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Abstract: Optimal synthesis of distillation sequence is a complex problem in chemical processes
engineering, which involves process structure optimization and operation parameters optimization.
The study of the synthesis of distillation sequence is a crucial step toward improving the efficiency of
chemical processes and reducing greenhouse gas emissions. This work introduced the concept of
binary tree to encode the distillation sequence. The performance of the six evolutionary algorithms
was evaluated by solving a 14-component distillation sequence synthesis problem. The best algorithm
was used to optimize the operation parameters of a triple-column distillation process. The total
annual cost and CO2 emissions were considered as the metrics to evaluate the performance of triple-
column distillation processes. As a result, NSGA-II-DE was found to be the best one of the six tested
evolutionary algorithms. Then, NSGA-II-DE was applied to the distillation sequence optimization to
find the best operating parameters, which led to a significant reduction in CO2 emission and total
annual costs.

Keywords: distillation process synthesis; distillation sequence; evolutionary algorithm; Aspen Plus

1. Introduction

Design and optimization of distillation sequences become much more essential tasks
in process systems engineering, which dramatically influences total annual cost (TAC) and
target product purity. The distillation process synthesis was pioneered by Lockhart [1]
and systematically analyzed by Siirola et al. [2]. Until now, there have been some popular
methods that deal with distillation process synthesis, including the heuristic method, evo-
lutionary method, algorithmic method, and stochastic algorithms. In recent years, many
researchers [3,4] focused their attention on distillation process to reduce energy consump-
tion in distillation separation or improve production efficiency, for instance, the coupling
of distillation and vapor permeation [5,6] or reactive-vapor permeation-distillation [7].
Although these distillation processes are beneficial to production, design and optimization
of distillation sequences are still essential.

Heaven [8] firstly proposed the heuristic method for distillation column optimization.
Thompson and King [9] realized automatic calculation of the heuristic method by coding
distillation sequences into digits. Freshwater and Henry [10] supplemented inference
rules based on Heaven’s method. Seader and Westerberg [11] proposed six inference
rules to generate the initial separation sequence. The evolutionary method evolved from
the heuristic method, which tries out the optimal structure by changing the separation
order of key components. Although the heuristic and evolutionary methods have been
widely applied in engineering practice, their effectiveness is critically dependent on the
completeness of the design engineer’s knowledge, and there is no guarantee that the
design of a distillation sequence will be optimal. The algorithmic methods introduce
mathematical models for nonlinear programming to deal with the problem of distillation
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sequences. Nonlinear programming models obtain globally optimal solutions by the
gradient descent method. However, due to their non-convex nature, which consistently
exhibits in distillation sequence synthesis, the solution often converges to local extrema.

The stochastic algorithms have an attractive advantage over heuristic and evolutionary
methods for problems with the modular simulator, where the model for each unit is only in
an implicit form (black box model). Firstly, they are based on direct searching methods so
that there is no need to have a rigorous model of the problem, which makes it suitable for
the processes which are difficult to be modeled. Secondly, the search for the optimal solution
is not limited to a single point instead of relying on multiple points contemporaneously,
which makes it particularly suitable for handling combinatorial optimization problems
with high computational complexity [12].

In recent years, stochastic algorithms have been widely applied for the synchronous
optimization of one or more different types of variables. The prevailing stochastic algo-
rithms for the analysis, design, and evaluation of distillation processes have been used
directly in the modeling, thus avoiding the sophisticated modeling and handling mixed-
integer non-linear programming (MINLP) [13]. Stochastic algorithms can be classified
into two main categories according to the dimensionality of the objective function. In the
field of single-objective optimization, Floquet et al. [14] applied the simulated annealing
(SA) algorithm with a separation-based coding procedure for complex column sequence
synthesis. Leboreiro and Acevedo [15] presented a framework for the synthesis and design
of complex distillation sequences based on a modified genetic algorithm (GA) coupled with
a sequential process simulator. In the last decade, many researchers have evaluated the
distillation sequence in multi-dimension to assess the sustainability of the chemical process.
Instead, a multi-objective optimization algorithm has been applied. For the multi-objective
optimization, Errico et al. [16] proposed an efficient method for the design and optimiza-
tion of intensified distillation systems by combining the sequential design method and
the multi-objective differential evolution. Vázquez-Castillo et al. [17] presented a multi-
objective optimization approach that integrates the design and control of multicomponent
distillation sequences. Contreras-Zarazúa et al. [18] studied multi-objective optimization in-
volving costs and control properties of intensified schemes to produce diphenyl carbonate.
Cabrera-Ruiz et al. [19] introduced a new strategy to consider controllability as an opti-
mization criterion along with the optimal design at a steady state. Alcocer-García et al. [20]
used differential evolution with the tabu list in optimizing TAC and the eco-indicator 99.
Sun et al. [21] applied an improved multi-objective genetic algorithm to optimize of the
triple-column extractive distillation (TCED) process. Zhang et al. [22] suggested a method
to solve multi-objective optimization (MOO) in the Fischer–Tropsch reactive distillation
synthesis. Zhao et al. [23] combined sequential iterative optimization sequence and a MOO
algorithm to optimize equipment costs and CO2 emissions.

