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Abstract: Vitis vinifera (V. vinifera) is a herbaceous plant, cultivated worldwide and known for
its biological benefits. The aim of this study is the investigation of the chemical composition as
well as the determination of the biological potential of different grape stem extracts obtained by
maceration and accelerated solvent extraction (ASE). The HPLC analysis of the tested extracts led to
the identification of 28 compounds of which 17 were identified for the first time in grape plants, in
addition to seven revealed in the stem part for the first time. Twenty-nine volatile molecules have
been detected by GC-MS in the grape stem part; among them seven were identified for the first time in
the grape plant. For the biological analysis, the ethyl acetate extract (EtOAc) obtained by maceration
showed a significant potential regarding antioxidant activity (IC50 = 42.5 µg/mL), anti-Alzheimer
(IC50 = 14.1 µg/mL), antidiabetic (IC50 = 13.4 µg/mL), cytotoxic with HCT-116 (IC50 = 12.5 µg/mL),
and anti-inflammatory (IC50 = 26.6 µg/mL) activities, as well as showing the highest polyphenol
content (207.9 mg GAE/g DW).

Keywords: Vitis vinifera stem extracts; chemical composition; biological activities; HPLC-DAD;
GC-MS

1. Introduction

In the last few years, the interest in finding bioactive compounds derived from plants
has significantly increased, due to their beneficial effects on human health against various
degenerative diseases, as well as their uses in many industry fields, such as pharmaceuticals,
agrochemicals, flavors, fragrances, colors, biopesticides, and food additives [1]. Those
compounds are usually synthesized by the plants against pathogens threats, or in case of
stress conditions. They are divided into three categories: terpenoids, alkaloids, and mainly
polyphenols. This class includes a large scale of molecules exerting various biological
effects, such as antioxidants, antimicrobials, anti-carcinogens, and antidiabetics [2].

V. vinifera is an herbaceous plant cultivated in different regions of the world. Annu-
ally, there are more than 77 million tons of grape fruit produced around the world [3].
Numerous studies investigating the phytochemical composition and the biological activi-
ties of V. vinifera grape extracts have been carried out. Diverse health benefits have been
reported, such as antioxidant, anti-cancerous, anti-bacterial, and antidiabetic effects [4].
Furthermore, grape extracts have an effective potential in the prevention of cardiovascular
diseases [5], as well as exhibiting antimicrobial [6], antihypertensive [7], and anti-ulcer
activities [8]. Besides the beneficial effects reported in grape extracts, studies investigating
the phytochemical content of this plant have shown that grapevine extracts contain nu-
merous bioactive molecules, such as resveratrol, caftaric, and coutaric acid, flavanol, and
dihydroflavanol glycosides [9].
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Recently, research into the potential uses of plant byproducts, including V. vinifera,
has increased significantly for various reasons, including ecological concerns. In fact,
the wine industry generates a considerable amount of grape waste, posing substantial
environmental issues. It is estimated that grapevine by-products account for approximately
20% of the fresh harvest [10]. Diverse effects, such as antioxidant, chemopreventive, and
hepatoprotective effects have been reported in different parts of V. vinifera, such as in
the seeds, roots, leaves, and stems. Moreover, grapevine byproducts are very rich in
polyphenols, such as phenolic acids; flavanols; stilbenes; quercetin, kaempferol and flavan-
3-ols [11].

Grapevine stems represent 25% of the total mass of the plant waste, therefore, they
are the less characterized and valued of all by-products generated [12]. Traditionally used
as animal feed or as organic fertilizers [13,14]. They contain a large-scale of polyphenols,
such as phenolic acids (e.g., gallic, caffeic, and caftaric acids); flavanols (e.g., quercetin-3-O-
rutinoside, kaempferol-3-O-glucoside), flavanols (e.g., Epicatechin, catechin), anthocyanins
(e.g., malvidin-3-O-glucoside, malvidin-3-O-(6-O-caffeoyl)-glucoside), stilbenes (e.g., trans-
resveratrol, E-viniferin) and procyanidins (e.g., procyanidin B2 and B3) [1,12–16]. Several
biological activities were reported in stem extract, such as antioxidant, anti-cancerous,
antidiabetic and antibacterial activities. Nonetheless, there have been relatively few articles
that studied the beneficial effects of grape stem extracts [4,17,18].

