
pollutants. Lack of selectivity does not render these sensors useless because grouping them
into an array makes the resulting signal multidimensional. Additionally, these studies did
not focus on precise determination of concentrations of individual odorants, but only on
the evaluation of odor nuisance, which is caused by the synergic action of all compounds
forming a gaseous mixture.

However, the high sensitivity of TGS-type sensors to the presence of methane must be
taken into account. This gas belongs to a group of compounds called aliphatic hydrocarbons
and is known to be colorless and odorless. For this reason, its presence in the air will not
affect the level of odor nuisance. This means that methane will not be detected during
field olfactometry measurements, but may significantly affect the signals received from the
gas sensor array. Therefore, during the analysis of the collected signals from the matrix,
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those that were represented by low odor concentrations and incomparably high values
from analog-to-digital converters were rejected.

Table 3. Basic characteristics of selected chemical gas sensors.

Sensor
Type Manufacturer Model Detected Gases Signal

Processing

MOS 1 Figaro Engineering Inc.
(Osaka, Japan) TGS2602 [98]

hydrogen (1–30 ppm), toluene (1–30 ppm),
ethanol (1–30 ppm), ammonia (1–30 ppm),
hydrogen sulfide (0.1–3 ppm)

Voltage
divider

MOS 1 Figaro Engineering Inc.
(Osaka, Japan) TGS2603 [99]

hydrogen (1-30 ppm), hydrogen sulfide
(0.3–3.0 ppm), ethanol (1–30 ppm), methyl
mercaptan (0.3–3.0 ppm), trimethyl amine
(0.1–3.0 ppm)

Voltage
divider

MOS 1 Figaro Engineering Inc.
(Osaka, Japan) TGS2612 [100]

methane (300–10,000 ppm), propane
(300–10,000 ppm), ethanol (300–10,000 ppm),
iso-butane (300–10,000 ppm)

Voltage
divider

EC 2 Alphasense (Braintree,
United Kingdom) H2S-A4 [101] hydrogen sulfide (limit of performance

warranty 0–50 ppm)
I-U

converter

EC 2 Alphasense (Braintree,
United Kingdom) NH3-B1 [102] ammonia (limit of performance warranty

0–100 ppm)
I-U

converter
1 Metal Oxide Semiconductor, 2 Electrochemical.

2.3. Signals’ Features Extraction

All analog electric signals obtained from the sensors were digitized using ADS1115
16-bit analog-to-digital converter (Texas Instruments, Dallas, TX, USA) and saved on a
personal computer. In this paper, two approaches are proposed for signal extraction from a
sensor array:

1. The maximum signal value—Smax;
2. Logarithm of the ratio of the maximum signal value to the baseline—log10

( Smax
S0

)
.

An example of the sensor response is shown in Figure 3. The baseline of each sen-
sor used was determined using synthetic air. The logarithmic approach is to reflect the
psychophysical models of odor perception (Weber–Fechner law).

The second of the described methods of data extraction from the matrix reflects the
logarithmic unit of measure of quotient quantities, defined as Bel (B). Biological systems,
including the human sense of smell, react to external stimuli according to Weber–Fechner’s
law, that is, in a non-linear way. For this reason, it is reasonable to use the quotient–
logarithmic measure to describe all kinds of psychophysical phenomena.

In the calculations performed, it was decided to use the derivative of the Bel unit,
which is the decibel (dB). This unit is one-tenth of a Bel (B) and is used to compare quantities
that vary linearly over a wide range. The signal from each sensor used in the array was
therefore converted to dB according to the following relation:

SdB = 10log10

(
Smax

S0

)
(12)

where:
S0—sensor baseline
SdB—maximum sensor signal value in dB
Smax—maximum sensor signal value
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Figure 3. Example of the TGS2602 sensor response with marked signal parameters used in further
data analysis.

