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Abstract: Nano-silica particles decorated with amine groups (S-DA) were prepared via a simple,
one-pot method, and under very mild conditions in an attempt to improve the affinity of the silica
nanoparticles toward capturing anionic organic dye, namely, methyl orange (MO). The prepared
sample was characterized by different techniques such as XRD for crystallinity, SEM for morphological
structure, TGA for thermal stability, BET surface area, and FTIR for surface functional groups. The
prepared sample was tested for the removal of MO under different conditions including the mass of
adsorbent, pH, initial concentration, and time. Results showed that the adsorption of MO was very
fast with equilibrium achieved in less than 30 min and a maximum removal efficiency of 100% for a
mass to volume ratio of 10 g/3 L, a pH of 2.5, initial concentration of 10 mgL−1, and under stagnant
conditions. These results were compared with a bare nano-silica, which was not able to adsorb
more than 3% after 24 h, indicating the important effect of amine groups. Furthermore, recycling the
adsorbent was achieved by rinsing the MO-loaded adsorbent with a dilute solution of KOH. The
adsorbent maintained 50% of its initial removal efficiency after four adsorption–desorption cycles.

Keywords: adsorption; azo dye; methyl orange; nano-silica; nanocomposite; wastewater

1. Introduction

Human activities such as in the textile, paint, plastic, leather, and printing industries
have resulted in the discharge of a huge amount of organic dyes into the aquatic system.
These organic dyes may leak and reach the groundwater, resulting in a huge spread of these
highly soluble, toxic, carcinogenic, and non-biodegradable pollutants [1,2]. Furthermore,
the contamination of surface water with these organic dyes negatively affects the aquatic
ecosystem due to its intense color [3]. The intense color hinders the transmission of
sunlight, which disturbs aquatic plants [2]. Accordingly, it is crucial to remove these dyes
from wastewater before being discharged into the aquatic system. For this current research,
the focus will be on methyl orange (MO), which is an anionic azo dye used for many
applications such as in the textile industry and as pH indicators [4].

Many techniques have been applied for the removal of methyl orange such as
precipitation [5], coagulation and flocculation [6], photodegradation [7], biological
degradation [8], catalytic degradation [9–11], and adsorption [10,12–14]. Adsorption is
considered among the best techniques for water treatment [15,16]. This is mainly due to
its simplicity, low cost compared to other methods, low maintenance requirements, high
selectivity, low chemical consumption, fast kinetic ability, and high sensitivity even at low
concentration levels of the dyes [4].

Thus far, many adsorbents have been reported for the removal of methyl orange such
as chitosan derivatives [1,17,18], agriculture waste [2,19–21], biochar [3,22], clay [23], acti-
vated carbon, mesoporous silica, alumina [24], carbon nanotubes [25], nanocomposites [10,12],
polymers, and many others [4]. Despite all the progress in this area of research, many
challenges still face the application of adsorption at commercial levels due to one or more
of the following adsorbent drawbacks: a low adsorption capacity, slow rate of adsorption,
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biodegradation of the adsorbent, low stability, high cost, complex synthesis procedure,
and low selectivity and sensitivity at low concentration levels. Thus, the development of
new adsorbents that overcome these drawbacks is still needed. It has been reported that
nanoparticles are now one of the most utilized adsorbents for this application [4].

Nano-silica has many attractive properties such as a low cost, high surface area, and
being rich in silanol groups, which make it easy to introduce specific functional groups ac-
cording to the target application [26,27], its nontoxic and biocompatible nature, and its high
thermal and chemical stabilities. Furthermore, the structural and morphological properties
of nano-silica can be tuned by controlling the synthesis conditions [11]. Amino groups
have been utilized as efficient chelating groups for the adsorption removal of heavy metal
ions due to their high affinity toward amines [28]. Furthermore, introducing amine affects
the surface properties such as zero-charge point and hydrophilicity. Zhang et al. (2017)
prepared a nano-silica-supported thiosemicarbazide–glutaraldehyde polymer via three
successive steps and used the resultant nanocomposite for the adsorption of Au(III) [28].
Even though they reported a good removal efficiency and high stability, the synthesis they
followed is still considered complicated since it required reflux for 18 h and heating at
90 ◦C [28]. Rita et al. (2018) prepared Aminopropyltrimethoxysilane-modified nano-silica
via multiple steps with multiple acids, a long reflux, and heating at a high temperature of
90–110 ◦C for 12 h, which is also considered a complicated and costly technique [29]. Ac-
cordingly, the main goal of this work was to prepare amine-modified nano-silica following a
simple route and under very mild conditions without the need for heating, reflux, or multi-
steps, and applied under very simple conditions (no stirring and simple regeneration), in
an attempt to reach a commercially applicable method of synthesis and treatment.