One representative of stochastic algorithms is the so-called evolutionary algorithm,
which is widely used for highly non-linear problems. Evolutionary algorithms are a type of
stochastic search algorithms which simulate the natural selection and natural evolution of
organisms. They mainly include non-dominated sorting genetic algorithm II (NSGA-II) [24],
non-dominated sorting genetic algorithm III (NSGA-III) [25], non-dominated sorting ge-
netic algorithm II and III with differential evolution (NSGA-II-DE and NSGA-III-DE) [26],
multi-objective evolutionary algorithm based on decomposition (MOEA/D) [27], and
multi-objective evolutionary algorithm based on decomposition and differential evolution
(MOEA/D-DE) [28]. Although a few studies have been carried out for distillation process
synthesis with evolutionary algorithms, nobody has clarified the performances of differ-
ent evolutionary algorithms, resulting in a lack of guidance for evolutionary algorithms.
Furthermore, the role of differential evolution has never been discussed in distillation
process synthesis.

In the present study, six evolutionary algorithms were explained and implemented
with in-house codes. The performance of the evolutionary algorithms was firstly tested
with a 14-component distillation sequence to discern the best one. The effectiveness of
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NSGA-II-DE was then examined by optimizing the distillation sequence of a triple-column
distillation sequence proposed by Mayevskiy et al. [29]. Finally, some opinions on applying
this method to general process synthesis and design issues are provided.

2. Evolutionary Algorithm
2.1. NSGA-II

Deb et al. [24] proposed NSGA-II on the basis of NSGA [30]. In NSGA-II, the evolu-
tionary population is divided into several layers according to the dominance relationship.
The dominance of the layers is shown in the schematic diagram of crowding-distance
calculation (Figure 1). To obtain an estimate of the density of solutions surrounding a
particular solution in the population, NSGA-II calculates the average distance of two points
on either side of this point along each of the objectives. In Figure 1, the crowding distance
of the ith solution in its front (marked with black squares) is the average side length of
the cuboid (shown with a green dashed box). When new populations are generated, the
best individuals with relatively low densities are usually retained and participate in the
evolution of the next generation.
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Figure 1. Crowding-distance calculation.

The whole NSGA-II procedure is illustrated in Figure 2. In the Nst generation of the
parent population, individuals in the population are divided into subpopulations that do
not interbreed based on non-dominance sorting, and the individuals satisfying a certain
number of subpopulations are selected to enter the next generation of the parent population
based on their dominance relationships.

2.2. NSGA-III

NSGA-II handles multi-objective optimization problems very well. However, it is
only available for low-dimensional optimization problems (objective dimension less than
or equal to 3). As the objective dimension of the optimization problem increases, the
number of non-dominated individuals in the population grows exponentially, which makes
it challenging to distinguish good and bad individuals in the Pareto dominance. Deb and
Jain [25] proposed NSGA-III to solve this problem. The framework of NSGA-III is similar
to that of NSGA-II, except that NSGA-III introduces reference lines for the non-dominance
ranking of individuals, as shown in Figure 3.
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2.3. MOEA/D

