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Abstract: Vegetable oils have been utilized for centuries in the food, cosmetic, and pharmaceutical
industries, and they contribute beneficially to overall human health, to active skincare, and to effective
treatments. Monitoring of the vegetable oils is carried out by the methods described in the European
Pharmacopeia, which is time-consuming, has poor repeatability, and involves the use of toxic organic
chemicals and expensive laboratory equipment. Many successful studies using IR spectroscopy have
been carried out for the detection of geographical origin and adulteration as well as quantification
of oxidation parameters. The aim of our research was to explore FT-IR spectroscopy for assessing
the quality parameters and fatty acid composition of cranberry, elderberry, borage, blackcurrant,
raspberry, black mustard, walnut, sea buckthorn, evening primrose, rosehip, chia, perilla, black
cumin, sacha inchi, kiwi, hemp, and linseed oil. Very good models were obtained for the α-linolenic
acid and linoleic acid contents, with R2 = 1.00; Rv

2 values of 0.98, 0.92, 0.89, and 0.84 were obtained
for iodine value prediction, stearic acid content, palmitic acid content, and unsaponifiable matter
content, respectively. However, we were not able to obtain good models for all parameters, and the
use of the same process for variable selection was found to be not suitable for all cases.

Keywords: vegetable fatty oils; chemometrics; FT-IR; quality control

1. Introduction

Vegetable oils have been utilized for centuries for a wide variety of applications,
ranging from home to industrial uses. In the food, cosmetic, and pharmaceutical industries,
they have been increasingly recognized as bioactive substances that contribute beneficially
to overall body health, to active skincare, and to effective treatments [1–4].

Chemically, vegetable oils are mixtures of triglycerides, unsaponifiable compounds,
and some other types of lipids, such as waxes and phospholipids. Triglycerides are esters
of glycerol and fatty acids, which account for up to 99% of the oil content, while the un-
saponifiable compound content generally ranges from 0.5% to 2%. Fatty acids are divided
into saturated (e.g., lauric, myristic, palmitic, stearic), and mono- (oleic) and polyunsat-
urated (linolenic, linoleic). The most common unsaponifiable compounds are terpenic
compounds (phytol, squalene, triterpene alcohols, phytosterols, carotenoids, vitamin E),
phenolic compounds (flavonoids, ferulic acid), and gamma oryzanol [3].

The total fatty acids, unsaturated fatty acids, and oxidation-prone unsaponifiable
compounds themselves are the most critical elements of the oil’s chemical composition, as
their deterioration can not only lower health benefits but also lead to undesired or even toxic
effects, e.g., through the formation of reactive oxygen species and trans fatty acids [5–7].

In terms of dietary, cosmetic, and pharmaceutical uses of vegetable oils, it is, therefore,
of extreme importance to regularly monitor vegetable oil quality. For a comprehensive
quality evaluation of vegetable oils, a combination of different methods must be used.
According to the European Pharmacopoeia, which provides standards for the quality
control of medicines in the European Union, the following parameters are used for the
evaluation of vegetable oils: composition of fatty acids, peroxide value, iodine value, acid
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value, hydroxyl value, ester value, saponification value, and unsaponifiable matter [8]. The
major general drawbacks of the methods used for evaluating these parameters include
the time-consuming work, the analyst’s error in manual titration and determination of the
endpoint (e.g., development or disappearance of the color), poor repeatability, and the use
of toxic organic chemicals and expensive laboratory equipment [9,10].

Infrared spectroscopy is a widely used method for qualitative and quantitative anal-
ysis. It is fast, easy to use, and environmentally friendly. It is frequently coupled with
chemometrical methods that allow appropriate spectral handling and models development,
and improves the extraction of relevant spectral information [11–14]. An important step
in data handling is preprocessing of the spectra. The main goals of the preprocessing
are noise elimination and increasing sensitivity. The most commonly used techniques for
noise elimination are normalization, standard normal variate (SNV), multiplicative scatter
correction (MSC), and other smoothing techniques. For increasing sensitivity, the most used
technique is derivation. It is very important to find a good balance between the smoothing
and increasing sensitivity techniques in each application [15,16]. The gold standard of
the multivariate quantitative model-building technique is the partial least squares (PLS)
method [16,17]. The method builds a model using independent variables with different
weights to predict a dependent variable of interest. A very important step in model building
is appropriate validation with an independent validation set of samples [18].

The use of infrared spectroscopy for vegetable oil analysis is not new [19]. Many
successful studies for the detection of geographical origin and adulteration as well as
quantification of oxidation parameters have been conducted [20–31]. Most studies are
performed on olive oil and edible oils used for frying [23,27–32]. Additionally, the number
of samples is usually low, or only one type of oil is used. Samples are usually prepared
by heating or oxidizing the oils to different degrees [22,24,25,33]. However, only a few
studies have been conducted for a larger set of different oils [34] and for many different
parameters [27] and never for the types of oils used in this study.