2. Materials and Methods
2.1. Chemicals

98% methanol and tetraethylorthosilicate (TEOS) were purchased from Merck (Kenil-
worth, NJ, USA); 99.5% cyclohexane, Triton X-100, and N-[3-(trimethoxysilyl)-
propyl]ethylenediamine (DA) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Synthesis of Amine-Modified Nano-Silica

A microemulsion was prepared by mixing 42 g of Triton X-100 (the surfactant), 37.5 g
of methanol (the co-surfactant), and 20 g of cyclohexane (the oil phase). The mixture was
stirred at room temperature and 700 rpm for 30 min. After that, the pH was adjusted to a
basic level by adding 4 mL of NH4OH to enhance the polymerization and growth of silica
nanoparticles. In another flask, 5 g of TEOS was mixed with 25 mL of water for 15 min
and then added to the microemulsion. After 15 min of stirring, 3 mL of DA was added
dropwise and the mixture was stirred for 24 h. Then, ethanol was added to the mixture
and stirred for 5 min before being filtered, washed with ethanol, and dried under ambient
conditions for 24 h. The resulting nanocomposite (S-DA) was then collected and kept in a
sealed bottle. For comparison purposes, the same steps were performed without adding
DA to prepare nano-silica (S).

2.3. Adsorption of Methyl Orange Dye

An MO solution was prepared with a concentration of 50 mgL−1. Two sets of exper-
iments were performed to study the effect of the mass of adsorbent, pH, and time. The
first set of experiments was performed by mixing MO solution (pH = 3.5, 50 mgL−1) and
the adsorbent with a mass to volume ratio of 10/3, 20/3, 30/3, 40/3, and 50/3 g/L. The
mixture was left for 24 h under stagnant conditions. Samples were analyzed at different
time intervals using UV absorbance at Lmax of 465 nm using a UV-Vis spectrophotometer
(Shimadzu, Tokyo, Japan). The same set of experiments was repeated by changing only the
pH to 2.5. The removal efficiency R% was calculated using Equation (1)

R% =
Ai − At

Ai
× 100 (1)
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where Ai is the initial absorbance of MO at Lmax, while At is the absorbance at time t.
For comparison purposes, the nano-silica (S) sample was also tested by mixing it with

MO solution (50 mgL−1, 10 g/3 L) under two different pH of 2.5 and 3.5. For regeneration
tests, after the S-DA adsorbent was saturated with MO, it was rinsed with a very dilute
solution of KOH till the color turned from the orange back into white. Then it was dried in
the oven for 1 h at 70 ◦C before being used for another adsorption cycle. These steps were
repeated for 4 cycles.

2.3.1. Adsorption Equilibrium

S-DA was tested to adsorb MO from 10–50 mgL−1 solution with a 10 mg mass of ad-
sorbent. A specific mass was mixed with a specific volume of solution with a mass/volume
ratio of 10/3 gL−1. After 24 h the S-DA sample was separated from the solution by filtration
and the filtrate was analyzed by measuring the UV absorbance at Lmax of 465 nm using a
UV-Vis spectrophotometer. The adsorbed MO (qe) was calculated using Equation (2) [30,31]

qe =
(Ci − Ce)V

m
(2)

where Ci and Ce are the initial and equilibrium MO concentration (mg·L−1), respectively.
V is the volume of the solution in L, and m is the mass of the adsorbent in g. Langmuir
adsorption isotherm was used to fit the equilibrium data using Equation (3)

qe =
qmKLCe

1 + KLCe
(3)

where qm and KL are the equilibrium adsorption capacity (mg·g−1) and Langmuir constant
(L·mg−1), respectively.