2.4. Mathematical Models for Odor Concentration Determination

A total of 60 olfactometric measurements was made, which allowed to distinguish
a training set (40 measurements) and a test set (20 measurements). Based on the training
data, the mathematical calibration models were drawn up linking the odor concentrations
determined olfactometrically with sensor signals operating in the matrix. It was decided
to use the following statistical techniques that use explanatory variables (senor signals) to
predict the outcome of the response variable (odor concentration):

• Model 1: Multiple Linear Regression (MLR)
MLR is a statistical technique based on the generation of a linear relationship between
the independent variables (sensor signals) and the dependent variable (odor concen-
tration). It is important that the explanatory variables are not correlated with each
other and their number is smaller than the number of observations (measurements)
made. The general equation is as follows:

Cod = a0 +
n

∑
i=1

(ai ∗ Si) (13)

where:
a0—intercept
ai—regression coefficients
Si—sensor signal (depending on the method of signal’s features extraction)
n—number of explanatory variables

• Model 2: Principal Component Regression (PCR)
PCR allows for the selection of explanatory variables that have a significant impact on
the value of the dependent variable; these are called principal components (PC). PC
selection is performed using principal component analysis (PCA) and then the MLR
model is created in which PCs are used as explanatory variables. Formally, PCR is
defined as follows:

Cod = a0 +
n

∑
i=1

(ai ∗ PCi) (14)
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where:
a0—intercept
ai—regression coefficients
PCi—principal components
n—number of principal components

• Model 3: Stevens’ power law with a single sensor signal as a power exponent
Signals from individual sensors were used as an exponent of the proposed relationship.
The model best suited to the training dataset was selected based on the value of the
coefficient of determination (R2). Despite the fact that this coefficient ignores the
adjustment of the model to data outside the training set, it is one of the basic measures
of the quality of the model matching to this data set. The odor concentration was
determined according to the following formula:

Cod = abS (15)

where:
a—first model coefficient
b—second model coefficient
S—sensor signal (depending on the method of signal’s features extraction)

• Model 4: Stevens’ power law with the geometric mean of the sensor signals as a
power exponent
This approach was used only for the second method of extracting signals from the
sensor array (SdB). The geometric mean of the signals from the individual sensors
was used as the exponent of the function in accordance with relation

Cod = ab
n
√

∏n
i=1 SdBi (16)

where :
a—first model coefficient
b—second model coefficient
SdBi

—sensor signal value in dB
n—number of sensor in the matrix

• Model 5: Stevens’ power law combined with Principal Component Analysis (PCA)
The first principal component (PC1) of the dataset was used as the exponent of the
proposed function. PC1 was calculated using PCA and performing mean centering
and scaling to unit variance. It shows the direction of the maximum variance in the
data and best approximates the data in least squares terms. The odor concentration
was computed as follows:

Cod = abPC1 (17)

where:
a—first model coefficient
b—second model coefficient
PC1—first principal component

The standard approach used to analyze data obtained from chemical sensor arrays
was used to develop Model 1 and Model 2. Both MLR and PCR are among the most
commonly used statistical methods to predict the value of the dependent variable (odor
concentration) using the values of the explanatory variables (sensor signals). Model 3,
Model 4, and Model 5 are hybrid models that combine Stevens’ psychophysical law with
different ways of analyzing the signals received from the sensor array. These models are
intended to resemble perceptual models of stimulus experience (sensation), where different,
constant values assigned to a particular continuum are used as a power exponent. For the
proposed models, sensor signals were introduced in place of this empirical constant after
several different methods of analyzing the data obtained from the matrix.
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Once the calibration models were prepared, they were validated on the basis of the
data test set. To assess the compliance, usefulness and accuracy of the prepared (trained)
models with the olfactometric measurements, the root mean square error (RMSE) was used.
This is one of the most common methods to determine model error in predicting output
variables. RMSE was calculated according to the following formula:

RMSE =

√
n

∑
i=1

(xi − yi)2

n
(18)

where:
xi—odor concentration determined from olfactometric measurements
yi—odor concentration determined from gas sensor array
n—number of olfactometric measurements

Mathematically, RMSE is the Euclidean distance between a vector of observed values
and a vector of predicted values multiplied by the square root of the inverse of the number
of observations. In other words, the lower the RMSE values, the better the model is at
predicting the observed data. Higher RMSE values should be interpreted as the model
failing to account for important features underlying the data.

