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Abstract: Near-infrared (NIR) light-triggered photoredox catalysis is highly desirable because NIR
light occupies almost 50% of solar energy and possesses excellent penetrating power in various media.
Herein we utilize a metal-free boron dipyrromethene (BODIPY) derivative as the photocatalyst to
achieve NIR light (720 nm LED)–driven oxidation of benzylamine derivatives, sulfides, and aryl
boronic acids. Compared to blue light–driven photooxidation using Ru(bpy)3Cl2 as a photocatalyst,
NIR light–driven photooxidation exhibited solvent independence and superior performance in large-
volume (20 mL) reaction, presumably thanks to the neutral structure of a BODIPY photocatalyst and
the deeper penetration depth of NIR light. We further demonstrate the application of this metal-free
NIR photooxidation to prodrug activation and combination with Cu-catalysis for cross coupling
reaction, exhibiting the potential of metal-free NIR photooxidation as a toolbox for organic synthesis
and drug development.

Keywords: near-infrared light; BODIPY; photoredox catalysis; prodrug activation

1. Introduction

In the past decades, photoredox catalysis has undergone unprecedented growth
and become an important tool for organic synthesis, drug development, and polymer
science [1,2]. However, the applied incident light is mainly ultraviolet or short wavelength
visible light (λ < 500 nm) in the current photocatalysis setup, which leads to challenges and
limitations [3,4]. For example, the short-wavelength incident light will not be exclusively
absorbed by the photocatalyst in the presence of the colored reagents or reaction intermedi-
ates, leading to the formation of by-products, to low product yield, and to limited reaction
scope. In addition, due to the shallow penetration of short wavelength light in various
reaction media [5], the scale-up of visible light–driven photocatalysis suffers from slow
reaction rates and decreased reaction yields, which is detrimental to industrial application.

In this context, utilizing a longer-wavelength light, in particular near-infrared (NIR,
λ > 650 nm) light, as an energy source for photocatalysis emerged as a hot topic since it
can obviate the above-mentioned limitations [5–7]. Compared to visible light, NIR light
exhibits higher penetration depth in various media with weak scattering and diffuse re-
flection, especially for biological tissue, thus benefiting the effective light absorption by a
photocatalyst in scale-up reactions [5,8,9]. The weaker energy of NIR light compared to
visible light can circumvent light-induced degradation of the photocatalyst and substrates,
thus enabling lower catalyst loading and better reaction selectivity [5,8,9]. In addition,
the nearly 50% occupancy of NIR in solar energy provides a clean and infinite source of
NIR light [8]. Despite these obvious advantages, NIR light–driven photoredox catalysis
was rarely reported [8–10], largely due to the poor absorption of NIR light for conven-
tional photocatalysts [3,4]. Currently there are two different approaches to achieve NIR
photoredox catalysis. One is the indirect utilization of NIR light via an up-conversion
strategy that converts NIR light to high-energy visible light; for example, the triplet–triplet
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annihilation up-conversion (TTA-UC) strategy [11,12]. Normally, the photoactivation proce-
dure of TTA-UC–mediated NIR photoredox catalysis requires the involvement of multiple
energy transfer steps between the sensitizer, annihilator, and visible light photocatalyst [11].
Obviously, the complexity makes this indirect approach not easy to handle. On the other
hand, the direct utilization of NIR for photoredox catalysis relies on the use of a noble
metal–based photocatalyst, which is expensive and might lead to toxic heavy-metal residue
for the product [8,9]. Thus, direct NIR photoredox catalysis with a metal-free photocatalyst
is a long-term goal in solar energy use. Notably, in the preparation of this paper, cyanines
were reported to conduct NIR organic photoredox catalysis, constituting the only one
example of metal-free NIR photoredox catalyst [13].