2.3.2. Adsorption Kinetics

S-DA was tested to adsorb MO from a 50 mgL−1 solution with a different mass of
adsorbent in the range of 10–50 mg. For each test, the S-DA was added to 3 mL of the
solution in a UV quartz cuvette. The concentration of the MO was then followed by UV
absorbance at Lmax of 465 nm using a UV-Vis spectrophotometer for 2 h. Pseudo-second-
order model was used to fit the kinetic data using Equation (4) [30,31]

qt =
KP2q2

e t
1 + KP2qet

(4)

where qe and KP2 are the equilibrium adsorption capacity (mg·g−1) and Pseudo-second-
order rate constant (g·mg−1·min−1), respectively.

2.4. Characterization

The crystallinity of the samples was tested via X-ray diffraction using XRD-7000 with
a Cu detector (Shimadzu, Tokyo, Japan). Scanning Electron Microscopy (SEM) was per-
formed to explore the morphology of the samples using Thermo Scientific, Quattro S, USA.
Furthermore, energy dispersive X-ray spectrometry (EDX) (JEOL JEM-1011-instrument)
(Tokyo, Japan) was performed. Thermal gravimetric analysis (TGA) was performed to test
the thermal stability of the samples using TGA-51 Shimadzu Thermogravimetric Analyzers
(Tokyo, Japan) by heating the samples under the flow of nitrogen at a ramp of 2 ◦C/min
from 25 ◦C to 600 ◦C. The surface area of the sample was estimated by nitrogen adsorption
at 77 K using A NOVA 4200e (Quantachrome Instruments, B Beach, FL, USA). The spe-
cific surface area and pore size were further analyzed using the Brunauer–Emmett–Teller
(BET) equation. The pore size distribution was estimated using the isothermic adsorption
branch (BJH) Barrett–Joyner–Halenda technique. The functional groups on the surface of
the samples were investigated via FTIR spectrometer (IR–Tracer 100 Fourier Transform
Infrared Spectrophotom, Shimadzu, Japan). Dynamic light scattering (DLS) was performed
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using Cilas’ dual scattering particle size analyzer Nano DS (Orléans, France). A specific
amount of S-DA was sonicated in a specific amount of deionized double-distilled water
for 30 min with power sonic 405. The pHZPC was measured by the equilibrium technique
as reported elsewhere [32]. Kjeldahl analytical titration method was used to estimate the
nitrogen content of the S-DA sample [33].

3. Results and Discussion
3.1. Characterization of the Adsorbent

To examine the crystallinity of the bare silica (S) and the amine-modified silica (S-DA),
the XRD spectrum was collected over the 2θ range of 5–80◦ at λ = 1.54056 nm and a scanning
rate of 2◦/s. Figure 1a shows a single broad peak at 23◦, which is the characteristic of
amorphous silica [34].

1 
 

 

 

Figure 1. Cont.
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Figure 1. Characterization of S and S-DA by XRD (a), FTIR (b), TGA (c), BET analysis of surface area
by nitrogen adsorption (d), the DLS analysis (e), and the pHZPC for nano-silica (S) and amine-modified
nano-silica (S-DA) obtained by equilibrium technique [13] (f).

Figure 1b shows the FTIR spectrum of S and S-DA in the wavenumber range of
400–4000 cm−1. The broad peak around 3400 cm−1 in the S sample is related to the hydro-
gen bond resulting from hydroxyl (-OH) and (H2O) adsorbed on the surface [35]. This peak
disappeared in S-DA spectra, which is mainly due to the involvement of the OH groups in
the reaction with the DA. The IR band at 1111 cm−1 with a shoulder at 1188 cm−1 in the S
sample is usually assigned to the Si-O-Si asymmetric stretching vibrations. The band at
1600 cm−1 is related to the O-H stretching and bending vibration of the adsorbed water
and silanol groups [28]. The peaks around 783 and 1024 cm−1 are related to the stretching
of Si-O and Si-O-Si bonds, respectively [36]. The weak shoulder around 957 cm−1 in the
S sample corresponds to the Si-OH stretching vibration [36]. The peaks around 548 cm−1

and 783 cm−1 are attributed to the Si-O-Si stretching vibration and bending vibrations,
respectively [36]. The weak band at around 630 cm−1 in the S-DA corresponds to N-H
bending [36]. From FTIR analysis, it is possible to say that DA was successfully attached to
the silica surface.