2.5. Odor Air Quality Index

The proposed odor air quality index (OAQII) scale is based on the odor features: odor
intensity and hedonic tone. On the basis of 240 measurements carried out at the municipal
treatment plant, during which the odor intensity, its hedonic tone and odor concentration
were assessed, a plot (Figure 4) was prepared of the dependence of the odor intensity and
hedonic tone on the logarithm of the odor concentration (according to Weber–Fechner’s
law, this relationship should be linear). The obtained equations were used to determine the
odor concentrations corresponding to the values of odor intensity and hedonic tone.

Figure 4. Dependence of odor intensity and hedonic tone on odor concentration carried out at the
municipal treatment plant.

Appropriate odor concentration ranges were assigned to the determined indexes in
accordance with Table 4.
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Table 4. Proposed odor air quality index (OAQII) scale and its parameters.

OAQII Scale Odor Intensity Hedonic Tone Proposed COD Range

0—very good non-perceptible and very weak neutral and slightly unpleasant 0 < COD ≤ 3
1—moderate weak moderately unpleasant 3 < COD ≤ 10

2—bad distinct and strong very unpleasant 10 < COD ≤ 60
3—very bad very and extremely strong extremely unpleasant COD > 60

The validation of the models in terms of compliance in the OAQII was assessed using
the accordance parameter, according to the following formula:

Accordance =
ncorrect

N
(19)

where:

N—total number of measurements
ncorrect—the number of measurements classified by both the model and the olfactometric
measurements to the same index scale.

3. Results
3.1. Models Development

In the first stage of the conducted research, the calibration models were prepared
based on the recorded responses from the gas sensor array and olfactometric measurements
(training dataset). Four calibration models were prepared using the maximum signals
values from individual sensors and five using a logarithmic approach to extract signals from
the matrix. Comparison scatter plots of the prepared models are shown in Figures 5 and 6.
For Model 3, the TGS2602 sensor signal was used as a function exponent for the first method
of extracting signals from the sensor array (Smax), and the ammonia sensor signal for the
second method of acquiring signals from the matrix (SdB). It was dictated by obtaining
the highest values of the coefficient of determination (R2) with the use of signals from
these sensors.

3.2. Models Validation

In the next stage of the research, the prepared models were validated. The validation
of these models were performed on the basis of correlation plots. Figures 7 and 8 present the
odor concentrations determination using a gas sensor matrix and test set of olfactometric
measurements for both methods of extracting signals from the matrix.

Validation charts presented in Figures 7 and 8 were prepared on the basis of an
olfactometric data test set (stage three of the measurements campaign). The blue rectangles
on the charts reflect the proposed odor air quality index scale presented in Table 4. The
black and red points in the graphs correspond to the predicted odor concentrations. The
points marked in black are within the appropriate scale ranges of the proposed index, while
those marked in red exceed the adopted ranges.

Root mean square error (RMSE) was chosen as the numerical tool for the selection of
the optimal model in terms of matching the predicted odor concentrations to the actual
results of olfactometric measurements. The adaptation of individual models was also
determined on the basis of the proposed OAQII . A parameter called "accordance" was
established, which reported the percentage of the odor concentrations determined by the
mathematical models that coincided with the actual values within the proposed concor-
dance intervals. Table 5 presents the results of these two parameters calculated for the
prepared models.
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Table 5. Accordance and RMSE for prepared models.

Signals Features Model RMSE Accordance

Smax

Model 1 10.302 0.70
Model 2 8.092 0.85
Model 3 67.973 0.65
Model 5 7.399 0.75

SdB

Model 1 5.754 0.75
Model 2 5.420 0.85
Model 3 7.120 0.70
Model 4 3.667 0.90
Model 5 4.220 0.98

Figure 5. Comparison scatter plots of odor concentrations prediction models prepared using the
maximum signal value—Smax as an independent variable: (a) Model 1, (b) Model 2, (c) Model 3,
(d) Model 5.
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Figure 6. Comparison scatter plots of odor concentrations prediction models prepared using signal
value in dB-SdB as an independent variable: (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4,
(e) Model 5.
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Figure 7. Validation plots of proposed models—actual and determined odor concentrations based on
the maximum signal value—Smax as an independent variable: (a) Model 1, (b) Model 2, (c) Model 3,
(d) Model 5.