The present study aims to describe the chemical composition of V. vinifera stem extracts
by HPLC-DAD and GC-MS as well as their biological activities mainly the antioxidant
(DPPH), anti-Alzheimer (AChE), antidiabetic (Alpha amylase), anti-inflammatory (15-
lipoxygenase), and anti-proliferation (HCT-116 and Caco-2) activities.

2. Results and Discussion
2.1. Extraction Yields

To the best of our knowledge, the effect of solvents on the extraction yield of V. vinifera
stem extracts has not been reported in previous studies. Two extraction methods were
used in this study: Maceration and ASE, to assess the effect of those methods on the yield
extraction, the chemical composition, and the biological activities of grape stem extracts.
ASE is a method that consumes much less solvent, but maceration exposes metabolites to
higher pressures and temperatures than maceration. Fractional extraction was performed
using organic solvents of increasing polarity (CHYA, DCM, EtOAc, MeOH, and H2O) and
separately, an extraction with the ultrapure water (Aqueous) was performed. The extraction
yield results are illustrated in (Table 1). The ASE-extracts showed higher yields values than
the extracts obtained by maceration extraction, with the highest value being recorded with
the aqueous extract (5.1%) while the cyclohexane extract obtained by maceration presented
the lowest value (0.1%). Moreover, the yield extraction of the polar fractions is higher than
that of the apolar ones. Those results let us suggest that the stem part of the studied plant
is highly abundant with polar compounds, such as polyphenols than with apolar ones. In
this context, a study realized by Vázquez-Armenta et al. [19] on the stem of the V. vinifera
variety (red globe) found an extraction yield with ethanol solvent (33%) higher than our
obtained results.

Table 1. Extraction yields of V. vinifera stem extracts (DW %) extracts (CYHA: cyclohexane, DCM:
dichloromethane, EtOAc: ethyl acetate, MeOH: methanol).

Fractional Extraction

Aqueous CYHA DCM EtOAc MeOH H2O

ASE 5.08 0.11 0.20 0.31 2.24 2.91
Maceration 3.05 0.07 0.17 0.25 1.94 3.23

2.2. Total Polyphenol Content (TPC)

The TPC of the obtained extracts was determined using the Folin method. Results are
illustrated in Figure 1. Regarding the extraction method, we note a significant difference in
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the TPC content between the extracts of those techniques, except for the EtOAc, the MeOH,
and the H2O ones. Concerning the solvent effect, there is a significant difference between
the used solvents. The highest TPC was found in the EtOAc extract (207.9 mg GAE/g DW
for the maceration extract and 210.1 mg GAE/g DW for the ASE one), while the lowest TPC
was obtained in the CYHA extracts (9.8 mg GAE/g DW for the ASE extract and 14.9 mg
GAE/g DW in the extract obtained by maceration. It is important to highlight that the
obtained TPC is higher than that found by Vázquez-Armenta et al. [19] in the ethanolic
stem extract (37.3 g GAE/kg DW) and that found by Veskoukis et al. [20] in the methanolic
extract of a Greek grape stem variety (374.8 mg GAE/g DW).
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Figure 1. Total phenolic content (TPC) of different extracts of V. vinifera stem (CYHA: Cyclohexane;
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2.3. Antioxidant Activity (DPPH)