To further confirm that the DA was attached to the silica surface in S-DA, the Kjeldahl
analytical titration method was used. This test showed that the sample S-DA contains
13.2% of nitrogen. In addition, the EDX was performed for the sample and the results are
shown in Figure 2c. The analysis showed that the S-DA sample contains 6.12 weight %
of nitrogen.

To assess the thermal stability of the adsorbent, TGA was performed in the temperature
range of 20–600 ◦C as shown in Figure 1c. The TGA profile shows two different regions
of loss. According to the literature, the first loss (≈7%) occurs in the temperature range of
20–235 ◦C, which is mainly related to the loss of moisture content within the sample and
some other gases that may be adsorbed on the surface due to improper storage such as
CO2 [37]. The other region extends in the temperature range of 235–600 ◦C and resulted in
a 30% loss of the sample. This loss is mainly related to the dissociation of amino groups
attached to the surface [37]. The mass loss of bare silica nanoparticles is 18%, while the
total loss for S-DA is 37%. The extra 19% loss confirms the attachment of amino groups to
the surface.
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Figure 1d shows the nitrogen adsorption–desorption isotherm of the S and S-DA. It
shows the adsorbed nitrogen at STP for P/P0 in the range 0–1, with P being the adsorption
pressure and P0 being the saturation pressure at which the maximum adsorption can
be achieved. The N2 adsorption profile shows a porous structure of the bare silica (S),
which has been significantly affected after attaching amino groups in S-DA. The S isotherm
indicates a mesoporous structure with a surface area of 25 m2g−1 and pore volume of
0.182 cm3g−1. Attaching DA to the silica surface resulted in a drastic change in the porous
structure with a huge decrease in the specific surface area to 10 m2g−1 and the pore volume
to 0.0768 cm3g−1. This decrease in the surface area and pore volume of S-DA compared
to S is a result of the enhanced growth rate of the silica nanoparticles of S-DA under the
effect of amine catalysis leading to the loss of the surface area. This is supported by the
SEM imaging results and the DLS analysis to be discussed next.

The morphology of the prepared adsorbent was investigated by SEM imaging as
shown in Figure 2. For the S sample, Figure 2a shows a mixture of spherical particles with
a narrow particle size distribution and a high tendency for aggregation. However, the
structure still shows some porosity within the particles. For the S-DA sample, Figure 2b
shows a drastic change in the morphological structure with very low porosity. This is the
reason for having a relatively low surface area and pore volume via nitrogen adsorption
analysis. The dynamic light scattering result shown in Figure 1e also confirms the difference
between the two samples with a very narrow particle size distribution of S around 35 nm
and wide distribution of particle size for S-DA in the range of 200–800 nm. This could be
related to the tendency of N-[3-(Trimethoxysilyl)-propyl]ethylenediamine to condensate
and block the porosity within the silica particles. Moreover, amine may enhance the
growth rate of the silica nanoparticles leading to a larger particle size with lower porosity.
Kesmez et al. (2010) reported similar findings for the effect of amine on the silica growth
rate and particle size distribution. They reported silica with an average particle size around
21 nm with a narrow particle size distribution without adding amine. On the other hand,
the silica obtained with the aid of amine as a catalyst showed two peaks for the particle
size distribution around 44 and 500 nm [38].