The aim of our research was to explore FT-IR spectroscopy as an alternative method
for assessing the quality parameters prescribed by the European Pharmacopoeia (acid,
ester, hydroxyl, iodine, peroxide, saponification value, and unsaponifiable matter) and fatty
acid composition (palmitic, linoleic, α-linolenic, oleic, elaidic, and stearic acid) of cranberry,
elderberry, borage, blackcurrant, raspberry, black mustard, walnut, sea buckthorn, evening
primrose, rosehip, chia, perilla, black cumin, sacha inchi, kiwi, hemp, and linseed oil.

2. Results

The purpose of our research was to explore IR spectroscopy and multivariate modeling
for obtaining predictive models for parameters used to assess the quality of vegetable
oils. The results are presented by comparing different spectral acquisition techniques and
data processing techniques and for 13 different dependent variables. First, the results
of comparing spectral and random data are discussed, and then ATR and transmissive
techniques are compared. Additionally, three resolutions of 2 cm−1, 4 cm−1, and 8 cm−1,
the use of averaged or all three spectra separately, and spectral data reduction techniques
were used. These results apply similarly to all dependent variables.

2.1. Spectral and Random Data

Infrared spectra contain a large number of spectral points, variables. With these
variables, predictive models are built using statistical data processing methods. Due to the
large number of these variables, there is a risk that a good model is obtained due to chance
and not sample information. We wanted to check in practice and in our actual case that the
obtained models are the result of important information in the spectrum and not incorrect
data processing. Therefore, we designed a set of variables with random values to use
instead of infrared spectra, and with them, we performed the same model building process
as with the spectral data. We checked the statistical parameters of the models obtained
with these random datasets and confirmed the assumption that with such a large set of
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independent variables, a model with good statistical parameters for the learning calibration
set can be built, but the parameters for the validation set do not exceed the values that are
obtained due to mere chance.

The results are shown in Table 1. Thus, Rc
2 values obtained for the models built on

random data are as high as 1.0, while Rv
2 exceeds 0.5 only in one case with a value of 0.55

(Table 1). Models built using the spectral data show that both statistical parameters Rc
2

and Rv
2 are as high as 1.0. In all further discussion of the results, only models built using

real spectral data are discussed. Table 1 also shows that the percent of models with a good
Rc

2 value is higher for the case of random data. This is probably because the data in the
spectral dataset are not entirely independent, and some contain information that is similar
to that in the other datasets; therefore, it is easier to fit the data in the random dataset to the
dependent variable.

Table 1. Comparison of the Rc
2 and Rv

2 values obtained for models based on spectral and
random data.

