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Abstract: Agarwood has been used for the administration of hypnotic therapy. Its aromatic scent
induces a relaxed state. However, its aromatic constituents and the underlying molecular effect are
still unclear. This study aims to determine the active substance and molecular mechanism of the
hypnotic effect of agarwood essential oil (AEO) incense inhalation in insomniac mice. Insomnia
models were induced by para-chlorophenylalanine (PCPA, 300 mg/kg) in mice. The sleep-promoting
effect was evaluated. Neurotransmitter levels and its receptor were detected to explore the molecular
mechanism. The effective components were analyzed by GC-Q/TOF-MS of AEO. The binding
mechanisms of the core compounds and core targets were verified by molecular docking. These
results showed that AEO inhalation could significantly shorten sleep latency and prolong sleep
time, inhibit autonomous activity and exert good sedative and sleep-promoting effects. A mecha-
nistic study showed that AEO inhalation increased the levels of γ-aminobutyric acid (GABAA), the
GABAA/glutamic acid (Glu) ratio, 5-hydroxytryptamine (5-HT) and adenosine (AD), upregulated
the expression levels of GluR1, VGluT1 and 5-HT1A and downregulated 5-HT2A levels. Component
analysis showed that the most abundant medicinal compounds were eremophilanes, cadinanes and
eudesmanes. Moreover, the docking results showed that the core components stably bind to various
receptors. The study demonstrated the bioactive constituents and mechanisms of AEO in its sedative
and hypnotic effects and its multicomponent, multitarget and multipathway treatment characteristics
in PCPA-induced insomniac mice. These results provide theoretical evidence for insomnia treatment
and pharmaceutical product development with AEO.

Keywords: agarwood essential oil; incense inhalation; sedative and hypnotic effects; pharmacodynamic
substance; Glu–GABA balance; molecular docking
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1. Introduction

With the increasing pressure of modern society, insomnia has become the most com-
mon mental disorder [1]. More than 300 million people suffer from insomnia in China,
according to a survey by the Healthy China Initiative (2019–2030). Insomnia can lower
the body’s immunity, and long-term insomnia can induce a variety of physical and mental
diseases, which seriously affect people’s physical and mental health and quality of life [2].
At present, sedative hypnotic drugs can improve insomnia but cannot cure the disease, and
long-term medication will produce dependence [3]. The mechanisms of insomnia have not
yet been fully explained. Abnormal levels of central neurotransmitters (5-HT, DA, GABA,
Glu, etc.) and the regulation of receptor function are recognized as pathogenic factors at
present. Interestingly, more effective and safer herbal medicine therapies have been widely
used for those suffering from sleep disorders in recent years [4,5].

Agarwood is a highly valuable aromatic resinous heartwood of Aquilaria sinensis
(Lour.) Gilg, and it is a traditional fragrant medicine used in China, Southeast Asia and
the Middle East. Traditional medicinal efficacy of “nourish qi and spirit, and cure of
mind and spirit” was recorded [6]. Modern pharmacological studies have shown that the
extracts [7], volatile oil [8,9] and sesquiterpenes and their derivatives [10–12] of agarwood
have sedative, hypnotic, anti-depressive and anti-neuritis effects on the central nervous
system (CNS). Previous studies in our group confirmed that intraperitoneal injection
with AEO has sedative and hypnotic effects through activation of the GABAergic system.
Sixty-eight compounds of AEO were analyzed and identified by GC-MS, among which
51.13% were sesquiterpenes [9], small fat-soluble volatile substances that can be used for the
treatment of brain diseases due to their high blood–brain barrier permeability. Agarwood
has been used as incense for more than two thousand years and it has a good tranquilizing
effect [13]. Volatile substances are the main components of agarwood. Studies have reported
that the inhalation of agarwood aromatics can promote sleep and improve insomnia and the
sleep rhythm state, and these effects are related to the regulation of neurotransmitters [14–16].
Agarwood’s aromatic scent, emitted from heat or smoke inhalation, has sedative and
hypnotic effects. However, its less studied volatile aromatic constituents may contribute to
its activity, and the underlying molecular effect is still unclear.

This study aimed to evaluate the sedative and sleep-promoting properties of AEO
inhaled medications and to explore the potential mechanisms based on the Glu–GABA
and serotonergic nervous systems. In addition, the molecular mechanism was verified by
confirming the effective combination of active ingredients and identifying their core targets
by molecular docking.

2. Results
2.1. AEO Affects Sleep

Compared with the normal group, the model group exhibited obviously prolonged
sleep latency and a shortened sleep time (p < 0.01), suggesting that the animals exhibited
symptoms of insomnia and successful model preparation. Compared with the model group,
AEO significantly shortened the sleep latency of mice in a dose-dependent manner (p < 0.05,
p < 0.001) (Figure 1a) and prolonged the sleep time of the mice (p < 0.05, p < 0.01, p < 0.001)
(Figure 1b), indicating that AEO inhalation administration has a better sleep-promoting
effect. In addition, the sleep-prolonging effect of an intraperitoneal injection was slightly
better than that of incense inhalation at the same dose, and the effect of incense inhalation
was the same as that of the positive drug.