Based on the table above, it was found that when using the maximum sensor signals
as an explanatory variable in the models, the best fit to the actual odor concentration values
is Model 2, i.e., principal component regression (PCR). It is characterized by both the lowest
RMSE and the highest accordance value. If the SdB is used as the independent variable, the
selection of the optimal model is somewhat more difficult. All of them are characterized by
similar RMSE values, but for Model 4 and Model 5, they are the lowest. As can be seen,
Model 4 has a slightly lower RMSE than Model 5, but the difference in accordance makes
the latter appear more optimal.

In the final stage of the study, after selecting the optimal model for both sensor array
signals extraction methods, the changes in odor concentrations at the compost screening
site were recorded. Figure 9 shows weekly courses of changes in the odor concentration
within the compost yard for both models. Moreover, during these seven days, olfactometric
measurements were performed daily at the municipal solid waste treatment plant. This
was to be used to verify and possibly confirm or deny the usefulness of the developed
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models and the constructed sensor array for continuous monitoring of odorous air quality
on the premises of the plant. On the basis of the presented graph, it can be seen that Model
5 based on SdB presents a better fit to the results of the field olfactometry (RMSE = 3.0)
than Model 2 based on Smax (RMSE = 26.5).

Figure 8. Validation plots of proposed models—actual and determined odor concentrations based on
signal value in dB-SdB as an independent variable: (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4,
(e) Model 5.
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Figure 9. Weekly changes in odor concentrations at the compost screening site calculated using the
best model developed using the maximum signal value and signal value in dB compared with field
olfactometry measurements.

4. Discussion

This article presents a new way to determine odor nuisance based on the proposed
odor air quality index (OAQII). During its development, odor features, such as hedonic
tone, odor intensity and odor concentration, were taken into account. A custom-built
sensor array consisting of five commercially available chemical sensors (three metal oxide
semiconductor sensors and two electrochemical) was used to determine odor concentrations
in the compost screening yard at the municipal solid waste treatment plant. In order to
calibrate the sensor array, odor concentrations were measured on the MSWTP site near
its location using field olfactometry. This allowed a correlation to be found between the
multidimensional output signal from the sensor array and the actual odor concentration.
Five statistical mathematical models were used for two methods of extracting signals from
the sensor matrix. In the first approach, the maximum value of the signal from individual
sensors (Smax) was used as independent variables in the developed models. In the second
one, the logarithmic approach was used (SdB), determining the ratio of the maximum
signal from the sensor to its baseline. The selection of the optimal model was made on the
basis of two parameters: root mean square error (RMSE) as the benchmark determining
the compatibility of the prepared models with the olfactometric measurements, and the
criterion called accordance which allowed for the validation of the models in terms of
compliance in the OAQII .

The conducted research showed that when using the maximum value of the signal
from the sensors, Model 2 was characterized by the best fit in relation to the real measure-
ments. It achieved the lowest RMSE value in its group (Smax), amounting to 8.092, and the
highest compliance in the proposed OAQII , equal to 85%. Using the second method of
extracting data from the sensor matrix, the best model turned out to be Model 5, which is a
hybrid model combining Stevens’ power law with one of the basic methods of multivariate
data analysis, which was principal component analysis (PCA). The RMSE thus obtained
was 4.220, and the index compliance level reached as much as 98%. It should be noted
that among the model in this group (SdB), the lowest RMSE value was obtained for Model
4 (3.667), which used the geometric mean of the signals from the sensors installed in the
array as a exponent in Stevens’ power law. However, compared to the Model 5, it was
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characterized by a lower compliance in the proposed OAQII , which was 90%. The differ-
ence in the prediction of odor concentration and its actual value between these two models
was not significant enough to compensate for the difference of eight percentage points in
compliance with the OAQII index. Therefore, Model 5 was selected as the optimal model
from the SdB group.