3.2. Adsorption of MO

The main rule for adding amine functionality to the silica was to increase the pHZPC
of the silica from 2.0 for bare silica to around 7.0 for amine-modified silica nanoparticles as
shown in Figure 1f [39]. This has a major impact on the efficiency of the nanocomposite since
the surface will be positively charged for any pH value less than 7. Thus, more MO anions
will be attracted to the surface. A similar effect of pH on the adsorption of MO on the surface
of protonated chitosan was reported by Huang et al. (2013) [17]. Lu et al. (2018) reported a
decrease in the adsorption capacity of MO on the surface of biochar at a pH higher than 7
due to the deprotonation of the surface and, thus, repulsive force with the anionic dye [22].
Da’na et al. (2022) applied the amine-modified silica with a pHZPC around 7 to adsorb
Zn2+ by controlling the solution pH at 7.5, which makes the adsorbent surface negatively
charged, and they reported 100% removal of this cation [32]. Khalaf et al. (2019) applied
ZnO nanoparticles to adsorb anionicbytionic dyes by controlling the surface charge of
the adsorbent [13]. In this work, since the pHZPC of the S-DA adsorbent was found to be
around 7.0 (Figure 1f), it is expected that the surface of S-DA will be positively charged in a
medium with pH less than 7 as shown in Scheme 1. Accordingly, two sets of experiments
were performed at a pH of 2.5 and 3.5. Qualitatively, Figure 3a–d show this pH effect.
When the adsorbent (S-DA) is added to an MO solution at pH = 2.5, the surface of the
adsorbent will be highly positive as proposed in Scheme 1, and, accordingly, there will be
an electrical attraction between the positive surface and the negative MO. This is shown
clearly in Figure 3a,b. The diffusion of the MO from the top of the cuvette to the bottom
is very clear. The first row represents the time just after adding the adsorbent, while row
2 represents 30 min later. This Is not clear in Figure 3c,d, which represent experiments at
pH 3.5. Increasing the pH is expected to decrease the density of the positive charge on
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the adsorbent surface (Scheme 1). Furthermore, the concentration of OH−1 is expected to
be higher at pH = 3.5 than that at pH = 2.5. The OH−1 will compete with the MO anions
for the positive sites on the adsorbent surface. Accordingly, slower diffusion is expected
to take place at pH = 3.5 with lower removal efficiency. To confirm the rule of amine in
improving the surface charge of the adsorbent, other experiments were performed with
silica nanoparticles (S), which have a pHZPC of 2.0 as shown in Figure 1f [32]. Thus, at
both pH values, the surface will be negatively charged as proposed in Scheme 1 and a
repulsive force is expected to prevent the reach of the MO molecules to the adsorption sites
on the surface. Figure 3 shows the S-DA before (Figure 3e) and after the adsorption of MO
(Figure 3f). The color change was very fast for pH = 2.5 and much slower at pH = 3.5, while
no change in color was detected when S was used as the adsorbent.

To quantitatively estimate the efficiency of adsorption, the UV absorbance at Lmax of
465 nm using a UV-Vis spectrophotometer was followed for the time of the experiment as
shown in Figure 4a. Each spectrum represents the absorbance at a certain time, starting
from the top at time zero and ending at the lowest one by the end of the experiment, with a
3 min interval between each. Figure 4b shows the kinetic data of the removal efficiency for
one experiment using 10 g/3 L of S-DA at pH = 2.5. The kinetic energy was relatively fast
with the equilibrium reached in less than 30 min. Similar experiments were repeated for
different adsorbent to solution ratios of 20 g/3 L, 30 g/3 L, 40 g/3 L, 50 g/3 L, and a pH of
3.5, and the results are presented in Figures 5 and 6.
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Figure 3. Color change by using an adsorbent to solution ratio of 10 g/3 L C0 = 50 mgL−1, and
pH = 2.5, directly after adding S-DA (a) and after 2 h (b), pH = 3.5 directly after adding the S-DA
(c), and after 2 h (d). From left to right for (a–d) without adsorbent, 10S, 10S-DA, 20S-DA, 30S-DA,
40S-DA, and 50S-DA, S-DA before being used for adsorption (e), and MO-loaded S-DA (f).
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Figure 4. UV absorbance at Lmax = 465 nm each 3 min for 30 min (a), the removal efficiency (R%) by
using an adsorbent to solution ratio of 10 g/3 L, C0 = 50 mgL−1, and pH = 2.5 for 2 h (b).
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Figure 5 shows the removal efficiency obtained for different mass/volume ratios, with
a pH of 3.5, for 2 h and 24 h. The maximum removal efficiency ≈ of 22% was achieved with
30 mg/3 L after 2 h. For bare silica nanoparticles (S) the removal efficiency was 0%, which
is mainly due to the low pHZPC of the silica. The pHZPC of 2 implies that the surface of the
silica will be negatively charged at any pH higher than 2 as proposed in Scheme 1. Thus,
a repulsive force between the negative silica surface and the MO anions will prevent the
reach to the active sites and, accordingly, no adsorption will take place. Decreasing the pH
to 2.5 resulted in a higher removal efficiency of 70% as shown in Figure 6. The enhancement
of the removal efficiency is directly related to the charge of the surface. By decreasing the
pH, more protonation of the functional groups on the surface will take place leading to a
higher density of positive charge on the surface as proposed in Scheme 1, which will attract
more of the MO anions. Bare silica also did not adsorb any MO at this pH.