In other hand, iodinated BODIPY derivatives are well-known as metal-free photocata-
lysts for visible-light photoredox catalysis because of their strong light absorption ability
(molar extinction coefficient of 105 or more), high triplet quantum yield (>90%), long triplet
excited state lifetime (>2 µs), robust photostability, and easily tailorable structure [14,15].
However, there are no reports of NIR-activated BODIPY as photocatalysts. Recently,
carbazole-substituted iodinated BODIPY (BDP) was utilized as an efficient photosensitizer
for ultralow-power NIR-triggered photodynamic therapy thanks to its intense absorption
in the NIR region and its remarkably high singlet oxygen quantum yield (67%) [16]. Con-
sidering the iodinated BODIPY core and the solubility-improving long chain of BDP, we
anticipated that BDP can be applied as an efficient metal-free photocatalyst via direct NIR
light utilization.

Herein we report the successful utilization of NIR light (720 nm LED) as the energy
source for BDP-catalyzed photooxidation (Figure 1). After being excited by NIR light,
BDP undergoes the intersystem crossing (ISC) process to reach its triplet-excited state
(3BDP*); this in turn can transfer energy to oxygen, forming the singlet oxygen (1O2), or
conduct electron transfer process to finally generate the superoxide anion (O2

•—). These
generated reactive oxygen species are the terminal oxidant to achieve efficient oxidation
of benzylamine derivatives, sulfides, and aryl boric acids. Notably, compared to the
state-of-art blue-light photocatalyst Ru(bpy)3Cl2, this NIR photocatalyst BDP exhibits
solvent independence and better scalability in photooxidation, possibly benefiting from
the neutral molecular structure and penetration power of NIR light. Furthermore, we
demonstrate the wide applicability of NIR-driven photooxidation with BDP through aryl
boric acid–involving prodrug activation as well as the combination with Cu catalysis for
carbon–carbon cross coupling.
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2. Results and Discussion

BDP was synthesized according to the reported procedure [16], and the photophysical
properties of BDP were investigated in dichloromethane (DCM). As shown in Figure S1,
the absorption peak of BDP located at 709 nm with a high molar extinction coefficient
(9.5 × 104 M−1cm−1). In addition, no obvious photobleaching of BDP was detected after
3 h of NIR illumination (720 nm LED, 20 mW/cm2) (Figure S2), verifying its robust photo-
stability. The fluorescence emission peak of BDP located at 750 nm with a quantum yield
as low as 4% since the heavy atom effect of iodine promoted the transition from 1BDP* to
3BDP* [15,16]. Importantly, the singlet oxygen quantum yield of BDP was measured to be
65% at 710 nm using the established method [15].

In view of the high 1O2 production efficiency of BDP, BDP was then used as the
photocatalyst for the benzylamine coupling reaction under NIR light illumination. The
photooxidation coupling of benzylamine with 1O2 as the terminal oxidant was an impor-
tant probe reaction to afford Schiff bases [17–20], which are useful building blocks in the
synthesis of fine chemicals, functional materials, and useful drugs [21–23]. Conventional
photocatalysts such as g-C3N4, TiO2, Ir(ppy)3, and [Ru(bpy)3]2+ were all applied in the pho-
tooxidation of benzylamine (1a), utilizing visible light or UV as the excitation source [17–20].
With extra-low BDP loading (~0.06 mol%) and mild NIR irradiation (720 nm, 20 mW/cm2),
the quantitative conversion of benzylamine to a Schiff base (2a) was observed after 2 h
reaction in DCM (See Table S1 for detailed reaction setup). No product was detectable in the
absence of light, BDP, or oxygen, indicating that NIR illumination, BDP, and oxygen were
all required for this reaction to proceed (Table S1). Additionally, the effect of solvent polarity
on this NIR-driven BDP-catalyzed benzylamine coupling was explored. High conversions
of benzylamine were obtained with various solvents such as acetonitrile (CH3CN, a highly
polar aprotic solvent), methanol (MeOH, a highly polar protic solvent), and the medium po-
lar solvents DCM and ethyl acetate (EtOAc), suggesting that the polarity of the solvent has
an insignificant effect on BDP-catalyzed NIR-driven photocatalysis (Table S1). By contrast,
Ru(bpy)3Cl2 exhibited strong dependence of the solvent for benzylamine photooxidation.
In CH3CN, Ru(bpy)3Cl2 enabled the formation of a Schiff base with a conversion of 100%
whereas only 5% conversion was obtained in DCM (Figure S3). This solvent dependence of
Ru(bpy)3Cl2 may result from the sensitivity of the chloride counter-anion [24], which in
turn reflected the robustness of the organic-neutral NIR photocatalyst, BDP.