Spectral Preprocessing Method R2 Type
Percent of Models with Good R2 Values

≥0.99 ≥0.95 ≥0.90 ≥0.80 ≥0.70 ≥0.60 ≥0.50

Raw spectral data Rc
2

Rv
2

26% 56% 67% 73% 75% 78% 79%
2% 7% 15% 23% 28% 32% 40%

First derivative of spectral data Rc
2

Rv
2

37% 59% 68% 74% 77% 80% 84%
1% 5% 12% 20% 23% 27% 30%

Second derivative of spectral data Rc
2

Rv
2

39% 58% 66% 71% 78% 81% 85%
0% 4% 9% 16% 18% 20% 23%

Normalized spectral data Rc
2

Rv
2

38% 57% 68% 74% 76% 79% 83%
4% 15% 18% 25% 29% 34% 39%

First derivative of normalized
spectral data

Rc
2

Rv
2

47% 59% 67% 76% 79% 83% 86%
6% 13% 17% 22% 26% 29% 33%

Second derivative of normalized
spectral data

Rc
2

Rv
2

42% 58% 67% 73% 80% 84% 88%
3% 8% 12% 17% 19% 22% 25%

SNV of spectral data Rc
2

Rv
2

40% 60% 71% 75% 78% 81% 84%
6% 16% 19% 24% 30% 35% 39%

First derivative of SNV spectral data Rc
2

Rv
2

50% 63% 70% 78% 81% 84% 88%
6% 13% 16% 21% 27% 30% 33%

Second derivative of SNV spectral data Rc
2

Rv
2

45% 59% 68% 73% 80% 84% 87%
3% 9% 12% 17% 19% 22% 25%

Wavelet approximate coefficients of spectral data Rc
2

Rv
2

24% 54% 66% 71% 74% 77% 78%
2% 8% 15% 22% 27% 31% 41%

First derivative of wavelet approximate
spectral data

Rc
2

Rv
2

33% 60% 68% 73% 76% 80% 85%
1% 6% 13% 20% 25% 30% 32%

Second derivative of wavelet approximate
spectral data

Rc
2

Rv
2

30% 53% 61% 68% 74% 78% 83%
0% 4% 13% 19% 21% 25% 27%

Wavelet detail coefficients of spectral data Rc
2

Rv
2

33% 55% 67% 74% 77% 80% 85%
0% 6% 11% 20% 23% 28% 30%

First derivative of wavelet detail spectral data Rc
2

Rv
2

29% 48% 60% 67% 72% 77% 81%
0% 4% 13% 17% 20% 23% 25%

Second derivative of wavelet detail spectral data Rc
2

Rv
2

29% 44% 54% 63% 69% 75% 81%
0% 3% 7% 15% 18% 21% 24%

Random data Rc
2

Rv
2

46% 59% 73% 87% 89% 90% 92%
0% 0% 0% 0% 0% 0% 0%

Rc
2—determination coefficient of calibration set; Rv

2—determination coefficient of validation set.
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2.2. ATR versus Transmissive Spectra

Representative ATR and transmissive spectra are shown in Figures S1 and S2, respec-
tively. In our experiments, more good models (with both R2 > 0.5) were obtained using
the transmissive spectra measuring technique. This is shown in Table 2. For most of the
dependent variables, good models with both spectrum recording modes were built; the
recorded transmissive spectra gave models with R2 above 0.9 only for predicting stearic
acid content, whereas ATR spectra did not produce such good results. For the ATR spectra
recording technique, the light penetrates into the sample by only a few micrometers and,
therefore, is not sensitive enough for some purposes. However, the ATR recording method
is easier to implement and requires less sample preparation.

Table 2. Percent of models with Rv
2 and Rc

2 values that are both above 0.9 or 0.5 for individual
predictive variables using different spectra recording techniques, resolutions, averaged or separate
spectra, and variable selection techniques. Higher percentages are marked in bold.

Dependent Variable ATR TRANS R2 R4 R8 ALL AVG STD CORR CHEM

Palmitic acid
R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 16% 34% 9% 17% 23% 33% 16% 14% 18% 17%

Linoleic acid
R2 ≥ 0.9 16% 37% 13% 18% 22% 28% 25% 15% 18% 20%
R2 ≥ 0.5 34% 50% 21% 29% 33% 42% 41% 27% 27% 30%

α-Linolenic acid
R2 ≥ 0.9 30% 48% 19% 25% 33% 40% 38% 25% 25% 27%
R2 ≥ 0.5 39% 50% 24% 31% 33% 45% 44% 29% 29% 31%

Oleic acid
R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 4% 28% 5% 13% 14% 23% 8% 11% 9% 13%

Elaidic acid
R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 3% 2% 1% 3% 1% 2% 2% 2% 2% 1%

Stearic acid
R2 ≥ 0.9 0% 2% 0% 1% 1% 2% 0% 1% 0% 1%
R2 ≥ 0.5 14% 25% 9% 12% 18% 31% 8% 12% 13% 15%

Unsaponifiable
matter

R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 2% 2% 1% 2% 1% 2% 2% 1% 1% 2%

Acid value
R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Saponification
value

R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Ester value
R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Hydroxyl value R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Iodine value
R2 ≥ 0.9 13% 30% 16% 10% 17% 16% 26% 14% 14% 14%
R2 ≥ 0.5 41% 50% 26% 31% 33% 45% 45% 29% 30% 31%

Peroxide value
R2 ≥ 0.9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 ≥ 0.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R2—both determination coefficients; ATR—spectra collected with ATR technique; TRANS—spectra collected with
transmissive technique; R2—resolution of spectra 2 cm−1; R4—resolution of spectra 4 cm−1; R8—resolution of
spectra 8 cm−1; ALL—three separate spectra used for each sample; AVG—averaged spectra used for each sample;
STD—standard deviation used for variable selection; CORR—correlation coefficient used for variable selection;
CHEM—variable selected based on absorption of important chemical bonds.

2.3. Resolution

As shown in Table 2, most models using a resolution of 8 cm−1 gave Rc
2 and Rv

2

values of larger than 0.9 and 0.5, respectively. However, good models were also obtained
with resolutions of 2 cm−1 and 4 cm−1. A resolution of 8 cm−1 also has other advantages:
there are a smaller number of data points, and the spectra are recorded faster.
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2.4. Averaged Spectra

We compared models by either averaging over three spectra or using three spectra
separately, and the results are shown in Table 2. Averaging the spectra lowers the noise,
especially due to sample preparation and spectral acquisition. However, three separate
spectra may give additional information and are more similar to the use of only one spectral
recording, which enables faster sample analysis. Both methods gave models with Rc

2 and
Rv

2 larger than 0.9 and 0.5, respectively. Overall, using all spectra gave better results.