To further assess the adsorption process, the equilibrium was investigated by adsorb-
ing MO from solutions with different initial concentrations in the range of 10–50 mgL−1
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and 293 K. Figure 7a shows that a 100% removal was achieved when a dilute solution
of 10 mgL−1 was used. The result was fitted with the Langmuir isotherm as shown in
Figure 7b suggesting monolayer adsorption. This supports the suggested mechanism of
electrical attraction between the surface and the MO, which required direct contact between
the positive surface and the anions. Thus, it will take place in a single layer. Table 1
shows the fitting parameters with an R2 of 0.9848 and a monolayer adsorption capacity of
5.4 mg/g. The same test was repeated at 313 and 333 K to investigate the thermodynam-
ics of the process. When the temperature increased, no adsorption was achieved, which
indicates an exothermic nature of the process. As mentioned earlier, the main expected
mechanism of the adsorption is via electric attraction between the MO anions and the
positive S-DA surface. By increasing the temperature, the MO molecules gain kinetic
energy that can overcome the electrical attraction forces and, accordingly, no adsorption
is achieved. The kinetics of the adsorption process were investigated at 293 K using an
initial concentration of 50 mgL−1, pH of 2.5, and different mass of adsorbent in the range
of 10–50 mg as shown in Figure 7c. It is clear that for all kinetic tests, the adsorption was
very fast and the equilibrium was achieved in less than 30 min. The kinetic data were fitted
with the pseudo-second-order model as shown in Figure 7b and Table 1. The maximum
adsorption capacity was achieved with 10 mg of adsorbent and decreased as the adsorbent
mass increased. For the rate constant KP2, its value increased by increasing the mass from
10 to 30 mg and then started to decrease.
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Figure 7. Adsorption capacity (qe) and removal efficiency (R%) as a function of C0 (a), Langmuir
model (b), adsorption capacity (qt) as a function of time (c), and kinetics model (d) for S-DA with
mass/volume of 10 g/3 L–50 g/3 L, pH = 2.5, for 2.
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Table 1. Equilibrium and kinetics parameters were obtained for S-DA with an initial MO concentra-
tion of 50 mgL−1, pH = 2.5, the temperature of 293 K, and mass/volume of 10/3–50/3 g/L.

Temperature (K)
Langmuir parameters

KL (L·mg−1) qm (mg·g−1) R2

293 0.577 5.40 0.9848
313 - - -
333 - - -

Mass (mg)
Pseudo-second-order parameters

Kp2 (g·mg−1·min−1) qe (mg·g−1) R2

10 0.048 12.987 0.9998
20 0.041 6.716 0.9982
30 0.035 4.801 0.9998
40 0.078 2.927 0.9992
50 0.210 2.132 0.9999

Table 2 shows some adsorbents reported in the literature for the removal of MO from
aqueous solutions. It is worth mentioning that it is not easy to compare different adsorbents
and draw a comprehensive conclusion about which one is the best. This is mainly due
to the different experimental conditions followed in each work such as temperature, pH,
concentration range, mass/volume used, and many other conditions. In addition to these
experimental conditions, many other factors need to be considered such as the stability and
reusability of the adsorbent, simplicity of synthesis, and cost. It is apparent in the table that
many adsorbents (naturally occurring materials such as agriculture waste) show very high
adsorption capacity and are also available at low or no cost. However, these adsorbents are
usually unstable and cannot be used for multiple cycles, and there needs to be a suitable
way of disposing of them to prevent the leak of the pollutants back into the water body. To
find a conclusion, a comprehensive study of each adsorbent must be conducted to achieve
an adsorbent that can be commercially applied.

Table 2. Some adsorbents are reported in the literature for the adsorption removal of MO.

Adsorbent Mass/Volume
(g/L)

MO
Concentration

(mgL−1)

Removal
Efficiency (%)

Adsorption
Capacity
(mg/g)

Notes Ref.