The antioxidant activity of the obtained extracts was assessed using a DPPH assay.
The extract concentration was adjusted to 50 µg/mL, and ascorbic acid (VIT C) was tested
at 4 µg/mL, the results of inhibition activity are presented in Figure 2. Statistically, there is
no significant difference between the extraction methods except for the aqueous extract ob-
tained by maceration. Regarding the extraction solvents, the inhibition percentage is higher
in the polar extracts than the apolar ones with the highest values were 53% for the EtOAc
extract (IC50 = 43.1 µg/mL) (Table 2) and 58.5% for the MeOH extract (IC50 = 34.6 µg/mL)
obtained by the maceration. Concerning the ASE-Extracts, the EtOAc extract exhibited 54%
of inhibition activity (IC50 = 43.1 µg/mL), 46.9% for the aqueous extract and 46.7% for the
MeOH extract. The antioxidant activity values were varied between the obtained extracts.
The highest inhibitory activity was exerted mainly by the polar extracts. Those results could
be explained by the correlation between TPC and the antioxidant activity of the extracts.
Polyphenolic compounds are known for their antioxidant potential by scavenging reactive
oxygen species [19]. Compared to the literature, the present results are less than the values
found by Veskoukis et al. [20] on the three studied varieties of grape stem extract and
that of the methanolic extract of Greek varieties with an average of IC50 = 7.8 µg/mL [21].
The comparison of the data obtained concerning radical scavenging capacity with those
available in the bibliography showed significant differences [15]. This fact could be due to
the distinct phenolic composition of the separate varieties as a consequence of the genetic
load and agro-climatic factors [12].
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Figure 2. Antioxidant Activity of different extracts of V. vinifera stem (CYHA: Cyclohexane; DCM:
Dichloromethane; EtOAc: Ethyl acetate; MeOH: Methanol; VIT C: ascorbic acid used as reference
at 4 µg/mL). Extracts were tested at 50 µg/mL. Means values ± SD (n = 3); Different letter on the
histograms means a significant difference (p ≤ 0.05).

Table 2. IC50 values (µg/mL) of active extracts of V. vinifera Stem.

Extract/Activity Antioxidant Anti-
Inflammatory Antidiabetic Cytotoxic

(HCT 116) Anti-Alzheimer

EtOAc
(Maceration) 42.5 ± 2.9 26.6 ± 6.6 13.4 ± 0.3 12.5 ± 1.3 14.1 ± 1.0

EtOAc
(ASE) 43.1 ± 2.8 >50 >50 >50 18.7 ± 0.7

MeOH
(Maceration) 34.6 ± 0.8 >50 >50 >50 >50

2.4. Chromatographic Analysis
2.4.1. Identification of Compounds in V. vinifera Stem Extracts by HPLC-DAD

The identification of phenolic compounds in the different stem extracts was conducted
using the HPLC-DAD method. The retention time of each peak, as well as λmax, was com-
pared with that of standards with known retention time injected in the same conditions as the
extracts. The peak area was used as a quantitative estimation of the compound. The analysis
of the chemical composition of the stem extracts led to the identification of 28 compounds as
presented in Table 3. Twenty-six compounds were identified for the first time in the grape stem
part as presented in Figure 3, among them 17 were identified for the first time in the V. vinifera
plant (3-Amino-4-hydroxybenzoic acid, 2,4-dihydroxycinnamic ac-id, 6-hydroxycoumarin,
methyl 3,4-dihydroxybenzoate, 3-cyano-7-hydroxycoumarin, 3-methylorsellinic acid, 7,3′-
dihydroxyflavone, 5,7-dihydroxy-4-propyl-2H-1-benzopyran-2-one, 4-hydroxytamoxifen (iso-
mers E and Z), 7-hydroxy-4-methylcoumarin-3-acetic acid, 2-(3-hydroxyphenyl)-6-methyl-
4H-1-benzopyran-4-one, 4′,5-dihydroxy-7-methoxyflavone, 2,3-dichloro-5,8-dihydroxy-1,4-
naphthoquinone, 5-hydroxyflavone, 5-hydroxy-3′-methoxyflavone, and 3′-hydroxy-b-
naphthoflavone). The majority of the identified compounds were present in the polar extracts.
The EtOAc extract obtained by maceration showed a high content of compounds, such as
baicalein (area = 903.5), 6-hydroxyflavone (area = 40.87) and 2,4-dihydroxycinnamic acid
(area = 6.63). While the DCM extract obtained by ASE showed a high content of compounds,
such as 2-(3-Hydroxyphenyl)-6-methyl-4H-1-benzopyran-4-one (area = 26.86) and Methyl
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3,4-dihydroxybenzoate (area = 18.92). According to the literature, several studies have in-
vestigated the grape stem composition. Research showed that the stem is rich in various
polyphenols compounds, such as gallic acid; trans-resveratrol and procyanidin B1 [22]. In
another study, Esparza et al. [23] identified several phenolic compounds by HPLC-DAD, such
as quercetin; caftaric acid and E-viniferin.
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Table 3. Identification of compounds by HPLC-DAD of the grape stem extracts (A: Aqueous, C: cyclohexane, D: dichloromethane, E: ethyl acetate, M: methanol,
H: H2O.