2.5. Data Selection

Spectral data contain a large number of data points, of which not all are important for
building a good model. Moreover, they make the predictive model worse [18]. Therefore,
it is beneficial to select some spectral variables prior to multivariate analysis. In our
work, three techniques were compared: First, the standard deviation among samples
for each wavenumber was calculated, choosing those with the largest deviation, as these
variables contain the most differentiating information (STD). The second technique involved
calculating the correlation coefficients for wavenumbers with dependent variables and
using those with the highest correlation (CORR). The third technique used parts of the
spectra that are characteristic of important chemical bonds (CHEM). The results are shown
in Table 2. All three methods gave models with Rc

2 and Rv
2 larger than 0.9 and 0.5,

respectively. Overall, using parts of the spectra that are characteristic of important chemical
bonds gave slightly better results.

2.6. Preprocessing Technique

The purpose of preprocessing spectral data is to remove noise and emphasize impor-
tant information. Different pretreatment techniques were used. Table 1 shows the percent
of models with good Rv

2 and Rc
2 obtained with each pretreatment technique. For the case

of all data, within each type of pretreatment, using a derivative gave worse results. We also
notice that with normalization and SNV normalization, the number of very good models
with Rv

2 higher than 0.99 and 0.95 increased. As the presence of noise is greatly influenced
by the resolution, we expect more noise at higher resolution; therefore, the results obtained
by using individual resolutions are also presented in Table S1. If we look at the results
based on resolution, we notice that the deterioration with the derivative was obvious at
a resolution of 2 cm−1; however, at a resolution of 8 cm−1, this connection was lost. It
can be observed that normalization and SNV normalization improved the percent of good
models in all three resolutions; with these two pretreatments for the case of a resolution
of 8 cm−1, the first derivative slightly improved the results. Overall, the best results were
obtained with a resolution of 8 cm−1. With this resolution, there were many preprocessing
techniques that worked well; therefore, it is difficult to name only one.

2.7. Dependent Variables

Models with both R2 above 0.9 were obtained for linoleic acid, α-linolenic acid, stearic
acid content, and iodine value. Models with both R2 above 0.5 were obtained for palmitic
acid, oleic acid, elaidic acid, and unsaponifiable matter content. Models for the acid value,
saponification value, ester value, hydroxyl value, and peroxide value did not have both R2

above 0.5. Table S1 shows the results obtained for the models for each predictive variable
using different preprocessing results. In general, the best preprocessing techniques were
normalized spectra and SNV spectra. However, WA, raw spectra, and first derivatives
produced good results, and worse results were obtained using detailed wavelet coefficients
and their derivatives and second derivatives.

3. Discussion

The best models for each dependent variable are presented in Table 3 and Figure 1.
In Table 3, all parameters of the three models with the highest Rv

2 and lowest RMSEP
were given for each of the dependent variables. Models with good R2 values also had
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low RMSEP and comparable RMSEC and RMSEP. If RMSEC is much larger compared to
RMSEP, this indicates overfitting of a model to the calibration set; this would also show as
a high Rc

2 value. If both RMS are high compared to the calibration range, this shows that a
good model cannot be made on a given set of independent variables.
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Table 3. Three best models for each dependent variable are presented with the spectral measurement
parameters, model building parameters, and evaluation parameters RMSECV, RMSEC, RMSEP, Rc

2,
and Rv

2.
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R
v

2

Palmitic acid
Trans R2 Avg STD NOR 9 1.54 0.56 0.55

1.74–9.90
0.91 0.89

Trans R8 All CORR WD 12 0.66 0.42 0.56 0.95 0.89
Trans R2 Avg STD WA 11 1.60 0.44 0.59 0.95 0.87

Linoleic acid

Trans R8 All STD NOR
1st D 16 2.99 1.30 1.23

6.63–80.00
0.99 1.00

Trans R8 All CHEM NOR
1st D 17 3.00 1.07 1.40 1.00 1.00

Trans R8 All STD SNV
1st D 16 2.53 1.13 1.47 1.00 0.99

α-Linolenic
acid

Trans R2 All CORR SNV 18 1.69 0.62 0.98
0.00–68.50

1.00 1.00
ATR R8 Avg CHEM SNV 7 2.74 0.90 1.19 1.00 1.00
Trans R2 All CHEM SNV 18 1.70 0.53 1.25 1.00 1.00

Oleic acid

Trans R8 All STD NOR
1st D 14 1.97 1.19 3.75

7.28–34.50
0.97 0.75

Trans R4 All CHEM SNV
1st D 18 2.12 0.14 3.76 1.00 0.75

Trans R8 All CHEM NOR
1st D 14 1.97 1.17 3.83 0.97 0.74

Elaidic acid
Trans R4 All STD 1st D 13 0.73 0.24 0.48

0.00–4.25
0.96 0.72

Trans R4 All STD WD 13 0.72 0.27 0.48 0.95 0.72
ATR R4 Avg CHEM NOR 3 1.16 0.85 0.50 0.54 0.69

Stearic acid
Trans R4 All CHEM NOR

1st D 10 0.99 0.49 0.39
0.00–5.98

0.89 0.92

Trans R8 All STD WA 20 0.67 0.34 0.40 0.94 0.92
Trans R4 All STD NOR 17 0.72 0.37 0.41 0.94 0.92