The core principle of the MOEA/D algorithm is to decompose a multi-objective opti-
mization problem into a set of single-objective sub-problems or multiple multi-objective
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sub-problems, which finds an approximation to the entire Pareto surface (pink line in
Figure 4) by using the neighbor relationships between the sub-problems to optimize all the
sub-problems simultaneously in a collaborative manner [27]. Typically, the sub-problems
are defined by weight vectors (black dashes in Figure 4), and the neighbor among sub-
problems is determined by calculating the Euclidean distance between the weight vectors.
Sum functions which are commonly applied are the weighted sum approach [31], Tcheby-
cheff approach [32], and the penalty-based boundary intersection approach [27]. The
MOEA/D algorithm used in this work is based on the implementation of the Tchebycheff
approach. The result of the Tchebycheff sum function gtch is calculated as:

gtch(x | w) = max
i∈{1,...,m}

wi| fi(x)− zi| (1)

where i is individual; zi is the value of the reference point z, x is the decision vector, w is the
weight vector.
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2.4. Differential Evolution with NSGA-II, NSGA-III, and MOEA/D

The differential evolution (DE) algorithm is based on population differences, which
finds solutions to optimization problems through cooperation and competition between
individuals [33,34]. The concept of differential evolution is as follows:

Firstly, two individuals (xr1, xr2) are randomly selected from the population, and the
difference between the individuals is multiplied by the differential weight (F), and they are
added to the third individual (xr3) to generate a mutant individual (vi):

vi = xr3 + F(xr1 − xr2) (2)

where vi is mutant individual, xr1, xr2, and xr3 are selected individuals, F is differential
weight.
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Secondly, the mutant individual will replace the original individual in the population
with a certain probability so that a test population is created:

ui =

{
vi random(0, 1) ≤ Cr or i = irandom
xi random(0, 1) > Cr

(3)

where ui is text individual, vi is mutant individual, xi is original individual, Cr is crossover
factor. Finally, the test population is compared with the original population and better ones
are retained into the next generation.

It has been found that differential evolution strategies, when introduced into multi-
objective optimization algorithms, will improve the global search capability and conver-
gence of multi-objective optimization algorithms [35,36]. However, no one has introduced
a genetic algorithm based on differential evolution to the distillation sequence synthesis
problem.

3. Binary Tree Coding

For ease of representation and calculation, the following two assumptions were intro-
duced into the design of distillation sequences: (1) All components in the flow unit were
arranged in ascending order according to their boiling points. (2) Each unit consists of a
simple tower, and the splitting of the material is clearly split, i.e., the distillation column
had only one inlet flow unit and two outlet flow units at the top and bottom of the tower,
and both of them were capable of separating the light and heavy key components.

For a mixture of four components A, B, C, and D, the distillation separation sequence
can be expressed in the form of ABC|D, with “|” representing the separation task, i.e., the
separation of ABCD into two mixtures ABC and D, as shown in Figure 5.
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In order to make the distillation sequence correspond to the array of separation tasks,
the distillation sequence was encoded in a binary tree, taking into account the similarity
between the structure of a sharp distillation sequence and a binary tree. For example, S [3,
1, 2] is a random task array for a distillation sequence. The three data were ordered into
the binary tree, as shown in Figure 6. The child nodes were found through the pre-order
traversal, and the parent nodes were found through the post-order traversal. As a result,
the number of the downstream distillation columns and upstream distillation columns are
determined, respectively. The ordered binary tree was S [3, 1, 2] for the pre-traversal and S
[2, 1, 3] for the post-traversal.
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4. Comparative Study of Evolutionary Algorithms

Due to sufficient thermodynamic data for saturated alkanes, this section illustrates
the distillation separation of a 14-component alkane mixture, where a separation sequence
needs to be designed to separate the components thoroughly. There are 742,900 possible
combinations in a 14-component distillation sequence problem, which is complex enough to
test the performance of six evolutionary algorithms. The component numbers, ingredients,
molar feeds, boiling points, and K-values are listed in Table 1.

Table 1. Properties of the fourteen-component mixture.