% Area

Compounds RT Maceration ASE
Ref.

Fractional Extraction Fractional Extraction

Aqueous CYHA DCM EtOAc MeOH H2O Aqueous CYHA DCM EtOAc MeOH H2O

3-Amino-4-hydroxybenzoic acid 2.2 0.54 0.10 0.15 0.99 0.71 [24]

Gallic acid 3.5 1.34 0.81 0.59 0.73 0.56 0.58 0.28 0.46 [25]

3-O-Methylgallic acid 7.7 0.21 8.28 [26]

(−)-Epicatechin 11.9 0.19 0.02 0.02 [27]

2,4-Dihydroxycinnamic acid 14.5 6.63 0.19 [28]

5-Hydroxyferulic acid 14.5 0.14 1.07 0.06 [29]

6-hydroxycoumarin 18.2 2.24 [30]

Methyl 3,4-dihydroxybenzoate 19.2 18.92 11.09 [31]

Rutin hydrate 22.7 0.25 6.92 [32]

3-Cyano-7-hydroxycoumarin 30.3 0.09 3.97 3.14 [33]

3-Methylorsellinic acid 35.2 1.35 0.02 [34]

Trans-Cinnamic acid 41.5 0.25 [35]

7,3′-dihydroxyflavone 41.9 1.07 0.15 0.04 4.32 [36]

Ethyl caffeate 42 1.51 4.34 [37]

5,7-Dihydroxy-4-propyl-2H-1-
benzopyran-2-one 42.8 0.02 [38]

4-Hydroxytamoxifen 43.1 1.71 [39]

Baicalein 44.5 0.47 903.45 121.22 7.73 [40]

6-Hydroxyflavone 45 40.87 5.27 2.37 [41]

7-Hydroxy-4-methylcoumarin-3-acetic
acid 45.5 21.43 [42]
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Table 3. Cont.

% Area

Compounds RT Maceration ASE
Ref.

Fractional Extraction Fractional Extraction

Aqueous CYHA DCM EtOAc MeOH H2O Aqueous CYHA DCM EtOAc MeOH H2O

2-(3-Hydroxyphenyl)-6-methyl-4H-1-
benzopyran-4-one 45.7 0.03 26.86 [43]

Caffeic acid 1,1-dimethylallyl ester 46 8.55 [41]

4′,5-Dihydroxy-7-methoxyflavone 46.3 0.05 [44]

3,7-dimethoxyflavone 47.5 0.03 [45]

2,3-Dichloro-5,8-dihydroxy-1,4-
naphthoquinone 47.7 0.59 [46]

Shikonin 48 0.15 0.92 [47]

5-Hydroxyflavone 48.5 0.36 [44]

5-Hydroxy-3′-methoxyflavone 49.4 3.03 0.83 0.42 0.36 0.07 [44]

3′-Hydroxy-b-naphthoflavone 49.8 0.083 [44]
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2.4.2. GC-MS Analysis of the V. vinifera Extracts before and after Derivatization

The volatile composition of the different stem extracts was determined by using the
GC-MS method. The results of the identification of the compounds were presented in
Tables 4 and 5. As shown in the tables below. The GC-MS technique has led to the iden-
tification of 36 compounds (before and after derivatization). The compounds identified
for the first time are shown in Figures 4 and 5. Seven compounds were identified for the
first time in the grape plant: (decane, 3-methyl-, 2,3-dimethyldecane, pentadecane, phthalic
acid, di(2-propylpentyl) ester, hydracrylic acid, nonanoic acid, and 2,2′-methylenebis(6-tert-
butyl-4-methylphenol) several compounds were in common between the two extraction
methods, such as cyclododecane, decane-3-methyl-, and undecane. In contrast, organic acid
compounds, such as pentanoic acid, hexanoic acid, butanedioic acid, and glycolic acid were
abundant in extracts after derivatization. Moreover, other class compounds were detected
in the stem extracts, such as furanones (e.g., 2,4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one),
phenolic (e.g., resveratrol, gallic acid). Most of the identified volatile compounds were
detected in the maceration extracts, mainly the apolar ones due to their affinity, therefore,
few were revealed in the fractions obtained by ASE. As shown in Tables 4 and 5, some
compounds were present in two or three extracts, e.g., 2,4-dihydroxy-2,5-dimethyl-3(2H)-
furan-3-one. This is due to their release from the disrupted cells of the plant material during
the maceration at room temperature. According to the literature, few studies have investi-
gated the volatile profile of the stem part. In the same context, Matarese et al. [48] identified
several volatile compounds in the stem part; monoterpenes, such as (E)-β-ocimene, 1,1-
dimethyl-3-methylene-2-vinylcyclohexane, limonene and camphene; sesquiterpenes, such
as α-farnesene, β-caryophyllene and α-humulene; benzenic compounds, such as benzalde-
hyde, 2-acetyl-4-methylphenol and methyl salicylate and aliphatic compounds, such as
2,4-hexadienal, (E,E)-, 1-octen-3-ol and nonanal.