The scale-up photooxidation of benzylamine with the combination of BDP and NIR
light or Ru(bpy)3Cl2 and blue light was then explored. The amounts of the substrate
benzylamine and photocatalysts were enlarged by 20 times for a 20 mL reaction. As
shown in Figure 2, Ru(bpy)3Cl2 gave a sharp decline in conversion rate from 100% at 1 mL
to 38% at 20 mL. In sharp contrast, the high conversion rate of 88% was still achieved
with BDP as photocatalyst under NIR irradiation in 20 mL reaction. This result clearly
demonstrated that NIR light can penetrate deeper into a reaction solution than visible light,
and thus NIR-triggered photoredox catalysis is more suitable and efficient for large-scale or
industrial application.

To explore the substrate scope of this NIR light–driven BDP-catalyzed aerobic oxida-
tion, a variety of benzylamine derivatives were investigated. Electron-rich amines such
as 4-methoxybenzylamine (Table 1, entry 2, 2b) and electron-deficient amines substituted
by halogens or trifluoromethyl groups (Table 1, entries 3–7) were all efficiently converted
to the corresponding Schiff base, indicating that the electronic nature of substrates does
not impact NIR-driven photooxidation. The nearly identical photoconversion rates of
ortho- (1d), meta- (1e), and para-chloro (1c)–substituted benzylamines demonstrated that
the position of the substituents had little impact on this NIR-driven BDP-catalysis (Table 1,
entries 3–5). Moreover, the good conversion (77%) of benzylamine with steric hindrance
(Table 1, entry 8) showed that steric hindrance cannot inhibit efficient photocoupling. Sec-
ondary amine substrates such as tetrahydroisoquinoline and dibenzylamine can also be
transformed to the corresponding Schiff base by a BDP photocatalyst with a conversion of
59% and 100%, respectively (Table 1, entries 9–10). The above experimental results verified
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that BDP was an excellent NIR photocatalyst to efficiently promote the oxidative coupling
of benzylamine derivatives with broad substrate scope.
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the corresponding Schiff base, indicating that the electronic nature of substrates does not 
impact NIR-driven photooxidation. The nearly identical photoconversion rates of ortho- 
(1d), meta- (1e), and para-chloro (1c)–substituted benzylamines demonstrated that the po-
sition of the substituents had little impact on this NIR-driven BDP-catalysis (Table 1, en-
tries 3–5). Moreover, the good conversion (77%) of benzylamine with steric hindrance (Ta-
ble 1, entry 8) showed that steric hindrance cannot inhibit efficient photocoupling. Sec-
ondary amine substrates such as tetrahydroisoquinoline and dibenzylamine can also be 
transformed to the corresponding Schiff base by a BDP photocatalyst with a conversion 
of 59% and 100%, respectively (Table 1, entries 9–10). The above experimental results ver-
ified that BDP was an excellent NIR photocatalyst to efficiently promote the oxidative 
coupling of benzylamine derivatives with broad substrate scope. 
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(20 mW/cm2), under air atmosphere, 2 h, room temperature. b Conversion determined by 1H NMR. 
c Turnover number (TON) value was calculated as mole of amine converted per mol of BDP. d Turn-
over frequency (TOF) was equal to TON divided by irradiation time. e In methanol. 