Component ID Component Molar Feeds
(kmol/h) K-Values Boiling Points

(◦C)

A methane 230 256.99 −161.49
B ethane 100 93.25 −88.60
C propane 40 45.63 −42.04
D n-butane 50 22.37 −0.50
E n-pentane 130 11.34 36.07
F n-hexane 100 5.86 68.73
G n-heptane 110 3.08 98.43
H n-octane 180 1.61 125.68
I n-nonane 120 0.86 150.82
J n-decane 30 0.46 174.16
K n-undecane 150 0.26 195.93
L n-dodecane 190 0.14 216.32
M n-tridecane 90 0.07 235.47
N n-tetradecane 140 0.04 253.58

The evaluation metrics of the independent separation units are expressed in terms of
annual cost correlations. The optimal synthesis using rigorous simulation analysis is so
complex that an evaluation function is usually specified to evaluate the designed sequence
for simplicity in the design of the distillation sequence [37]. The evaluation functions are
usually relative cost function [38], separation ease coefficient [39], and separation difficulty
coefficient [40]. Shi and Wang [38] compared the separation coefficient and the relative
cost function, concluding that the relative cost function method is more reasonable as an
evaluation index. In order to test the performance of the evolutionary algorithms, relative
cost function and separation difficulty coefficient were adopted as the objective functions
in this work.
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The relative cost function (F) is expressed as

F = ∑
i

Fi, Fi =
{
(1− f unc)2.73 + 2.41

}
∆T−0.31

b , f unc =
{

t/w t ≤ w
w/t t > w

(4)

where ∆Tb is the boiling point difference between the light and heavy key components, t is
the distillate rate, w is the bottom rate.

The separation difficulty coefficient (CDS) is expressed as

CDS =
lg
[(

xlk
xhk

)
D

/
(

xlk
xhk

)
W

]
lgαlk,hk

· t
t + w

·
{

1 +
∣∣∣∣ t− w
t + w

∣∣∣∣} (5)

where
(

xlk
xhk

)
D

is the mole fraction ratio of light and heavy key components in distillate

product,
(

xlk
xhk

)
W

is the mole fraction ratio of light and heavy key components in bottom
product, αlk,hk is the relative volatility of light and heavy key components, t is the distillate
rate, kmol/h, w is the bottom rate, kmol/h.

The parameters used in the evolutionary algorithms are listed in Table 2. The optimiza-
tion procedure was carried out on a 64-bit desktop computer with an Intel Core i7-12700
CPU @2.10 GHz, including a 16 GB RAM. Considering that multi-objective optimization
algorithms are characterized by random evolution, the performance of algorithms may not
be indicated by the results of a single calculation. Therefore, the calculation was repeated
100 times in this paper, and the results were statistically analyzed to find out the pattern
and characteristics.

Table 2. The parameters of six evolution algorithms.

Evolution Algorithm Parameters

NSGA-II dim = 2; size = 100; gen = 100; cf = 1; mf = 1/dim
NSGA-III dim = 2; size = 100; gen = 100; cf = 1; mf = 1/dim
MOEA/D dim = 2; size = 100; gen = 100; cf = 1; mf = 1/dim; ps = 0.9; sn = size/10

NSGA-II-DE dim = 2; size = 100; gen = 100; f = 0.5; Cr = 0.5 mf = 1/dim; ps = 0.9
NSGA-III-DE dim = 2; size = 100; gen = 100; f = 0.5; Cr = 0.5 mf = 1/dim; ps = 0.9
MOEA/D-DE dim = 2; size = 100; gen = 100; f = 0.5; Cr = 0.5 mf = 1/dim; sn = size/10

Where dim is dimension of the objective function, size is size of population, gen is
generation, cf is crossover factor, mf is mutation factor, ps is probability of selection, sn is
size of neighbor, f is scaling factor in differential evolution operator.

The evaluation of the multi-objective evolutionary algorithm (MOEA) takes into
account two main indicators: effectiveness and efficiency. The effectiveness refers to the
quality of the Pareto optimal solution set it finds, mainly in terms of the convergence and
distribution effect of MOEA. The efficiency refers to the CPU time it takes to find the Pareto
solution set for a multi-objective optimization problem, and the RAM it occupies. The
comprehensive evaluation metric reflects both convergence and distribution of MOEA
through a scalar value. In recent years, hypervolume (HV) [41] and indicator generational
distance (IGD) [42] have been widely used, and both of them are applied in evaluating the
effectiveness of evolutionary algorithms.