Unsaponifiable
matter

ATR R2 Avg CHEM RAW 5 0.41 0.17 0.12
0.33–2.20

0.85 0.84
ATR R2 Avg CHEM WA 18 0.40 0.00 0.16 1.00 0.73

Trans R8 Avg CORR NOR
2nd D 20 0.44 0.00 0.18 1.00 0.65

Acid value

Trans R2 Avg CHEM 2nd D 9 1.48 0.05 0.55
0.112–11.2

1.00 −0.98

Trans R2 Avg CORR NOR
2nd D 7 1.20 0.18 0.56 0.99 −1.07

Trans R4 Avg CORR WD
2nd D 5 1.30 0.67 0.57 0.91 −1.09

Saponification
value

ATR R4 Avg CORR WA 1 3.63 2.65 0.72
178–196

0.23 0.26
ATR R2 Avg CORR WA 1 3.63 2.63 0.72 0.24 0.25
ATR R4 Avg CORR RAW 1 3.62 2.65 0.72 0.23 0.25

Ester value
ATR R8 Avg CHEM NOR

2nd D 10 3.47 0.02 0.86
176–194

1.00 0.22

Trans R4 Avg STD RAW 1 3.74 3.47 0.95 0.11 0.04
Trans R4 Avg STD WA 1 3.74 3.47 0.95 0.11 0.04

Hydroxyl
value

Trans R4 Avg CHEM NOR 1 3.16 2.72 1.31
2.70–19.4

0.19 0.26
Trans R4 Avg CORR WD 1 3.07 2.52 1.32 0.30 0.25
Trans R4 Avg CORR 1st D 1 3.05 2.54 1.33 0.29 0.23
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Table 3. Cont.
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Iodine value

ATR R8 Avg STD NOR
2nd D 2 7.73 4.47 1.94

99–204
0.96 0.98

ATR R8 Avg CORR NOR 1 6.06 5.66 2.18 0.93 0.98

ATR R8 Avg CORR NOR
1st D 2 6.91 5.26 2.36 0.94 0.97

Peroxide
value

ATR R8 Avg CORR NOR 1 21.36 18.38 18.87
9.29–123

0.39 0.49
Trans R8 All CHEM 1st D 20 11.32 2.01 18.92 0.99 0.49

Trans R8 All CHEM WA
2nd D 18 11.14 3.54 19.03 0.98 0.49

Rc
2—determination coefficient of calibration set; Rv

2—determination coefficient of validation set; RMSECV—
root mean error of cross-validation (for PLS); RMSEC—root-mean-square error of calibration; RMSEP—root-
mean-square error of prediction; ATR—spectra collected with ATR technique; TRANS—spectra collected with
transmissive technique; R2—resolution of spectra 2 cm−1; R4—resolution of spectra 4 cm−1; R8—resolution
of spectra 8 cm−1; All three separate spectra used for each sample; Avg—averaged spectra used for each
sample; STD—standard deviation used for variable selection; CORR—correlation coefficient used for variable
selection; CHEM—variable selected based on absorption of important chemical bonds; 1st D—first derivative;
2nd D—second derivative; NOR—normalized spectra; SNV—spectra normalized with standard normal variate;
WA—approximate wavelet coefficients of spectra; WD—detailed wavelet coefficients of spectra.

For both the α-linolenic acid and linoleic acid models, R2 of 1.00 was obtained. In
the literature models reviewed for these two fatty acids, the content percent was built by
Mahboubifar et al. using four types of edible oils and observing the compositional change
during heating; for linolenic and linoleic acid, Rv

2 was 0.94 and 0.99, respectively [27]. In
this reference, models for palmitic acid, stearic acid, and oleic acid were also built, obtaining
Rv

2 values of 0.99, 0.97, and 0.98, respectively. In our study, the highest Rv
2 values obtained

for these fatty acid contents were 0.89, 0.92, and 0.75, respectively.
The highest Rv

2 value obtained for iodine value prediction was 0.98. Similarly, other
authors have made very good models for iodine value prediction [25,34]. Dyminska et al.
analyzed 13 different oils (sunflower, avocado, hemp, high-linolenic flax, low-linolenic flax,
safflower, walnut, roasted sesame, rice, corn, rapeseed, pumpkin seed, hazel) and obtained
a model based on IR spectral data with Rv

2 = 0.988. This study used a similarly heterogenic
set of different oil types but with a smaller number of samples [34]. Additionally, Sanchez
et al. analyzed the iodine value in hydrogenated soybean oil using FTIR-ATR and built a
model for iodine value prediction with Rv

2 = 0.987. However, the purpose of this study
was very different to ours. Only one type of oil was used, and the aim was to monitor
changes in the iodine value during a very specific process: hydrogenation [25]. In our
study, the aim was to control the quality of different types of specific oils not subjected to
any deterioration process.