The mechanism investigation of this NIR-driven BDP-catalyzed benzylamine cou-
pling was then performed. In the presence of a singlet oxygen quencher (triethylenedia-
mine, DABCO) [25], the generation of the Schiff base was negligible, indicating that singlet 
oxygen played an important role in this photoredox catalysis (Table S2). In contrast, a 
good isolated yield of 84% was still obtained after adding high concentration of benzoqui-
none (BQ) [25], the trapping agent of superoxide anion, which ruled out the dominative 
role of superoxide anion in this NIR-photocatalytic system. In addition, the reaction rate 
in deuterated chloroform (CDCl3) was nearly twice that in DCM (Table S2). Since deuter-
ated solvents were reported to stabilize 1O2 [26], this enhanced reaction rate in CDCl3 fur-
ther supported the assumption that 1O2 was the key species for this BDP-catalyzed NIR 
photooxidation. To confirm this proposal, the 1O2 generation in the presence of BDP was 
measured by using 1,3-diphenylbenzofuran (DPBF) as the 1O2 indicator [15]. Under the 
irradiation of NIR light (720 nm, 5 mW/cm2), the absorption of DPBF was significantly 
reduced in the presence of BDP (Figure S4), suggesting that BDP could trigger the gener-
ation of 1O2 with NIR light irradiation. Combined with the above experimental results, the 
proposed mechanism of this BDP-catalyzed NIR-driven oxidation of amines was outlined 
(Figure S5). BDP was firstly excited by NIR light to reach its singlet excited state (1[BDP]*); 
then it underwent the intersystem crossing (ISC) process to generate the triplet excited 
state 3[BDP]* [15]. Singlet oxygen (1O2) was generated via triplet–triplet energy transfer 
from 3[BDP]* to molecular oxygen. The substrate benzylamine was firstly oxidized by 1O2 
to produce hydrogen peroxide and the intermediate imine, which further condensed with 
the second molecule of benzylamine to yield the final product, the Schiff base. 

As shown in Figure 3, this NIR photooxidation of benzylamine could be further com-
bined with copper catalysis (using copper trifluoroacetate, Cu(OTf)2, as catalyst), where 
the Schiff base 2a, the in situ generated product of NIR photocatalysis, reacted with 4-tert-
butylphenylacetylene in toluene to give an alkyne-substituted secondary amine with an 
isolated yield of 80% [27]. This result demonstrated that NIR light–driven photocatalysis 
can be merged with other catalytic systems in a tandem manner to access sophisticated 
functional scaffolds [28]. 
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The mechanism investigation of this NIR-driven BDP-catalyzed benzylamine coupling
was then performed. In the presence of a singlet oxygen quencher (triethylenediamine,
DABCO) [25], the generation of the Schiff base was negligible, indicating that singlet oxygen
played an important role in this photoredox catalysis (Table S2). In contrast, a good isolated
yield of 84% was still obtained after adding high concentration of benzoquinone (BQ) [25],
the trapping agent of superoxide anion, which ruled out the dominative role of superoxide
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anion in this NIR-photocatalytic system. In addition, the reaction rate in deuterated
chloroform (CDCl3) was nearly twice that in DCM (Table S2). Since deuterated solvents
were reported to stabilize 1O2 [26], this enhanced reaction rate in CDCl3 further supported
the assumption that 1O2 was the key species for this BDP-catalyzed NIR photooxidation.
To confirm this proposal, the 1O2 generation in the presence of BDP was measured by
using 1,3-diphenylbenzofuran (DPBF) as the 1O2 indicator [15]. Under the irradiation
of NIR light (720 nm, 5 mW/cm2), the absorption of DPBF was significantly reduced in
the presence of BDP (Figure S4), suggesting that BDP could trigger the generation of 1O2
with NIR light irradiation. Combined with the above experimental results, the proposed
mechanism of this BDP-catalyzed NIR-driven oxidation of amines was outlined (Figure
S5). BDP was firstly excited by NIR light to reach its singlet excited state (1[BDP]*); then
it underwent the intersystem crossing (ISC) process to generate the triplet excited state
3[BDP]* [15]. Singlet oxygen (1O2) was generated via triplet–triplet energy transfer from
3[BDP]* to molecular oxygen. The substrate benzylamine was firstly oxidized by 1O2 to
produce hydrogen peroxide and the intermediate imine, which further condensed with the
second molecule of benzylamine to yield the final product, the Schiff base.