2.2. AEO Affects Autonomous Activities

Compared with that in the normal group, autonomous activity was significantly
enhanced (p < 0.05, p < 0.01, p < 0.001) in the model group mice, suggesting that the
model animals developed restlessness and that their autonomous activity was enhanced.
Compared with the model group, AEO significantly shortened the exercise distance
(p < 0.05, p < 0.001), decreased the velocity (p < 0.05, p < 0.01, p < 0.001) and prolonged the
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rest time (p < 0.05) in a dose-dependent manner, indicating that the inhalation of AEO could
significantly inhibit autonomous activities and had a good sedative effect. In addition, the
sedative effect of incense inhalation was the same as that of intraperitoneal injection and
the positive drug (Figure 2).

2.3. AEO Affects Neurotransmitter Levels

The levels of GABAA, 5-HT and AD were significantly increased in the AEO inhalation
group compared with the model group (p < 0.05, p < 0.01, p < 0.001), and GABAA/Glu was
upregulated, indicating that the inhalation of AEO plays a sedative and sleep-promoting
role by regulating the secretion levels of central neurotransmitters and modulating the
excitatory and inhibitory neurotransmitter GABAA/Glu secretion balance (Figure 3).

2.4. AEO Affects Protein Expression

Compared with the model group, AEO inhalation significantly increased the protein
expression levels of 5-HT1A, decreased the protein expression levels of 5-HT2A and in-
creased the levels of GluR1 and VGluT1. The relative protein expression diagram directly
displays the experimental results, indicating that inhalation of AEO can regulate the syn-
thesis, secretion and metabolism of the neurotransmitters 5-HT and Glu. This indirectly
affects the content of 5-HT and Glu and regulates the balance of Glu/GABA, playing
a sedative and sleep-promoting role in the homeostasis of the system (Figure 4).

2.5. Headspace Solid-Phase Microextraction Optimization

The results showed that the optimal HS-SPME conditions applied for the AEO were:
50/30 µm DVB/CAR/PDMS as a fiber coating, as shown in Figure S1, 3 min of incuba-
tion time, 15 min of extraction time and an 80 ◦C extraction temperature, as shown in
Figure S2. In addition, for the analysis of the serum samples, optimal conditions were
65 µm PDMS/DVB as a fiber coating, 3 min of incubation time, 20 min of extraction time,
an 80 ◦C extraction temperature, as shown in Figure S3, and 20 mg of salt addition, as
shown in Figure S4.

2.6. Chemical Profile of AEO and Serum

Since the two administration groups showed significant therapeutic effects, AEO
circulating in the blood may play an important role in its sedative efficacy. Therefore, we
analyzed AEO serum samples of the injection group and inhalation group at four time points
(10 min, 30 min, 1 h and 2 h) by using the same method. The base peak chromatogram
of AEO is shown in Figure 5. Seventy-nine components were identified, and the relative
percentages of all of the compounds are summarized in Table S1.

Molecules 2022, 27, 3483 3 of 20 
 

 

 

Figure 1. Effects on sleep of AEO inhalation. (a) Sleep Latency Test, (b) Sleep Time. All values are 

expressed as the means ± SD (n = 8). * p < 0.05, ** p < 0.01 vs. normal group; # p < 0.05, ## p < 0.01, ### p 

< 0.001 vs. model group. 

2.2. AEO Affects Autonomous Activities 

Compared with that in the normal group, autonomous activity was significantly en-

hanced (p < 0.05, p < 0.01, p < 0.001) in the model group mice, suggesting that the model 

animals developed restlessness and that their autonomous activity was enhanced. Com-

pared with the model group, AEO significantly shortened the exercise distance (p < 0.05, 

p < 0.001), decreased the velocity (p < 0.05, p < 0.01, p < 0.001) and prolonged the rest time 

(p < 0.05) in a dose-dependent manner, indicating that the inhalation of AEO could signif-

icantly inhibit autonomous activities and had a good sedative effect. In addition, the sed-

ative effect of incense inhalation was the same as that of intraperitoneal injection and the 

positive drug (Figure 2). 

Figure 1. Effects on sleep of AEO inhalation. (a) Sleep Latency Test, (b) Sleep Time. All values are
expressed as the means ± SD (n = 8). * p < 0.05, ** p < 0.01 vs. normal group; # p < 0.05, ## p < 0.01,
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Figure 2. Effects on autonomous activities of AEO inhalation. (a) Total distance, (b) average velocity,
(c) central area route, (d) central area velocity, (e) quadrangle area route, (f) quadrangle area velocity,
(g) quarter area route, (h) quarter area velocity, (i) stick a wall distance, (j) rest time. All values are
expressed as the means ± SD (n = 8). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. normal group; # p < 0.05,
## p < 0.01, ### p < 0.001 vs. model group.



Molecules 2022, 27, 3483 5 of 18

Molecules 2022, 27, 3483 5 of 20 
 

 

expressed as the means ± SD (n = 8). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. normal group; # p < 0.05, ## 

p < 0.01, ### p < 0.001 vs. model group. 

2.3. AEO Affects Neurotransmitter Levels 

The levels of GABAA, 5-HT and AD were significantly increased in the AEO inhala-

tion group compared with the model group (p < 0.05, p < 0.01, p < 0.001), and GABAA/Glu 

was upregulated, indicating that the inhalation of AEO plays a sedative and sleep-pro-

moting role by regulating the secretion levels of central neurotransmitters and modulating 

the excitatory and inhibitory neurotransmitter GABAA/Glu secretion balance (Figure 3). 