In both the Smax and SdB model groups, Model 3 should be regarded as the model
with the worst attunement to the actual measured values. The RMSE values for this model
were the highest in the given group, and the agreement with the OAQII was at the lowest
level of compliance. This model, like Model 4 and Model 5, was a hybrid model; however,
a single sensor signal was used as an exponent of Steven’s power law. This shows that it is
reasonable and fully justifiable to use gas sensor arrays to monitor air quality in terms of
odor nuisance caused mostly by gaseous mixtures of complex composition. Their principle
of operation is based on the overlapping of the detection ranges of individual sensors,
which may help avoid problems associated with synergistic interactions between odorants
(masking, neutralization, and amplification), which might significantly affect the signal
from a single sensor.

Moreover, each of the models from the SdB group was characterized by a lower RMSE
values than the most optimal model from the Smax group (Model 2). This means that using
a logarithmic method to extract signals from the sensor matrix which was meant to reflect
the non-linear response to external stimuli of the human sense of smell (Weber–Fechner
law), together with appropriate mathematical models, allows, with a higher accuracy, to
predict the value of odor concentration.

In the last stage of the research, the constructed sensor matrix was used to control the
odor air quality at the compost screening site in online mode (continuous monitoring). One
mathematical model from each of the two proposed sensor signal acquisition groups was
used to control the odor nuisance. Obviously, the models that were considered optimal on
the basis of previous observations and measurements were applied, so they were Model 2
from the Smax group and Model 5 from the SdB group. This phase lasted one week, and
additional olfactometric measurements were taken daily in the vicinity of the sensor array
for subsequent verification of the odor concentration values returned by the implemented
models. Figure 9 shows the weekly course of changes in the odor concentration within the
composting yard for both models and the values measured using field olfactometry, which
was treated as the reference method.

As can be seen, the values of the odor concentration indicated by both models differ
quite significantly. The values obtained by Model 2 practically do not fall below 20 ou/m3

in the entire period covered by this part of the research. Olfactometric measurements allow
to conclude that the odor nuisance did not remain at such a high level all the time, but
rather showed a variable character, which was probably related to the shift work mode at
the municipal treatment plant and conducting compost screening processes in the afternoon
or evening hours. This nature of the plant operation could also be confirmed by the odor
concentration values obtained using Model 5. On the one hand, they showed a better
match with the olfactometric measurements performed, and on the other, they allowed the
identification of periods of increased odor nuisance, which usually occurred in the evening
or at night. The overestimated odor concentration values obtained using Model 2 were
likely due to the presence of odorless landfill gases, such as methane. Such gases will cause
a significant increase in the maximum signal for a given sensor while not contributing to the
odor nuisance. The phenomenon of saturation of the sensors might then occur, which will
result in their transition to a non-linear operating range and can have a negative impact on
the functioning of the developed model. Model 5 based on the dB scale appears to have less
ability to overestimate the results which may mean that the dB scale along with a properly
developed mathematical model used for continuous odor concentration monitoring at the
municipal treatment plant is an appropriate approach.

It should additionally be noted that the values of the odor concentration indicated
by the prepared models very rarely showed values below 3 ou/m3. This obviously could
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be due to inaccuracies, overestimations or underestimations of the values returned by the
models. A solution improving the quality of sensor matrices and increasing the accuracy of
implemented mathematical models could be the use of additional temperature, pressure
and humidity sensors and modules that maintain stable working conditions inside the
matrix’s measuring chamber. Another possible reason for the prepared models rarely
indicating low odor concentration values could be the impact of facilities adjacent to the
composting site, such as, for example, waste sorting buildings or green waste storage yards.
Therefore, a comprehensive approach would seem to be to place several or more sensor
arrays within the MSWTP so that odor air quality could be monitored throughout the plant.
Establishing such a network of sensor meters would enable odor nuisance monitoring on a
continuous basis and provide plant owners with information on the most odor sensitive
points or processes. Moreover, measuring an odor emitting facility can be helpful if there is
a lot of public pressure from residents living in the neighborhoods adjacent to the facility
where the waste is stored and processed. Such a facility will be fully transparent to society,
and the measurements taken will help verify the validity of incoming complaints and
discourage people from overusing such odor nuisance countermeasures.