1 
 

 
Figure 4. Compounds firstly identified in V. vinifera Stem part by GC-MS (before derivatization).
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Table 4. Identification of volatile compounds by GC-MS of the extracts of V. vinifera stem (before derivatization) (CYHA: cyclohexane, DCM: dichloromethane,
EtO: ethyl acetate, M: methanol, H: H2O.

No. RI Compound Maceration ASE
Ref.

Fractional Extraction Fractional Extraction

Aqueous CYHA DCM EtOAc MeOH H2O Aqueous CYHA DCM EtOAc MeOH H2O

1 1019 Cyclododecane X X X [49]

2 1044 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-
3-one X X X X [50]

3 1075 Decane, 3-methyl- X [51]
4 1088 2,3-Dimethyldecane X [52]
5 1100 Undecane X X [53]
6 1119 Cyclohexanone, 3,3,5trimethyl- X [50]
7 1187 Benzene, 1,2,4,5-tetramethyl- X [54]
8 1205 Dodecane X [50]

9 1249 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl- X X X X X X [55]

10 1306 Tridecane X X [56]
11 1312 Nonanoic acid X [56]
12 1404 1,1′-Bicyclohexyl X [57]
13 1470 Benzaldehyde, 4-hydroxy- X X X [58]
14 1533 Pentadecane X [59]
15 1599 2,5-di-tert-Butyl-1,4-benzoquinone X [60]
16 1617 2,4-Di-tert-butylphenol X X X [61]
17 2161 n-Hexadecanoic acid X X X X [62]

18 2194
Benzenepropanoic acid,

3,5-bis(1,1-dimethylethyl)-4-hydroxy-
methyl ester

X X [63]

19 2717 Phthalic acid, di(2-propylpentyl) ester X [64]

X: detected.
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Table 5. Identification of volatile compounds by GC-MS of the extracts of V. vinifera stem (with derivatization) ) (CYHA: cyclohexane, DCM: dichloromethane,
EtOAc: ethyl acetate, MeOH: methanol).

No. RI Compound Maceration ASE Ref.

Fractional Extraction Fractional Extraction

Aqueous CYHA DCM EtOAc MeOH H2O Aqueous CYHA DCM EtOAc MeOH H2O

1 1013 Pentanoic acid X X [65]
2 1094 Hexanoic acid X X X X [66]
3 1112 Glycolic acid X [66]
4 1187 Hydracrylic acid X [67]
5 1199 3-Hydroxybutyric acid X [68]
6 1283 4-Hydroxybutanoic acid X [69]
7 1377 Butanedioic acid X X X [70]
8 1436 Resorcinol X X X [71]
9 1517 Decanoic acid X [72]

10 1636 2,6-Bis(tert-butyl)phenol X X [73]
11 1710 Tartaric acid X X X [74]

12 1926 2,2′-Methylenebis(6-tert-butyl-4
methylphenol) X X [75]

13 2043 Pentadecanoic acid X [76]
14 2064 Palmitic Acid X X X X X X [76]
15 2074 Gallic acid X [21]
16 2128 Resveratrol X [21]
17 2342 9,12-Octadecadienoic acid (Z,Z)- X [77]

X: detected.
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2.5. Biological Activities
2.5.1. Anti-Inflammatory Activity