 

Figure 3. Effects on the level of neurotransmitters of AEO inhalation. (a) GABAa, (b) Glu, (c) 5-HT, 

(d) adenosine, (e) GABAa/Glu. All values are expressed as the means ± SD (n = 8). * p < 0.05, *** p < 

0.001 vs. normal group; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. model group. 

2.4. AEO Affects Protein Expression 

Compared with the model group, AEO inhalation significantly increased the protein 

expression levels of 5-HT1A, decreased the protein expression levels of 5-HT2A and in-

creased the levels of GluR1 and VGluT1. The relative protein expression diagram directly 

displays the experimental results, indicating that inhalation of AEO can regulate the syn-

thesis, secretion and metabolism of the neurotransmitters 5-HT and Glu. This indirectly 

affects the content of 5-HT and Glu and regulates the balance of Glu/GABA, playing a 

sedative and sleep-promoting role in the homeostasis of the system (Figure 4). 

Figure 3. Effects on the level of neurotransmitters of AEO inhalation. (a) GABAa, (b) Glu, (c) 5-HT,
(d) adenosine, (e) GABAa/Glu. All values are expressed as the means ± SD (n = 8). * p < 0.05, *** p < 0.001
vs. normal group; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. model group.

Molecules 2022, 27, 3483 6 of 20 
 

 

 

Figure 4. Effects on the protein levels of 5HT1A, 5HT2A, GluR1 and VGluT1 via AEO inhalation. 

All values are expressed as the means ± SD (n = 3). ** p < 0.01, *** p < 0.001 vs. normal group; ## p < 

0.01, ### p < 0.001 vs. model group. 

2.5. Headspace Solid-Phase Microextraction Optimization 

The results showed that the optimal HS-SPME conditions applied for the AEO were: 

50/30 μm DVB/CAR/PDMS as a fiber coating, as shown in Figure S1, 3 min of incubation 

time, 15 min of extraction time and an 80 °C extraction temperature, as shown in Figure 

S2. In addition, for the analysis of the serum samples, optimal conditions were 65 μm 

PDMS/DVB as a fiber coating, 3 min of incubation time, 20 min of extraction time, an 80 °C 

extraction temperature, as shown in Figure S3, and 20 mg of salt addition, as shown in 

Figure S4. 

  

Figure 4. Cont.



Molecules 2022, 27, 3483 6 of 18

Molecules 2022, 27, 3483 6 of 20 
 

 

 

Figure 4. Effects on the protein levels of 5HT1A, 5HT2A, GluR1 and VGluT1 via AEO inhalation. 

All values are expressed as the means ± SD (n = 3). ** p < 0.01, *** p < 0.001 vs. normal group; ## p < 

0.01, ### p < 0.001 vs. model group. 

2.5. Headspace Solid-Phase Microextraction Optimization 

The results showed that the optimal HS-SPME conditions applied for the AEO were: 

50/30 μm DVB/CAR/PDMS as a fiber coating, as shown in Figure S1, 3 min of incubation 

time, 15 min of extraction time and an 80 °C extraction temperature, as shown in Figure 

S2. In addition, for the analysis of the serum samples, optimal conditions were 65 μm 

PDMS/DVB as a fiber coating, 3 min of incubation time, 20 min of extraction time, an 80 °C 

extraction temperature, as shown in Figure S3, and 20 mg of salt addition, as shown in 

Figure S4. 

  

Figure 4. Effects on the protein levels of 5HT1A, 5HT2A, GluR1 and VGluT1 via AEO inhalation. All
values are expressed as the means ± SD (n = 3). ** p < 0.01, *** p < 0.001 vs. normal group; ## p < 0.01,
### p < 0.001 vs. model group.

Molecules 2022, 27, 3483 7 of 20 
 

 

2.6. Chemical Profile of AEO and Serum 

Since the two administration groups showed significant therapeutic effects, AEO cir-

culating in the blood may play an important role in its sedative efficacy. Therefore, we 

analyzed AEO serum samples of the injection group and inhalation group at four time 

points (10 min, 30 min, 1 h and 2 h) by using the same method. The base peak chromato-

gram of AEO is shown in Figure 5. Seventy-nine components were identified, and the 

relative percentages of all of the compounds are summarized in Table S1. 

 

Figure 5. GC-MS chromatograms of HS-SPME extracts for AEO sample. 

In both serum sample groups, all detected peaks consisted of silicon-derived com-

pounds (G1–G6). Compared to the blank air GC-MS profiles, the HS-SPME extract of the 

control serum samples contained seven compounds (B1–B7) that were unidentified. 

Twenty-five agarwood oil compounds (Z1–Z25) were well separated and putatively iden-

tified as blood components, as shown in Figure 6, and their chemical structures are shown 

in Figure 7. 

 

Figure 5. GC-MS chromatograms of HS-SPME extracts for AEO sample.