Some variables had very low Rv
2 values. Models for the peroxide value had the highest

Rv
2 value of 0.49. In the reviewed literature, models for peroxide values have Rv

2 values
ranging between 0.701 and 0.997. Good models for the peroxide value are mostly obtained
for a small number of oil types studied, mostly single plant sources, during oxidation
processes such as heating or frying [22,23,26,27]. Molecules containing -OH groups overlap
with the hydroperoxide band, which interferes with the determination of the peroxide
value. Such molecules are mainly alcohols, phytosterols, mono- and diglycerides, free fatty
acids, and water [23].

We were not able to obtain a good model for the acid value, saponification value, ester
value, and hydroxyl value with our methods. In the reviewed literature, we found that
Mahboubifar et al. built a model for acid value prediction with Rv

2 0.86 [27]. Similar to
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the peroxide value, the aim of this study was to monitor the variation in the composition
of oil during heating. Bendini et al. built a good model for predicting the acid value for
olive oils with Rv

2 0.955; compared to our study, their sample set was composed of only
one plant-type oil [23].

In our study, the same process for variable selection was used for all dependent
variables. The results showed that this is not suitable for all of them. For the peroxide value,
acid value, saponification value, ester value, and hydroxyl value, models can be improved
by finding and selecting even more specific parts of the spectra, excluding irrelevant data
for these dependent variables.

In Table 4, the FT-IR method is compared to reference methods for vegetable oil charac-
terization. In the FT-IR method, the most time-consuming and difficult part is the method
development and validation part. Once the method is developed for a given application,
the analysis is fast and easily carried out with little chance of human error. In titration
methods, there are many toxic chemicals used and laboratory skills are important for the
accuracy and repeatability of analysis. Gas chromatography for fatty acid quantification
requires appropriate sample preparation, which again uses toxic organic chemicals. Gas
chromatography itself can be automated; however, the analysis is long.

Table 4. Comparison of the FT-IR method and currently used methods for vegetable oil characterization.

Titration (Acid, Hydroxyl,
Iodine, Peroxide,

Saponification Value)

Gas Chromatography (Fatty
Acid Content) FT-IR

Method development developed developed has to be developed and validated
Time consumption long long fast
Amount of sample grams miligrams miligrams

Repeatability poor good good
Chemicals toxic organic toxic organic none

Ease of analysis good laboratory skills good laboratory skills easy
Laboratory equipment basic expensive expensive

4. Materials and Methods
4.1. Samples

Thirty-seven commercially available vegetable oils used as cosmetic ingredients and
as food or food supplements were collected. Among these oils, there were 18 different
types of oils and one to four samples for each type of oil. Each type of oil had one or two
representatives in the calibration dataset; if there were three or more samples of the same
type, the rest were put into the validation set. Validation samples were chosen randomly,
excluding minimal or maximal values for each dependent variable where possible. The
samples, manufacturer, and type of dataset are presented in Table 5.

Table 5. Samples of vegetable oils used in the analysis.

Plant of the Oil Source Latin Name of the Plant Supplier Calibration or Validation
Dataset

Cranberry seed oil Vaccinum macrocarpon Behawe Naturprodukte, Germany Calibration
Cranberry seed oil Vaccinum macrocarpon Alexmo Cosmetics, Germany Calibration
Cranberry seed oil Vaccinum macrocarpon Dragonspice Naturwaren, Germany Validation
Elderberry seed oil Sambucus nigra Baccararose, Germany Calibration
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Table 5. Cont.

Plant of the Oil Source Latin Name of the Plant Supplier Calibration or Validation
Dataset

Elderberry seed oil Sambucus nigra Behawe Naturprodukte, Germany Calibration
Borage seed oil Borago officinalis Dragonspice Naturwaren, Germany Validation
Borage seed oil Borago officinalis Tovarna Organika, Slovenia Validation
Borage seed oil Borago officinalis Caelo, Germany Calibration
Borage seed oil Borago officinalis Farmalabor, Italy Calibration

Blackcurrant seed oil Ribes nigrum Dragonspice Naturwaren, Germany Calibration
Blackcurrant seed oil Ribes nigrum Behawe Naturprodukte, Germany Calibration

Hemp seed oil Cannabis sativa Dragonspice Naturwaren, Germany Calibration
Hemp seed oil Cannabis sativa Tovarna Organika, Slovenia Calibration
Hemp seed oil Cannabis sativa Manske, Germany Validation

Raspberry seed oil Rubus idaeus Tovarna Organika, Slovenia Validation
Raspberry seed oil Rubus idaeus Dragonspice Naturwaren, Germany Calibration
Raspberry seed oil Rubus idaeus Behawe Naturprodukte, Germany Calibration