5. Conclusions

This paper proposes a new four-step odor air quality index (OAQII) that includes three
odor parameters: intensity, hedonic tone and odor concentration. Due to the subjective
assessment of odor parameters by humans, a gas sensor array was constructed which
was adapted to determine the above-mentioned index in an instrumental manner. For
this purpose, continuous measurements were carried out at the municipal solid waste
treatment plant (MSWTP), using the developed sensor matrix, which was calibrated with
field olfactometry. On the basis of collected data, five different mathematical models were
tested to correlate the multidimensional output signal from the sensor array with the
odor concentration of the sample. Two approaches were proposed for signals extraction
from a sensor array: (i) the maximum signal value from an individual sensor—Smax, and
(ii) the logarithm of the ratio of the maximum sensor signal value to its baseline which was
determined by passing synthetic air through the sensors—SdB. The second method used
was to reflect the non-linear relationship between the measure of the olfactory stimulus
and the response of the human sense of smell (Weber–Fechner law).

Standard approaches used for processing and analysis of data obtained from gas
sensor matrix, such as multiple linear regression (MLR) or principal component regression
(PCR), were applied to develop the models (Model 1 and Model 2). Additionally, models
that resemble perceptual models of stimulus perception (Stevens’ law) were proposed
(Model 3, Model 4 and Model 5). In these models, the empirical constant depending on the
type of external stimulus was replaced by the signal from the sensor array after appropriate
data processing. These three models represent a hybrid approach that combines the selling
points of multidimensional sensor data analysis and the advantages of the psychophysical
phenomenon for stimulus perception and processing in the human brain.

The research showed that the best model in terms of compatibility with the OAQII
class was a hybrid model (Model 5) in which the logarithmic approach to extract signals
from the matrix was used. This model was prepared to reflect the effects of external
stimulus on human perception (Weber–Fechner’s Law) in the form of a logarithmic way
of sourcing signals from the matrix, the intensity of the perceived olfactory impression
(Stevens’ law) in the form of a proposed equation, and the benefits of multivariate data
analysis in the form of principal component analysis (PCA) and the use of first principal
component (PC1) as an exponent of a power in the prepared equation. The use of this model
ensured a 98% consistency in classification into the classes of the proposed index. Model 3
was determined to be the worst in terms of agreement with the OAQII class in both model
groups (Smax and SdB). Admittedly, this was a hybrid model; however, it used single sensor
signals without prior analysis and processing of the data acquired from the array.
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The application of the developed model (Model 5) for the continuous monitoring of
odorous air quality (odor concentration) in compost screening yard indicated that the dB
scale was an appropriate choice. The dB-based model does not tend to overestimate the
results. The overstating results for tha Smax models are probably caused by the presence of
gases at the site, which are odorless, but cause the applied sensors to react (e.g., methane).
Presentation of the values of the signals from the sensor matrix in dB scale allows for lower
variability in the case of the above mentioned situation.
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52. Gębicki, J.; Dymerski, T.; Namieśnik, J. Monitoring of odour nuisance from landfill using electronic nose. Chem. Eng. Trans. 2014,
40, 85–90.

53. Matindoust, S.; Baghaei-Nejad, M.; Abadi, M.H.S.; Zou, Z.; Zheng, L.R. Food quality and safety monitoring using gas sensor
array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [CrossRef]

54. Xiao-Wei, H.; Xiao-Bo, Z.; Ji-Yong, S.; Zhi-Hua, L.; Jie-Wen, Z. Colorimetric sensor arrays based on chemo-responsive dyes for
food odor visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [CrossRef]

55. Carrasco, A.; Saby, C.; Bernadet, P. Discrimination of Yves Saint Laurent perfumes by an electronic nose. Flavour Fragr. J. 1998,
13, 335–348. [CrossRef]

56. Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of
agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10. [CrossRef]

57. Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties
determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [CrossRef]
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