In both serum sample groups, all detected peaks consisted of silicon-derived compounds
(G1–G6). Compared to the blank air GC-MS profiles, the HS-SPME extract of the control
serum samples contained seven compounds (B1–B7) that were unidentified. Twenty-five
agarwood oil compounds (Z1–Z25) were well separated and putatively identified as blood
components, as shown in Figure 6, and their chemical structures are shown in Figure 7.
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Figure 7. Chemical structure of 25 blood compounds identified in serum samples. From the statistical
results of the total peak number and area across 4 administration time points shown in Table 1, it
can be seen that the detectability of the blood components in both the intraperitoneal injection and
inhalation groups reached their highest level at the time point of 10 min. We identified 25 original
AEO compounds in the serum of the intraperitoneal injection group, 13 of which were identified in
the inhalation group, including 24 sesquiterpenes (except Compound Z2). Compounds Z16, Z4 and
Z23 were the main components in the intraperitoneal injection group (31.45%), and Compounds Z16,
Z25 and Z23 were the major components in the inhalation group (4.89%). It was speculated from the
blood compound results that the greater variety and greater content of the injected blood components
might be the reason that the sleep-promoting effect of intraperitoneal injection was better than that of
AEO inhalation.
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Table 1. Chemical composition of the 25 blood compounds identified in serum samples.

Number RT/Min
Sesquiterpene

Type Compound
Peak Area of Intraperitoneal

Injection Group/%
Peak Area of

Inhalation Group/%

10 min 30 min 1 h 2 h 10 min 30 min 1 h 2 h

Z1 24.8 - Bicyclo [5.2.0]nonane,2-methylene-
4,8,8-trimethyl-4-vinyl- 0.31 0.34 - - - - - -

Z2 25.6 - Spiro [2.5]octane,5,
5-dimethyl-4-(3-oxobutyl)- 1.30 0.61 0.10 - - - - -

Z3 28.3 Silphiperfolane
(1R,3aR,5aR,9aS)-1,4,4,7-

Tetramethyl-1,2,3,3a,4,5a18,9-
octahydrocyclopenta[c]benzofuran

1.24 0.86 0.26 - - - - -

Z4 30.1 Aromadendrane Spathulenol 8.99 5.69 0.34 0.83 0.12 0.17 - -

Z5 30.5 Eremophilane 4a,8-Dimethyl-2-(prop-1-en-2-yl)-
1,2,3,4,4a,5,6,7-octahydronaphthalene 0.78 0.41 0.54 0.62 1.01 0.61 0.31 0.72

Z6 31.3 Guaiane
(1R,3aS,8aS)-7-Isopropyl-1,

4-dimethyl-1,2,3,3a,6,
8a-hexahydroazulene

0.38 0.47 - - - - - -

Z7 32.3 - Dihydro-beta-agarofuran 2.84 1.16 - - - - - -

Z8 33.2 Eremophilane

(R)-2-((4aS,8aR)-4a-Methylene-
1,4,4a,5,6,7,8,8a-

octahydronaphthalen-2-yl)
propan-1-ol

0.90 0.67 0.40 0.49 0.47 0.21 0.36 0.45

Z9 35.1 Guaiane Pogostol 0.98 0.52 - - - - - -

Z10 35.3 Cedrane α-Costol 0.16 0.11 - - - - - -

Z11 36.9 Eremophilane
2-((2R,4aR,8aR)-4a,8-Dimethyl-

1,2,3,4,4a,5,6,8a-octahydronaphthalen-
2-yl)prop-2-en-1-ol

2.45 1.14 - - - 0.26 - -

Z12 38.7 Eremophilane
2-((4aS,8R,8aR)-4a,8-Dimethyl)-

3,4,4a,5,6,7,8,8a-octahydronaphthalen-
2-yl)propan-2-ol

3.02 3.82 0.53 0.32 0.69 1.01 0.29 0.28

Z13 40.9 Eremophilane (+)-β-Costol 0.61 0.64 - - 0.20 0.25 - -

Z14 41.1 Cadinane
(E)-2-((8R,8aS)-8,8a-Dimethyl-

3,4,6,7,8,8a-hexahydronaphthalen-
2(1H)-ylidene)propan-1-ol

0.11 0.14 - - - - - -

Z15 41.5 Brasilane Aristol-1(10)-en-9-ol 0.49 0.35 - - - - - -

Z16 43.5 Aromadendrane Aromadendrene oxide-(2) 19.01 16.21 14.37 5.70 2.70 2.07 2.58 0.15

Z17 44.6 Maaliane γ-Maaliene 0.82 0.49 - - 0.19 0.30 - -

Z18 46.2 Maaliane β-Maaliene 0.31 0.42 - - - - - -

Z19 46.6 Guaiane ∆-Guaiene 0.44 0.45 - - - - - -

Z20 46.8 Guaiane β-Guaiene 0.63 0.48 - - 0.14 0.15 - -

Z21 47.3 Aristolane (-)-Aristolene 1.25 1.28 - - 0.31 0.47 - -

Z22 47.8 Aromadendrane Viridiflorol 2.85 3.27 0.42 - 0.61 0.75 - -

Z23 48.3 Cadinane Eremophilene 3.45 4.29 0.58 - 1.02 1.42 - -

Z24 50.4 - α-Copaen-11-ol 0.36 3.90 0.63 - 0.86 0.78 - -

Z25 63.2 Cadinane Dehydrofukinone 1.05 2.20 0.93 - 1.17 0.89 - -

Relative percentage of total peak area/% 55.45 49.92 19.10 7.96 9.76 6.53 3.54 1.60