Black mustard seed oil Brassica nigra Behawe Naturprodukte, Germany Calibration
Walnut seed oil Juglans regia Baccararose, Germany Calibration
Walnut seed oil Juglans regia Caelo, Germany Calibration

Sea buckthorn seed oil Hippophae rhamnoides Dragonspice Naturwaren, Germany Calibration
Sea buckthorn seed oil Hippophae rhamnoides Behawe Naturprodukte, Germany Calibration

Evening primrose seed oil Oenothera biennis Dragonspice Naturwaren, Germany Validation
Evening primrose seed oil Oenothera biennis Farmalabor, Italy Calibration
Evening primrose seed oil Oenothera biennis Alexmo Cosmetics, Germany Calibration
Evening primrose seed oil Oenothera biennis Caelo, Germany Validation

Rosehip seed oil Rosa canina Manske, Germany Calibration
Rosehip seed oil Rosa canina Alexmo Cosmetics, Germany Calibration

Chia seed oil Salvia hispanica Baccararose, Germany Calibration
Chia seed oil Salvia hispanica Dragonspice Naturwaren, Germany Calibration

Perilla seed oil Perilla frutescens Baccararose, Germany Calibration
Black cumin seed oil Nigella sativa Caelo, Germany Calibration
Sacha inchi seed oil Plukenetia volubilis Magnolija, Slovenia Calibration

Kiwi seed oil Actinidia chinensis Dragonspice Naturwaren, Germany Calibration
Lineseed oil Linum usitatissimum Baccararose, Germany Validation
Lineseed oil Linum usitatissimum Farmalabor, Italy Calibration
Lineseed oil Linum usitatissimum Caelo, Germany Calibration

4.2. Chemical Characterization of Vegetable Oils

The acid value, saponification value, ester value, hydroxyl value (method A), iodine
value (method B), peroxide value (method B), and unsaponifiable matter were determined
by the procedures described in European Pharmacopoeia 8.0, sections 2.5.1–2.5.7.

4.3. GC–MS Analysis of Fatty Acid Composition

First, the transesterification of fatty acids was carried out to make the constituents
volatile for GC–MS analysis. The sample was injected to the GC column for separation of
the constituents. They were detected by an MS detector and the identification was carried
out by reference compounds and MS spectral libraries.

In situ transesterification was carried out for 10 mg of samples, adding 10 µL of
dichloromethane and 200 µL of 0.5 M NaOH in methanol. The mixture was then heated in
a water bath at 90 ◦C for 10 min. After cooling, 200 µL of 14% BF3 in methanol was added,
and the mixture was heated again at 90 ◦C for 10 min. Then, 200 µL of demineralized
water and 1 mL of hexane were added and shaken intensively for 1 min for extraction.
The hexane phase was analyzed by GC–MS. A gas chromatograph (GCMS-QP2010 Ultra;
Shimadzu, Kyoto, Japan) was used to analyze the material. A capillary column was used
(Rtx-1 F&F; 30 m × 0.25 mm i.d.; film thickness, 0.25 µm; Restek, Bellefonte, PA, USA). The
temperature program began at 160 ◦C and the temperature was then raised to 250 ◦C at
3 ◦C/min. The injection temperature was 250 ◦C, the temperature of the ion source was
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200 ◦C, and the temperature of the interface was 280 ◦C. The injection volume was 1 µL,
the split ratio was 1:100, the carrier gas was He, and the flow linear velocity was 1 mL/min.
The mass spectrometry conditions included electron impact mode at an ionization voltage
of 70 eV, with the total ion current recorded, with a scan range from 35 m/z to 500 m/z at
a frequency of 5 Hz. The detector voltage was 1 kV. The total analysis time was 30 min.
The compounds were identified by comparing their mass spectra and retention indices
to the spectra and retention indices of the reference compounds obtained from standard
Supelco F.A.M.E. MIX, C4-C24 (Sigma-Aldrich, Steinheim, Germany) and to the spectra
and retention indices obtained from the Flavors and Fragrances of Natural and Synthetic
Compounds spectral library (FFNSC3) and National Institute of Standards and Technology
spectral library (NIST11). Concentrations were calculated as relative peak areas, and fatty
acid contents are given in %.

4.4. Recording of the IR Spectra
4.4.1. ATR Spectra

ATR FT-IR spectra were collected using a diamond attenuated total reflection (ATR)
accessory from Dura SamplIR Technologies coupled to a Nicolet Instrument Co spectrom-
eter using a DTGS detector. The spectrometer was linked to a computer equipped with
Omnic E.S.P. 5.2 software to allow for the automated collection of IR spectra.

Each spectrum was collected as an average of 50 scans between 500 cm−1 and
4000 cm−1. Spectra were collected at three different resolutions: 2 cm−1, 4 cm−1, and
8 cm−1. Three spectra at each resolution were collected for each sample. A new back-
ground was collected at each resolution before the three measurements for one sample
because of the CO2 peak. For data analysis and model building, all three spectra obtained
for one sample were used separately or averaged.