Figure 7 shows the change in HV with the evolution of the population. The Blue
dashed line represents the mean HV values of six MOEAs in each generation. The blue-
filled part indicates the fluctuation of the result, which was calculated from µ ± σ, where µ
is mean HV and σ is standard deviation. The HV value was strictly subject to the Pareto
dominant principle. For example, if individual A dominates individual B, the HV value
of individual A must be greater than that of individual B. As the differential evolution
strategy enhanced the search ability of evolutionary algorithm, the performance of the three
evolutionary algorithms was improved. At the same time, the HV value of NSGA-II-DE
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was significantly higher than the others, which means NSGA-II-DE is optimal in terms of
the analysis results of the HV indicator.
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Figure 8 shows the change in IGD with the evolution of the population. The IGD value
indicates the average distance from the individuals in the Pareto set to the non-dominated
solution set found by the evolutionary algorithm, which means that the smaller the value
of IGD, the better the performance of the algorithm. Since the IGD value is related to
the preset Pareto front curve and the Pareto front curve cannot be directly derived, an
approximation was used instead of the Pareto front curve, which may have affected the
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IGD values of the six algorithms. Thus, the performance of the four algorithms, except for
the NSGA-II –DE and MEOA/D, was considered to be comparable.
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From Figure 9, the size of the marker indicates the probability of recurrence 100 times.
If more individuals converge to the same point, the larger the marker will be, which
means a higher performance level of the algorithm. It can be seen that the non-dominated
front calculated by NSGA-II-DE outperformed the non-dominated front obtained by the
other algorithms, which led to the conclusion that the NSGA-II-DE algorithm performs
better than the other algorithms. The convergence and distribution of NSGA-II, NSGA-III,
and MOEA/D were improved by introducing the differential evolution operator as an
evolutionary strategy, which is consistent with the findings reported in the literature [35,36].
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5. Optimization of the Base Case
5.1. Separation Flowsheet and Thermodynamic Modeling

This present study introduced a separation scheme proposed by Mayevskiy et al. [29]
instead of redesigning a distillation sequence to separate the 6-composition mixture. The
same as the reference publication, a feed flow of 100 kmol/h with molar compositions of
0.4934, 0.1717, 0.0847, 0.1927, 0.0015, and 0.0575 for acetone, isopropanol, water, methyl
isobutyl ketone (MIBK), methyl isobutyl carbinol(MIBC), and diisobutyl ketone(DIBK),
respectively was used.

The first column plays a role in pretreatment. The high-boiling-point components
(MIBK, MIBC, DIBK) and low-boiling-point components (acetone, isopropanol, water)
were divided from this column. The products of distillate and bottoms were refined in
the second and third columns. A pump conveyed the stream, and the pump discharge
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pressure was set at 320 kPa. The last two distillation columns were operated under negative
pressure. However, because the ratio CP/CV for MIBK, MIBC, and DIBK (1.048, 1.045, 1.033)
is relatively small, this may lead to higher operating costs for the vacuum pump. Thus, the
operative pressure of the distillation column will be redesigned. The distillation sequence
to be optimized is shown in Figure 10. More details can be found in Mayevskiy et al. [29].
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Figure 10. Flowsheet of 6-component mixture separation.

The above process was simulated by Aspen Plus v11. Design specifications were set
in the RadFrac block to ensure that the product purity met the separation requirements.
In the pretreatment column, molar recoveries of isopropanol in distillate and MIBK in the
bottom were both 0.9995. The others were set molar purity of key components as design
specifications.

To be consistent with the simulation approach in the publication, Non-Random Two-
Liquid (NRTL) was chosen as the thermodynamic model. The validity of the NRTL model
has been discussed in the literature [29]. However, the single activity coefficient model is
not able to calculate the thermodynamic state of the gas. When it occurs, the Aspen Plus
simulator uses ideal gas law to calculate the gas thermodynamic state, which compensates
for this deficiency, but it can introduce theoretical errors. NRTL parameters for binary
systems are shown in Table 3.

Table 3. NRTL parameters for binary systems.

Component i Component j Aij Aji Bij Bji

Acetone Isopropanol −2.4106 2.4494 822.4892 −583.3452
Acetone Water 6.3981 0.0544 −1808.9910 419.9716

Isopropanol Water −1.3115 6.8284 426.3978 −1483.4573
Acetone MIBK −5.4452 5.3013 1833.5227 −1735.9082

Isopropanol MIBK 0.0000 0.0000 160.6435 28.1164
Water MIBK 9.1629 −3.2305 −1248.7440 1208.8770
Water MIBC 10.2983 −3.2359 −1367.8159 998.0640
Water DIBK 11.6082 −0.3283 −969.9380 730.5226
MIBK MIBC 0.3818 −0.1565 0.0000 0.0000