Chitosan intercalated
montmorillonite 1/1 200 100 pH = 2

T = 45 ◦C [18]

Protonated cross-linked
chitosan 100 100 pH = 4.5

T = 40 ◦C [17]

Sheep Manure Biochar 4/5 20 100 50 pH = 4
T = 25 ◦C [22]

Kaolinite Clay 50/1 200 70 3.5 pH = 4
T = 25 ◦C [23]

Camel Thorn Plant 1/2 20 80 21 pH = 4
T = 20 ◦C [21]

Biochar 1/2 50 137 T = 25 ◦C
pH = 2 [3]

CTAB-Modified Orange Peel 4/5 50 89 14 T = 25 ◦C [20]

Chitosan 2/1 33 10 pH = 4
T = 33 ◦C [1]

Polyvinylidene
fluoride-PEDOT mats 300 293 pH = 3

T = 50 ◦C [40]

Crosslinking chitosan
microspheres 4/10 30 91 50 T = 25 ◦C [41]
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Table 2. Cont.

Adsorbent Mass/Volume
(g/L)

MO
Concentration

(mgL−1)

Removal
Efficiency (%)

Adsorption
Capacity
(mg/g)

Notes Ref.

Kapok paper-zinc
oxide-polyaniline
hybrid nanocomposite

2/5 25 50 97 T = 25 ◦C [42]

Mesoporous maghemite 5/2 50 93 385 pH = 3
T = 20 ◦C [43]

Hydrogel Composite 1/1 1000 500 pH = 7
T = 15 ◦C [44]

Aluminum-based
MOF/graphite
oxide composite

0.2/1 40 399 T = 25 ◦C
pH = 8 [45]

Magnetic mesoporous carbon 2/1 30 98.5 pH = 7
T = 25 ◦C [46]

Ferromagnetic Fe/Ni
Nanoparticles 1.5/1 50 35 99.5 pH = 1

T = 25 ◦C [47]

TiO2 nanocrystals 1/50 16 95 303 pH = 3
T = 25 ◦C [48]

ZnO–NiO nanocomposite 2/1 6 3 100 pH = 4
T = 20 ◦C [13]

Amine-modified nano-silica 10/3 10 5.4 100 pH = 3.5
T = 20 ◦C Current work

3.3. Regeneration of the Adsorbent

The regeneration test was performed with a 10 g/3 L ratio for four successive adsorption–
desorption cycles by rinsing the amine-loaded S-DA shown in Figure 8a with a diluted KOH
solution to change the surface charge from positive to negative as proposed in Scheme 2.
Thus, a repulsive force results in the release of the MO anions into the KOH solution.
Visually, it is apparent that MO was successfully released from the adsorbent surface
by retaining the white color of S-DA as shown in Figure 8b. This step was performed
by adding KOH with a dropper directly on the filter paper for less than 5 min. The
result of reusing the adsorbent for four successive cycles is shown in Figure 9. The S-
DA adsorbent maintained 50% of its initial removal efficiency after being used for four
successive adsorption–desorption cycles. The loss of adsorption capacity may be related to
the incomplete release of the MO from the surface due to the very short contact time. It
is possible also that the successive acid-base contact with the S-DA resulted in the loss of
amine functionality and, accordingly, the surface chemistry was affected. Moreover, it is
possible that the KOH treatment caused some changes in the morphological structure of
the adsorbent surface due to the itching effect.

Figure 8. MO-loaded S-DA (a) and S-DA after releasing MO by KOH (b).
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Figure 9. The removal efficiency was obtained by 10 g/3 L of S-DA, pH = 2.5, for 2, recycling with
KOH four times.

4. Conclusions

In this work, amine-modified nano-silica was prepared following a simple, one-pot
method, and without the need for any harsh conditions such as a strong acidic or basic
medium, high temperature, or reflux. The main rule of introducing amine was to enhance
the affinity of the silica surface to capture the MO dye by increasing the zero-point charge of
the silica surface from 2.0 for bare silica to about 7.0 for the S-DA. The prepared adsorbent
showed fast kinetics toward capturing MO with equilibrium achieved in less than 30 min
under stagnant conditions. Regeneration of the adsorbent was performed by simple rinsing
of the MO-loaded adsorbent with a dilute KOH solution. After four cycles the adsorbent
maintained 50% of its initial adsorption capacity. This material is very attractive for this
application; however, more research is needed to improve the adsorption capacity of the
adsorbent by optimizing the synthesis conditions followed in this work.
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