As shown in Figure 3, this NIR photooxidation of benzylamine could be further
combined with copper catalysis (using copper trifluoroacetate, Cu(OTf)2, as catalyst),
where the Schiff base 2a, the in situ generated product of NIR photocatalysis, reacted with
4-tert-butylphenylacetylene in toluene to give an alkyne-substituted secondary amine with
an isolated yield of 80% [27]. This result demonstrated that NIR light–driven photocatalysis
can be merged with other catalytic systems in a tandem manner to access sophisticated
functional scaffolds [28].
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Figure 3. The tandem synthesis of the alkyne-substituted secondary amine via the combination of
NIR light–driven BDP photocatalysis with copper catalysis.

Besides the photooxidation of benzylamine, the photooxidation of sulfides via the
1O2 pathway was also of fundamental importance since the targeted sulfoxide motifs
existed widely in organic intermediates, pharmaceutical molecules, and organic semicon-
ductors [29–32]. BDP was then applied to NIR light–driven photooxidation of sulfides in
view of its excellent singlet oxygen generation ability upon NIR light. As shown in Table 2,
different sulfide derivatives, such as thioanisole (3a), benzyl methyl sulfide (3b), dibenzyl
sulfide (3c), and 4-methoxyphenyl methyl sulfide (3d), were all smoothly oxidized to the
corresponding sulfoxide with nearly quantitative conversions. A control experiment in the
presence of DABCO led to inferior performance (11% yield), reflecting the dominative role
of 1O2. This result further verified that BDP was an efficient NIR photocatalyst that can
generate 1O2 as the terminal oxidant upon NIR light irradiation [33].
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Table 2. Oxidation of various sulfides using BDP as the photocatalyst under NIR illumination a.

Entry Substrate Product Conversion b TON c TOF (min−1) d

1
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The triplet excited state of the photosensitizer was not only capable of sensitizing
other molecules through an energy transfer pathway but can also participate in an electron
transfer process to activate a substrate [15]. To test the feasibility of NIR-initiated 3BDP*

in the electron transfer process, the aerobic oxidation of aryl boronic acids (5a–5f) was
employed as the probe reaction (Table 3) [34,35]. The reactions were completed within 4 h to
give the formation of corresponding substituted phenols, with satisfactory yields of 85–95 %.
Compared to the visible light catalytic system using Ru(bpy)3Cl2, the BDP-involved NIR
photocatalysis furnished this reaction within much shorter time scopes [34]. Through
comparative studies (Table S3), we confirmed that BDP, the electron donor triethylamine
(TEA), photoirradiation, and oxygen were all indispensable for this photocatalytic oxidation.
In addition, in the presence of benzoquinone (quencher of O2

•—), the yield of the product
dramatically dropped from 90% to less than 10%, which implied the key oxidant role of
O2

•— in the oxidation of boronic acids, showcasing the capability of this BDP-driven NIR
photocatalysis in electron transfer–involved applications [25].

Table 3. Oxidation of various phenylboronic acid derivatives using BDP as the photocatalyst under
NIR illumination a.