Number of total peaks 25 25 11 5 13 12 4 4

2.7. Component–Target Molecular Docking

The lower the binding energy is, the more stable the ligand–receptor binding confor-
mation. As a result, a binding energy ≤ −5.0 kJ/mol was used as the screening criterion.
The binding atoms, binding sites and binding energy intuitively show the interaction and
stability of the docking model.
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The molecular docking between 25 blood components and 4 core targets showed that
the core components and targets bind significantly and stably, and the binding energies
were all less than −7 kJ/mol (Table S2). Interestingly, the binding energies of the five
core components (Aromadendrene oxide 2, gamma-Maaliene, Aristoler, Dehydrofukinone
and Spathulenol) and four core targets (GABRA1, GRIA1, HTR1A and HTR2A) were all
below −9 kJ/mol, indicating that these ligands and receptors could more stably and easily
form stable binding conformations. The affinity of target proteins for the core components
indicated that they were closely related to and were the key targets for promoting sleep in
the treatment of insomnia disorders. Additionally, the core components were successfully
docked with the core targets, which may be due to the formation of hydrophobic interac-
tions, hydrogen bonds and π-stacking between them, revealing a stable docking model
with a specific binding site, binding distance and binding atom. For example, the GABRA1–
Spathulenol complex was stabilized at amino acid residue ALA-300 by one hydrogen bond.
Spathulenol formed one hydrogen bond with LYS-42 in GRIA1. GRBRA1 and aromaden-
drene oxide 2 were bound at PHE-77 by one π-stacking bond. Gamma–Maaliene interacted
with GRABR1 via one π-stacking bond on TYR-210. GRBRA1 and dehydrofukinone were
bound at PHE-77 and TYR-210 by three π-stacking bonds. GRBRA1 and Aristoler were
bound at PHE-289 by two π-stacking bonds. The GRIA1–Aristoler complex was connected
to PHE-89 by one π-stacking bond. The GRIA1–gamma-Maaliene complex was stabilized
at PHE-89 by one π-stacking bond. Dehydrofukinone formed two π-stacking bonds with
PHE-89 in GRIA1. The core target HTR1A and the core components (Aromadendrene oxide 2,
gamma-Maaliene, Aristoler, Dehydrofukinone and Spathulenol) were bound at PHE-403
by π-stacking bonds. The HTR2A–gamma-Maaliene complex was stabilized at TYR-254
by one π-stacking bond. Table 2 shows the binding energies of the core components and
core targets; Figure 8 shows the docking modes of the core GABRA1, GTIA1, HTR1A
and HTR2A proteins with the key components. Figure 9 shows the predicted molecular
mechanism of AEO in regulating sleep.

Table 2. Docking results of five core components with four targets.

Ligands Compound Names PubChem_CID Receptors Affinity (kcal/mol)

Z16 Aromadendrene oxide 2 16211192 GABRA1 −11.3
Z17 gamma-Maaliene 21775138 GABRA1 −11.5
Z21 Aristoler 530421 GABRA1 −10
Z25 Dehydrofukinone 177072 GABRA1 −10.8
Z4 Spathulenol 92231 GABRA1 −9.6

Z16 Aromadendrene oxide 2 16211192 GRIA1 −10.7
Z17 gamma-Maaliene 21775138 GRIA1 −10.6
Z21 Aristoler 530421 GRIA1 −10.7
Z25 Dehydrofukinone 177072 GRIA1 −10
Z4 Spathulenol 92231 GAIA1 −10.2

Z16 Aromadendrene oxide 2 16211192 HTR1A −9.5
Z17 gamma-Maaliene 21775138 HTR1A −9.5
Z21 Aristoler 530421 HTR1A −9.5
Z25 Dehydrofukinone 177072 HTR1A −9.2
Z4 Spathulenol 92231 HTR1A −9.2

Z16 Aromadendrene oxide 2 16211192 HTR2A −10.6
Z17 gamma-Maaliene 21775138 HTR2A −10.3
Z21 Aristolene 530421 HTR2A −10.3
Z25 Dehydrofukinone 177072 HTR2A −9.6
Z4 Spathulenol 92231 HTR2A −10.2
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3. Discussion

Agarwood, a traditional fragrant medicine, has been used for the treatment of in-
somnia via aromatherapy since ancient times. Medicinal chemistry has identified that
sesquiterpene compounds are effective components with sedative and hypnotic func-
tions [9]. However, the molecular mechanism by which sesquiterpene exerts its sedative
and hypnotic effects has not yet been fully elucidated. This experiment simulated aro-
matherapy incense and AEO inhalation to explore volatile substances and the possible
mechanism. The results suggested that the inhalation of AEO better promoted the sleep
effect by regulating the central excitability/inhibition (E/I) Glu–GABA amino acid neu-
rotransmitter system secretion balance, serotonin neurotransmitter activity and receptor
function. In addition, preliminary studies proved that among eight main sesquiterpene
types, eremophilanes, cadinanes and eudesmanes are the three main pharmacodynamic
components of agarwood for sedation and hypnosis. Moreover, molecular docking also
confirmed that the core compounds stably bound to the core molecular targets to mediate
their effects. This study proves the rationality of ancient aromatherapy incense and explains
the scientific connotation of “nourishing qi and spirit” of agarwood in ancient records.