4.4.2. Transmissive Spectra

Transmissive FT-IR spectra were collected using a SpectraTech extension for NaCl
plates coupled to a Nicolet Instrument Co spectrometer using a DTGS detector. The
spectrometer was linked to a computer equipped with Omnic E.S.P. 5.2 software to allow
for the automated collection of IR spectra.

Vegetable oils were diluted in dichloromethane vol/vol = 1/10, and one droplet was
placed onto a NaCl plate (11 × 30 × 7 mm) and left alone for dichloromethane to evaporate.
The NaCl plate was completely cleaned between different samples with saturated NaCl
ethanol solution and only wiped between three consecutive measurements of the same
sample. Each spectrum was collected as an average of 50 scans between 600 cm−1 and
4000 cm−1. Spectra were collected at three different resolutions: 2 cm−1 (R2), 4 cm−1 (R4),
and 8 cm−1 (R8). Three spectra at each resolution were collected for each sample. A new
background was collected at each resolution before the three measurements for one sample
because of the CO2 peak. For data analysis and model building, all three spectra obtained
for one sample were used separately or averaged.

4.5. Data Analysis

After collecting the infrared spectra, they were first preprocessed with different tech-
niques; in the next step, the important variables were extracted by different methods.
Models were then built using partial least squares regression (PLS). In the last step, the
validation with an independent set of samples was carried out and parameters to assess
the quality of the models were calculated.

Spectral data analyses were carried out using Octave 5.1.0. A total of 7488 models
were built for all 13 predictive variables using all possible combinations of the 5 parame-
ters (spectra measurement technique, resolution, separate or averaged spectra, predictive
variable selection, and spectra preprocessing). Spectra were measured using ATR and the
transmission method. Models were built using three separate spectra for each sample and
compared to models built using averaged spectra for each sample. Samples were divided
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into calibration and validation sets. In cases where three spectra for the same sample were
included in the analysis, all three spectra were assigned to the same for the two sets. Spectra
were collected at three different resolutions. Different spectra preprocessing techniques
were used for all spectra: raw spectra, first and second derivative, normalization (NOR),
first and second derivative of normalization, standard normal variate (SNV), first and
second derivative of SNV, Haar wavelet transform, and the first and second derivative of
data obtained with the Haar wavelet transform. The wavelet transform yields two datasets:
the approximate coefficients (WA) and the detailed coefficients (WD), both of which were
compared. As there are many variables in the IR spectrum and many statistical processes,
we also used random data, which were treated as one of the preprocessing techniques. In
this case, the matrix data were filled with random numbers instead of spectral data. The
aim was to check that it is not possible to obtain good models with random data.

Spectra contain a large number of variables; different methods were used for lowering
the number of these variables to approximately 40% for spectral data before applying the
partial least squares (PLS) method. In the first case (CORR), these variables were selected
using the Pearson correlation, where 40% of all spectral variables were chosen based on
the largest absolute correlation with the dependent variable for which the model was
built. Another technique (CHEM) was to first lower the number of spectral variables,
taking in the parts of the spectra where absorption peaks for important chemical bonds
exist; the selected spectral ranges were 600–1500 cm−1, 1600–1800 cm−1, 2850–3050 cm−1,
and 3400–3500 cm−1. The third technique (STD) used for lowering the number of vari-
ables involved selecting 40% of spectral variables based on the largest standard deviation.
The hypothesis was that where spectra change most among samples, there is important
information available for differentiation.

To obtain the most appropriate number of latent factors used in PLS, the leave-one-out
method was used for the calibration set to test for the 1–20 latent factors used.

The quality of the models was assessed using the correlation R2 of the calibration
(Rc

2) and validation (Rv
2) sets of samples and the root-mean-square error of calibration

(RMSEC), root-mean-square error of validation (RMSEV), and root-mean-square error of
prediction (RMSEP).

5. Conclusions

The methods used give good models for predicting the content of the fatty acids
studied, while good models for predicting pharmacopoeia chemical values are obtained
only for iodine value and unsaponifiable matter. For some variables, such as the linoleic and
α-linolenic acid content and iodine number, a large number of good models are obtained.
In this case, the method of spectral recording, selection, and processing of spectral variables
is not very important. For the other variables, good models are obtained only with the
appropriate choice of recording and processing of spectral data. Based on our results, we
conclude that infrared spectroscopy offers a good supplemental or alternative method for
the determination of vegetable oil quality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27103190/s1, Figure S1: Average ATR spectra of borage
seed oil and evening primrose seed oil samples; Figure S2: Average transmissive spectra of borage
seed oil and evening primrose seed oil samples; Table S1: Percent of models with Rv

2 and Rc
2 values

that are both higher than 0.9 or 0.5 for different predictive variables and different resolutions using
different preprocessing methods
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