Entry Substrate Product Yield b TON c TOF (min−1) d
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Utilizing the successful photooxidation of aryl boronic acid, we further explored the 
NIR-irradiated deprotection of prodrug in the presence of BDP. In comparison to the es-
tablished deprotection approaches with acid/base-sensitive or redox-sensitive agents, the 
photolytic activation of prodrug emerged as a traceless and green alternative to allow 
deprotection under light illumination [36,37]. In the presence of BDP and NIR irradiation, 
arylborate moieties, the protecting groups of carboxylate drugs, were firstly oxidized to 
phenols, which then underwent photolysis to release the corresponding pharmaceutical 
scaffolds such as Naproxen (8a) and Indomethacin (8b), in the yields of 74% and 67%, 
respectively (Figure 4) [38–40]. These results revealed the potential of our NIR light–
driven photolytic deprotection strategy in a wide array of applications related to the syn-
thesis of functional photocaged small molecules [41,42]. 
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Utilizing the successful photooxidation of aryl boronic acid, we further explored
the NIR-irradiated deprotection of prodrug in the presence of BDP. In comparison to the
established deprotection approaches with acid/base-sensitive or redox-sensitive agents,
the photolytic activation of prodrug emerged as a traceless and green alternative to allow
deprotection under light illumination [36,37]. In the presence of BDP and NIR irradiation,
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arylborate moieties, the protecting groups of carboxylate drugs, were firstly oxidized to
phenols, which then underwent photolysis to release the corresponding pharmaceutical
scaffolds such as Naproxen (8a) and Indomethacin (8b), in the yields of 74% and 67%,
respectively (Figure 4) [38–40]. These results revealed the potential of our NIR light–driven
photolytic deprotection strategy in a wide array of applications related to the synthesis of
functional photocaged small molecules [41,42].
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3. Materials and Methods
3.1. Measurement of Singlet Oxygen Generation Using DPBF as the Indicator

The mixture of BDP (10 µM) and DPBF, of which the concentration was set to make
the absorbance at 414 nm to be 1.0, was irradiated with 720 nm LED (5.0 mW/cm2). The
absorption of the obtained solution was monitored every 20 s. The decrease in absorbance
intensity of DPBF at 414 nm suggested that singlet oxygen was generated.

3.2. Photooxidation of Benzylamine Catalyzed by BDP with NIR Light Illumination

The mixture of benzylamine (0.275 mmol, 30 µL), BDP (1.6 × 10−4 mmol, 0.2 mg) in
1 mL dichloromethane was irradiated by 720 nm LED (20 mW/cm2). After the reaction,
the solvent was removed under reduced pressure. Then 0.6 mL deuterated chloroform was
added for the measurement of conversion via 1H NMR. For the benzylamine (NH2-CH2),
the characteristic proton chemical shift located at 3.82 ppm; meanwhile, the unique chemical
shift of the Schiff base product (CH2-N=CH) located at 4.82 ppm. Based on the integrated
area of these two peaks, the product conversion can be calculated.

3.3. The Setup of the Large-Scale Reactions

For the large-scale reaction under NIR light and blue light, the reactions were operated
with a 25 mL vial under light irradiation of 20 mW/cm2. The mixture of benzylamine
(5.5 mmol, 600 µL) and BDP (3.2 × 10−3 mmol, 4.0 mg) in 20 mL dichloromethane was
irradiated by NIR light of 720 nm under air atmosphere. Meanwhile, the mixture of
benzylamine (5.5 mmol, 600 µL) and Ru(bpy)3Cl2·6H2O (3.2 × 10−3 mmol, 2.4 mg) in
20 mL acetonitrile was irradiated by blue light of 455 nm. After the reaction, the solvent
was removed under reduced pressure. Then 0.6 mL deuterated chloroform was added
for the measurement of conversion via 1H NMR. For the benzylamine (NH2-CH2), the
characteristic proton chemical shift was located at 3.82 ppm, and the unique chemical shift
of the Schiff base product (CH2-N=CH) was located at 4.82 ppm. Based on the integrated
area of these two peaks, the product conversion can be calculated.
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3.4. Photooxidation of Sulfides Catalyzed by BDP with NIR-Light Illumination