GABA and Glu are the main neurotransmitters in the CNS [17,18]. The secretion
balance of the E/I GABA–Glu neurotransmitter system plays an important role in sleep
regulation. GABAergic neurons inhibit neuronal activity by blocking excitatory synaptic
transmission by glutamate receptor antagonists and activating GABAergic neurons in
the hippocampus [19]. GABA plays an important role in the regulation of sleep. GABA
prolongs sleeping time and restores sleep in cats with insomnia [20]. Changing the content
of GABA and its receptor expression affects the process of sleep [21,22]. Glutamate (Glu)
is a major excitatory neurotransmitter that is widely found in the CNS and regulates
learning, memory and cognitive functions [23,24]. However, excessive glutamate induces
neuronal death, leading to various neurodegenerative diseases [25]. Although Glu levels
are extremely high, most are intermediate metabolites, and only a few have functions as
neurotransmitters. Thus, Glu content cannot be used to determine the excited or inhibited
state of neural function. Glu charges GABA by the action of glutamate decarboxylase (GAD),
so the GABA–Glu ratio can be used to assess the E/I balance state of CNS function [26].
AEO inhalation increased the levels of GABA and the GABAA/Glu ratio, upregulated
the expression levels of GluR1 and VGluT1 and exerted a significant sedative and sleep-
promoting effect by regulating the GABA–Glu system balance.

Serotonin (5-HT) is a neurotransmitter and it is involved in sleep–wake cycle regulation.
A reduction in 5-HT levels leads to insomnia, indicating that 5-HT can promote sleep. The
5-HT1A receptor acts as a ligand binding to serotonin, and when used as a 5-HT1A receptor
agonist, it increases slow-wave sleep and reduces sleep latency. In contrast, sleep duration
was significantly reduced in individuals lacking the 5-HT1A receptor [27]. AEO inhalation
increased the levels of 5-HT, downregulated the expression of 5-HTA1 and 5-HT2A and
played a role in sleep by regulating the serotonin system.

HS-SPME is a nondestructive technique that has the advantages of reducing labori-
ous, time-consuming manual work and sample preparation steps. We obtained the best
selected condition based on the peak area and number of molecular features from the GC-
Q/TOF-MS TIC chromatogram. Equilibration time is often not considered in optimization
experiments [28,29], and a 3 min equilibration time was utilized to homogenize the AEO
and serum samples before extraction. We finally selected the PDMS/DVB fiber to reduce
the frequency of replacing the inlet septa. The extraction time for the AEO sample was set
at 15 min to suppress the carryover. This “carryover” phenomenon was also mentioned by
other articles [29,30]. As seen from Figure S3b,c, the maximum total peak area and peak
number can be obtained at an extraction time of 30 min. However, a 20 min extraction
time was chosen as a compromise between sensitivity and short-term analysis. NaCl can
affect the ionic strength of volatile compounds released from serum samples during the
HS-SPME process [29,31]. The result of the TIC peak area is different from the TIC peak
number, and the reason for this, as shown in Figure S3c, is that a high salt concentration
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can reduce the peak resolution, which causes a large difference in the TIC peak number
and peak area. Finally, 20 mg NaCl was added to the serum sample in further experiments.

Comparative analysis showed that the most effective compounds are eremophilanes,
cadinanes and eudesmanes, which are the main sesquiterpene types isolated from agar-
wood [32,33]. The cadinane sesquiterpene dehydrofukinone (Z25) has an anxiolytic-like
CNS effect, and its mechanism is related to regulating the GABAA receptor [34], which is
consistent with our component–target molecular docking results. Accordingly, cadinane
sesquiterpenes may be the main medicinal ingredients exerting sedative activity. Neverthe-
less, studies on the active ingredients of AEO passing through the blood–brain barrier are
still limited.

The sleep-promoting effect of AEO was related to the regulation of GABA–Glu and
the 5-HT nervous system and its receptors, and the core compounds and core targets were
stably bound through hydrophobic interactions and π-stacking bonds. In summary, the
results of this study indicate that incense inhalation of AEO has significant sedative and
sleep-promoting effects, and the molecular mechanism verification results confirmed that
the Glu and 5-HT receptors were the key targets and stably bound to the core compounds to
promote sleep. Compounds Z4, Z16, Z17 and Z21 of AEO had sedative and sleep-promoting
effects. The sleep-promoting effect has the characteristics of “multiple components and
multiple targets”, and the mechanism is related to the regulation of the GABA, Glu and
5-HT nervous systems. However, the specific mechanism of the sleep-promoting effect of
agarwood and its active compounds needs to be further studied and explained.

4. Materials and Methods
4.1. Materials

The raw material of agarwood was 7-year-old white wood. Agarwood was produced
over 18 months by the whole-tree agarwood-inducing technique [35]. The agarwood-
inducing base was located in Pingding Town, Huazzhou City, Guangdong Province. The
agarwood preparations were tested against the standards of the Chinese pharmacopoeia by
the Agarwood Identification Center of Hainan Branch, Institute of Medicinal Plant, Chinese
Academy of Medical Sciences. AEO was prepared by steam distillation in our laboratory.