Acetone MIBC 0 0 222.1975 7.9431
Acetone DIBK 0 0 335.0488 −164.9281

Isopropanol MIBC 0 0 159.3051 −122.9533
Isopropanol DIBK 0 0 263.2273 125.6002

MIBK DIBK 0 0 123.9190 −77.4980
MIBC DIBK 0 0 89.2102 172.8563

5.2. Performance Indicators

In order to evaluate the performance of the distillation sequence, total annual cost and
CO2 emissions were adopted as indicators in this work [43,44]. The total annual cost is a
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commonly used economic indicator which includes capital investments and operating costs.
In the present work, the capital investments consisted of column vessel cost, column tray
cost, vacuum pump cost, heat exchanger cost, and feed pump cost. Electricity consumption,
cooling water consumption, and steam consumption influence operating costs.

The total annual cost is calculated as

TAC =
capitalinvestments

payback period
+ operating cost (6)

where the payback period is 3 years.
The column cost is calculated as

Cc =
MS
280
× 101.9× D1.066

c × L0.802
c × (2.18 + 3.67) (7)

where Dc is the diameter of the column (ft); Lc is the height of the column; MS is the
Marshall & Swift index. Here, M&S was taken as 1448.3. The height of the column is
calculated as

Lc = 2.3× (NT − 1) (8)

where LC, is height of column, [ft]; NT is the total number of trays in the column.
The tray cost is calculated as

CT =
MS
280
× 4.7× D1.55

c × Lc × (1 + 1.8 + 1.7) (9)

The cost of heat exchanger is calculated as

Che =
MS
280
× 5109.49× A0.65 × (2.29 + Fc) (10)

where A is the area of heat exchanger (ft2); FC is 5.0625 for the reboiler and 3.75 for the
condenser. For the reboiler and condenser,

AR =
QR

UR∆TR
(11)

AC =
QC

UC∆TC
(12)

where AR and AC is heat transport area of reboiler and condenser, respectively (m2); UR is
the transfer coefficient for re boiler (kW/(K·m2)), ∆TR is the temperature difference, (K). Uc
is the transfer coefficient for condenser (kW/(K·m2)), ∆Tc is the temperature difference (K).
Here, UR was taken as 0.568 and Uc was taken as 0.852.

The cost of vacuum pump and feed pump are given as [45]

Cvp = 4200×
(

60× Fv × 8.314× 273.15
3600× 101325

)0.55
(13)

where FV is the volumetric flow rate (kmol/h).

C f p = 26700×
(

24× FF × 3600
50000

)0.53
(14)

where FF is the feed flow rate (m3/s).
The utility cost is calculated as

CLP = 7.07×QLP × 8000 (15)

CMP = 8.57×QMP × 8000 (16)
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CCW = 0.354×QCW × 8000 (17)

CE = 0.0775×QE × 8000 (18)

where CLP is the cost of lower pressure steam (3 bar); QLP is the lower pressure steam duty
(GJ); CMP is the cost of medium pressure steam (15 bar); QMP is the medium pressure steam
duty (GJ); CCW is the cost of cooling water (298.15 K); QCW is the cooling water duty (GJ);
CE is the cost of electricity; QE is the electricity duty (kW).

In considering the impact of distillation separation on the environment, this work
used Greenhouse gas emissions as an evaluation index. This methodology was proposed
by Gadalla et al. [46] and CO2 emissions can be calculated with the following equation.

CO2 emissions =

(
QFuel
NHV

)(
C%
100

)
a (19)

where QFuel is amount of fuel burnt (kW); a is the ratio of molar masses of CO2 and C; NHV
represents the net heating value of fuel with a carbon content of C% (kJ/kg).

5.3. Optimization Methodology and Objective Function

The improved non-dominated sorting genetic algorithm II based on differential evolu-
tion algorithm (NSGA-II-DE) was applied to optimize the distillation sequence to provide
quantitative benefits and trade-offs between annual operating costs and capital investments.
The NSGA-II-DE procedure includes initiation of population, evolution, and end, as shown
in Figure 11. The optimization of the distillation sequence is based on the Aspen Plus
v11, which enables communication between python and Aspen Plus through ActiveX [47].
The design parameters were generated by a Python program and entered into Aspen Plus
simulator via the COM technique. After the simulation was completed without errors, the
Aspen Plus simulator returned the results (TAC and CO2 emissions) to Python. TAC and
CO2 emissions were calculated using the calculator module of Aspen Plus. The NSGA-II-
DE was used in Python to analyze the corresponding objective functions under different
design parameters, evolving until the number of generations satisfied 100 generations.
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The two targets mentioned already were accounted for in the objective function, which
is defined as follow:

min(TAC, CO2) = f (NT , NF, R, Fd, P) (20)

where TAC is total annual cost (million$); CO2 is CO2 emissions (kt/year); Nt is the total
number of trays in the column; NF is feed stage, R is mole reflux ratio, Fd is distillate rate
(kmol/h); P is operative pressure (kPa). The objective function is restricted by fulfilling
the molar purity of the key component upper than 0.998 or molar recovery of the key
component upper than 0.999.

In this example, the feed plate was changed to the ratio of the feed plate to the number
of plates, and the result was rounded down to ensure that the feed plate is always smaller
than the total number of plates. The total number of design variables, in this case, was 15.
To ensure that the molar purity of the product reached 99.8%, the design specifications were
set in the RadFrac block. At the same time, the molar recoveries of the key components are
charged at 99.9%. There are still nine design variables, which can be found in Table 4.

Table 4. Range of variation in population individual.

Decision Variable Variable Category Change Range

T1 total number of trays integer [30,60]
T1 ratio of the feed stage to the total number of trays real number [0.1,0.95]

T1 operative pressure integer [40,100]
T2 total number of trays integer [30,60]

T2 ratio of the feed stage to the total number of trays real number [0.1,0.95]
T2 operative pressure integer [40,85]

T3 total number of trays integer [30,60]
T3 ratio of the feed stage to the total number of trays real number [0.1,0.95]

T3 operative pressure integer [60,100]

5.4. Optimization Results

In this work, the optimization procedure was carried out on a 64-bit desktop computer
with an Intel Core i7-12700 CPU @2.10 GHz, including 16 GB RAM. The parameters of
NSGA-II-DE are the same as the ones listed in Table 2. The program took about 8 h to
obtain the optimization results. The non-dominated front is shown in Figure 12.
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By increasing the number of plates, the separation performance of the distillation
column can be improved, and therefore the equipment investment also increases. When
the number of plates was increased or decreased to a certain level, there was no significant
reduction in CO2 emission or total annual cost. At the same time, the total annual cost and
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CO2 emissions were normalized, which makes it possible to directly find the Euclidean dis-
tance from the ideal point (0,0) for the results to compare the superiority of the individuals
on the non-dominated front. In Figure 12b, the darker the scatter color, the closer to the
ideal point.

The optimization results are shown in Table 5. By optimizing the operational parame-
ters of the distillation sequence through NSGA-II-DE, the total annual cost was reduced by
1.868 million$, and CO2 emission was reduced by 5.002 kt/year. The CO2 emission and
total annual cost were reduced by 64.15% and 82.23%. As expected, a reduced-pressure
distillation operation in the T3 column would incur significant energy costs, making it
more suitable for atmospheric pressure separation.

Table 5. Comparison between initial results and NSGA-II-DE optimization results.

Operation Parameters Base Case [29] After Optimization
(Min Euclidean Distance)

T1 total number of trays 35 56
T1 feed stage 30 47

T1 operative pressure (kPa) 101.32 100
T2 total number of trays 36 43

T2 feed stage 31 37
T2 operative pressure (kPa) 70.93 58

T3 total number of trays 32 58
T3 feed stage 10 23

T3 operative pressure (kPa) 70.93 100
TAC (million$) 2.912 1.044

CO2 Emission (kt/year) 6.083 1.083

6. Conclusions

This work presented the performance test of six evolutionary algorithms used in
previous work. Firstly, the 14-component distillation sequence problem was successfully
solved. The Pareto charts of each algorithm showed that the algorithms with differential
evolution would improve their global search capability and convergence, and NSGA-II-DE
performed the best. Secondly, a triple-column distillation sequence in the publication was
optimized by using NSGA-II-DE. By optimizing the feed stage, the number of trays, and
operative pressure, the CO2 emission and total annual cost were reduced by 64.15% and
82.23%, respectively. This study demonstrated the ability of NSGA-II-DE to obtain the
optimal synthesis of the distillation sequence and explores an overall solution of distillation
separation design.
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