The mixture of sulfides (0.20 mmol) and BDP (1.6 × 10−4 mmol, 0.2 mg) in 2 mL
DCM/methanol (v/v = 1/1) was irradiated by 720 nm LED (20 mW/cm2) under air
atmosphere. After the reaction, the solvent was removed under reduced pressure. Then
0.6 mL deuterated chloroform was added for the measurement of conversion via 1H NMR.
For the sulfide (S-CH2 or S-CH3), the characteristic proton chemical shift was located near
2.40 ppm, while the unique chemical shift of the sulfoxide product (CH2-S=O or CH3-S=O)
was located near 2.72 ppm. Based on the integrated area of these two peaks, the conversion
can be calculated.

3.5. Photooxidation of Phenylboronic Acids Catalyzed by BDP with NIR-Light Illumination

The mixture of phenylboronic acids (0.20 mmol), triethylamine (TEA) (50 µL), and BDP
(1.6 × 10−4 mmol, 0.2 mg) in 2 mL DCM/methanol (v/v = 1/1) was irradiated by 720 nm
LED (20 mW/cm2) under air atmosphere. After the reaction, water was added. The aqueous
mixture was then extracted with ethyl acetate (EtOAc) following which the ethyl acetate
layer was dried with anhydrous Na2SO4 and concentrated. This was followed by column
chromatography over silica gel to yield the product eluent EtOAc/hexane = 3/1, v/v.

3.6. Turnover Number (TON) and Turnover Frequency (TOF) Calculation

Based on the 1H NMR data, the conversion of the substrate can be calculated and then
the amount of the product can be determined.

TON = mole of product per mole of catalyst (1)

TOF = TON/irradiation time (min) (2)

3.7. Tandem Reaction Catalyzed by BDP and Copper Salt

After two hours reaction of benzylamine (0.825 mmol) in the presence of the BDP
(4.8 × 10−4 mmol) and 720 nm light illumination (20 mW/cm2) under air atmosphere,
the solvent was removed under a vacuum. Then the reaction mixture containing imine
product, a toluene solution containing 4.1 × 10−2 mmol Cu(OTf)2, 4.1 × 10−2 mmol Na2SO4
(10 mol%), and 100 µL 4-tert-butylphenylacetylene, was transferred to a dried Schleck tube
under nitrogen atmosphere. After reacting at 90 ◦C overnight, the final product of this
tandem reaction was isolated by flash column chromatography on silica gel with a mixed
eluent of hexane and ethyl acetate (10:1, v/v).1H NMR (500 MHz, CDCl3): δ = 8.36 (s, 1H),
7.78–7.76 (m, 2H), 7.43–7.39 (m, 5H), 7.32–7.29 (m, 5H), 7.24–7.22 (m, 1H), 4.81 (s, 2H), 3.01
(s, 1H), 1.29 (s, 9H).

4. Conclusions

In summary, we employed a metal-free BODIPY-derivative, BDP, as the NIR light pho-
tocatalyst to achieve the efficient oxidation of benzylamine derivatives, sulfides, and aryl
boronic acids to yield chemicals with synthetic importance and added value. The strong
absorption of NIR light of BDP enabled the direct utilization of low-power NIR irradiation
(720 nm LED, 20 mW/cm2) for photooxidation, which exhibited deeper penetration depth
and higher efficiency in large-volume reactions than the established visible- light photo-
catalytic protocols. Mechanism investigation showed that BDP can effectively produce
singlet oxygen via energy transfer or generate superoxide anion via electron transfer upon
NIR illumination. More importantly, BDP-triggered NIR photooxidation can be further
combined with Cu catalysis to yield alkyne-substituted secondary amine derivatives, or
applied in photolytic prodrug activation of Naproxen-borate and Indomethacin-borate,
demonstrating the infinite potential of NIR photocatalysis in sophisticated organic syn-
thesis. This work showcased the capability of utilizing NIR light by organic dyes to forge
value-added chemicals, which will benefit the development of organic synthesis, material
design, and solar energy use.
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