4.2. Reagents

Sodium pentobarbital (No: 20200113) was purchased from Merck, Rahway, NJ, USA;
diazepam (No: 201805) was purchased from Beina Chuanglian Biological Technology Co.,
Ltd., Shanghai, China; Para-chlorophenylalanine (PCPA, No: A841909) was purchased from
McLean Co., Ltd, Shanghai, China. The neurotransmitter enzyme linking immunoassay
kits (Glu, 5-HT, GABAA, DA, all with the same No: 202008) were purchased from Beijing
Bosheng Jingwei Biotechnology Co., Ltd, Beijing, China. Sodium chloride (NaCl) (AR
Grade) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

4.3. Instruments

Other instruments used: Mouse autonomous activity experiment computer online
detection system (Shanghai Xin Soft Information Technology Co., Ltd., Shanghai, China,
model: RD-1118-co-M4); Self-made incense burner (a large box structure of 50 cm ×
50 cm × 40 cm made of Plexiglass, in which a hollow cylinder structure of 20 cm ×
20 cm × 20 cm is placed, and an electronic incense burner can be placed in the mid-
dle, as shown in Figure 1); Microporous plate spectrophotometer (Thermo Fisher Sci-
ence Shanghai Co., Ltd., Shanghai, China, serial number: 1510-04123). GC-Q/TOF-MS
analyses were performed on a 7890B gas chromatograph coupled to a 7200 quadrupole
time-of-flight (Q/TOF) mass spectrometer detector (Agilent Technologies, Santa Clara,
CA, USA). The GC was equipped with an MPS Robotic autosampler (CombiPAL RSI 85
autosampler) from CTC Analytics AG (Zwingen, Switzerland). Four fibers were tested in
headspace solid-phase microextraction (HS-SPME) analysis, including polydimethysilox-
ane/divinylbenzene (PDMS/DVB; 65 µm), carboxen/polydimethysiloxane (CAR/PDMS;
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85 µm), divinylbenzene/carboxen/polydimethysiloxane (DVB/CAR/PDMS; 50/30 µm)
and polyacrylate (PA; 85 µm), all of which were obtained from Sigma Aldrich (Gillingham, UK).

4.4. Animals

SPF-class male KM mice with a body weight range of 18–22 g were purchased from
Hainan Institute of Materia Medica with production license no. SCXK (Qiong) 2019-0006.
The animals were kept in the SPF-class animal room of the Hainan Institute of Materia
Medica at a temperature of 20–25 ◦C, humidity of 50–60%, light/dark cycle of 12 h/12 h,
with free drinking water and food intake and adaptive feeding for 3 days, and then the
experiment was conducted. The animal care and experimental protocol used in this study
was approved by the Institutional Animal Care and Use Committee of Hainan Institute of
Materia Medica.

4.5. Animal Experiment and Administration

Healthy KM mice were randomly divided into 7 groups of 8 mice each: normal
group; model group; positive control diazepam group (2.5 mg/kg); AEO low, medium
and high groups (2, 4, 8 µL) [9]; and the AEO intraperitoneal injection group (40 mg/kg).
Except for the normal group, the insomnia models were prepared by gavaging PCPA
(300 mg/kg) for 2 consecutive days. The model succeeded in showing that the mice had the
physiological characteristics of irritability and increased autonomous activity. The normal
group was gavaged with a corresponding volume of saline. The positive group was given
the treatment by intraperitoneal injection. AEO was inhaled by heating it in an electronic
aromatherapy furnace at 80 ◦C for 1 h/day. Aromatherapy was given for 7 consecutive days.

4.6. Sleep Promotion Test

On the 5th day, 1 h after administration, pentobarbital sodium (50 mg/kg) was in-
traperitoneally injected at 10 mL/kg. The time elapsed between the administration of
pentobarbital sodium and righting reflex disappearance was recorded as the latency of
sleeping time. The time elapsed between the disappearance and reappearance of the
righting reflex was considered the duration of the sleeping time.

4.7. Autonomous Activity and Open-Field Detection

One hour after administration on the 6th day, the autonomic activity of the mice was
detected by an autonomic activity computer system. Mice were placed in the autonomous
activity apparatus for adaptation for 3 min, and the test was started for 10 min. During the
test, the surrounding environment was kept quiet. The number of autonomous activities
and open fields traversed by the mice were recorded, and the total distance traveled,
average velocity and resting time were calculated.

4.8. Neurotransmitters Detected by Enzyme-Linked Immunoassay in Brain Tissues

One hour after the last administration, the mice were sacrificed and blood was col-
lected. The brain was quickly collected and rinsed with normal saline. The hippocampus
was stripped off and weighed. Then, 9 volumes of normal saline with precooling before-
hand were added and fully homogenized in an ice bath. The supernatant was centrifuged
at 3000 r/min at 4 ◦C for 15 min. The precipitate was used for protein extraction. The
levels of 5-HT, Glu, AD and GABAA in the brain tissue homogenate supernatant were
determined according to the manufacturer’s instructions.

4.9. Protein Expression Detected in Brain Tissue by Western Blotting

The hippocampal tissues were homogenized in a standard RIPA buffer supplemented
with a cocktail of protease and phosphatase inhibitors. The homogenate was then cen-
trifuged at 15,000× g at 4 ◦C for 10 min. The protein concentration was determined using
a BCA Protein Assay Kit. According to the molecular weight of the target protein, the
appropriate concentration of separation gel was selected, the sample amount was brought
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to 20 µL and electrophoresed, and then the proteins were transferred to a PVDF membrane,
blocked with 5% skim milk powder for 1 h and the primary antibodies against β-actin
(1:2000), 5-HT1A, 5-HT2A, GluR1 and VGluT1 (1:1000) were added. The membranes were
incubated overnight at 4 ◦C, and the secondary antibody was incubated with the mem-
brane at room temperature for 2 h. ECL chemiluminescence was performed with a gel
imager. Gel-Pro Analyzer 4.0 was used for grayscale scanning and quantitative analysis,
and intuitive histograms were produced.

4.10. Headspace Solid-Phase Microextraction

To ensure optimal sensitivity for the wide-range detection of volatile compounds, we
investigated several factors that could potentially affect the extraction efficiency, including
fiber type, extraction time, extraction temperature and salt addition. First, the samples
were incubated in an oven for 3 min at 80 ◦C (without the fiber), and then the selected fiber
was applied to extract the volatile components from a 20 mL vial sealed with a magnetic
screw cap. After this, the fiber was inserted into the GC injector port for thermal desorption
for 3 min at 250 ◦C. Finally, the fiber was conditioned for 10 min at a high temperature after
each analysis to avoid carryover phenomena and cross-contamination between samples.

4.11. Gas Chromatography–Mass Spectrometry Analysis

Separation was achieved on an HP-5MS capillary column (30 m × 0.25 mm inner
diameter × 0.25 µm film thickness, Agilent Technologies, Santa Clara, CA, USA). The
injector and transfer line heater temperature were 250 ◦C, working in splitless mode for
serum sample analyses and in split mode of 20:1 for oil sample analyses. Mass spectrometry
was scanned in the range of m/z 20~300, with a typical scan rate of 5 spectra/s. Detection
of the target compounds was accomplished through profile acquisition mode. The Agilent
7200 Q/TOF-MS used in this work had an instrument resolution specification of 12,500 FWHM
(full width at half maximum) and a mass accuracy of less than 5 ppm (or ± 0.0014u) on
measurement of 1.0 pg of octafluoronaphthalene at m/z 271.9867 [36].

The mouse serum samples were detected at sampling time points of 10 min, 30 min,
1 h and 2 h. The TIC (total ion current) chromatograms of the mouse serum after the
administration of AEO were established by HS-SPME-GC-Q/TOF-MS. Blank injections
were performed during each time point of analysis.

GC-Q/TOF-MS piloting and data acquisition were performed using Mass Hunter
B.07.00 software (Agilent Technologies, Santa Clara, CA, USA), and the peak RT tolerance
was set to ±0.08 min. The threshold of the signal-to-noise ratio (S/N) was set to peak
height ≥1% of the largest peak. A NIST 17 library search for putative identification was performed.

4.12. Component–Target Molecular Docking

The molecular docking method was used to predict the binding affinity between the
core components and the target proteins, which might provide a reference for further
experimental verification. AutoDock Vina 1.1.2, an open-source program for performing
molecular docking and virtual screening, with higher average accuracy of binding mode
predictions compared to AutoDock 4, was used to conduct the docking task [37]. The SDF
files of the compounds were downloaded from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 15 October 2021) [38] and converted to MOL2 format
by Open Babel 2.4.1. Three-dimensional structures of the proteins were obtained from
the Protein Data Bank (PDB) database (https://www.rcsb.org/, accessed on 15 October
2021) [39]. The ligands and receptors were prepared according to the tutorial for AutoDock
Vina 1.1.2. For each structure, we deleted the water molecules, added nonpolar hydrogen,
calculated the Gasteiger charge and saved them in PDBQT format. The lower the Vina
score is, the higher the affinity between the ligand and receptor. The conformation with the
lowest affinity was used as the best docking conformation, and PLIP was used to visualize
the interaction mode [40].

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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4.13. Statistical Data Analysis

The obtained experimental data were expressed as x ± s, and the comparisons between
groups were processed by SPSS 7.0 statistical software. One-way ANVOA was used
for variance analysis. Comparisons between groups were performed using a t-test, and
p < 0.05 was considered statistically significant.

5. Conclusions

To the best of our knowledge, this study is the first to show that inhaled AEO in-
cense has sedative and hypnotic effects mediated by binding to receptors and affecting the
GABAergic, glutamatergic and serotonin systems. Inhaled AEO has sedative and hypnotic
effects similar to those of diazepam and slightly weaker than that of AEO intraperitoneal
injection. The different compounds and types of effective components may be the reasons
for the differences in efficacy associated with the administration route. The main pharmaco-
dynamic compounds are eremophilanes, cadinanes and eudesmanes. The core compounds
of AEO play their roles by regulating the Glu, GABA and 5-HT systems. However, the
specific molecular mechanism was only partially revealed in this study, and additional
studies are necessary to explore the mechanism further. Nonetheless, AEO could serve as
a potential candidate for developing a new functional product to help treat insomnia and
CNS diseases. Moreover, the results provide theoretical evidence for the development and
utilization of agarwood.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113483/s1, Figure S1: Effect of SPME fiber coating
on the peak area and number of agarwood oil sample; Figure S2: (a) Effect of extraction time on
the peak area and number of agarwood oil sample by using DVB/CAR/PDMS fiber; (b) The TIC
chromatograph of different extraction temperature on serum sample by using DVB/PDMS fiber;
Figure S3: (a) Effect of extraction time on the peak area and number of agarwood oil sample by using
DVB/CAR/PDMS fiber; (b) Effect of extraction time on the peak area and number of serum sample
by using DVB/PDMS fiber; (c) Comparative TIC chromatograph analysis of different extraction time
and salt concentration in RT29min-RT32min by using DVB/PDMS fiber; Figure S4: Effect of salt
concentration on the peak area and number of serum sample by using DVB/PDMS fiber; Table S1:
Chemical composition of the 79 compounds putatively identified in agarwood oil sample; Table S2:
Docking results of twenty five components with four targets.
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of-flight; GAD: glutamate decarboxylase.
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