The anti-inflammatory activity of the obtained extracts was conducted at 50 µg/mL
using the 15-lipoxygenase assay. Nordihydroguaiaretic acid (NDGA) at 4 µg/mL was used
as a reference in this activity. The results of the inhibition activity are shown in Figure 6.
Statistically, there is a difference between the extraction methods. All maceration extracts
have shown inhibition against the lipoxygenase enzyme; the highest value was 64.5% in
the EtOAc extract (IC50 = 26.6 µg/mL) while only the aqueous extract was obtained by
ASE induced a slight inhibition of 5%. The variation in the inhibition activity between the
two methods especially with the EtOAc extract could be due to degradation or structural
changes in the compounds responsible for this activity due to the high temperature and
pressure used in the ASE extraction. Moreover, the EtOAc obtained by maceration has
shown a high inflammatory effect with an IC50 6.4 times less effective than that of the NDGA
(4 µg/mL). Nevertheless, the EtOAc activity was significantly high and resulted from the
presence of bioactive compounds, such as Baicalein and resveratrol (Tables 3 and 5), known
for their anti-inflammatory effects. In the same context, according to the literature, the stem
as the other part of the V. vinifera plant was known for its anti-inflammatory potential. In
the same context, Leal et al. [22] proved that the MeOH extracts of V. vinifera stem varieties
presented anti-inflammatory capacities, exhibiting inhibitions of nitric oxide production,
by lipopolysaccharide-stimulated macrophages, up to 35.3%.
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cholinesterase assay. Galanthamine hydrobromide (GaHbr) tested at 1.5 µg/mL was used 
as a reference and the different extracts were tested at 50 µg/mL. As shown in Figure 7, 
the extracts obtained by maceration and by ASE inhibited the AChE enzyme with some 
differences. The totality of the ASE extracts has shown activity while only three extracts 
by maceration were conducted (EtOAc, MeOH, and H2O). The highest inhibition value 
was recorded with EtOAc extract by the two methods, 94.8% (IC50 = 14.1 µg/mL) for the 
extract obtained with maceration and 89% (IC50 = 18.7 µg/mL). Those results suggest that 
phenolic compounds, such as resveratrol and its derivatives could be responsible for this 

Figure 6. Anti-15-lipoxygenase activity of different extracts of V. vinifera stem (CYHA: Cyclohexane;
DCM: Dichloromethane; EtOAc: Ethyl acetate; MeOH: Methanol; NDGA: nordihydroguaiaretic
acid used as reference). Extracts were tested at 50 µg/mL; NDGA was tested at 4 µg/mL. Means
values ± SD (n = 3); Different letter on the histograms means a significant difference (p ≤ 0.05).

2.5.2. Anti-Alzheimer Activity

The anti-Alzheimer activity of stem extracts was performed according to the acetyl-
cholinesterase assay. Galanthamine hydrobromide (GaHbr) tested at 1.5 µg/mL was used
as a reference and the different extracts were tested at 50 µg/mL. As shown in Figure 7,
the extracts obtained by maceration and by ASE inhibited the AChE enzyme with some
differences. The totality of the ASE extracts has shown activity while only three extracts by
maceration were conducted (EtOAc, MeOH, and H2O). The highest inhibition value was
recorded with EtOAc extract by the two methods, 94.8% (IC50 = 14.1 µg/mL) for the extract
obtained with maceration and 89% (IC50 = 18.7 µg/mL). Those results suggest that phenolic
compounds, such as resveratrol and its derivatives could be responsible for this activity.
This suggestion could be justified by the previous studies that reported the anti-Alzheimer
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effects of several phenolic compounds, in addition to the high correlation between TPC and
anti-Alzheimer activity (r = 0.912) (Table 6). In the same context, Papastamoulis et al. [78]
isolated Viniphenol A, a Complex resveratrol hexamer from V. vinifera stem extract that
showed neuroprotective effects against the amyloid-β peptide (Aβ)-induced neurotoxicity
in cultured PC12 cells using the MTT assay.
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Figure 7. Anti-Alzheimer activity of different extracts of V. vinifera stem (CYHA: Cyclohexane; DCM:
Dichloromethane; EtOAc: Ethyl acetate; MeOH: Methanol; GaHbr: Galantamine Hydrobromide used
as reference at 1.5 µg/mL). Extracts were tested at 50 µg/mL Means values ± SD (n = 3); Different
letter on the histograms means a significant difference (p ≤ 0.05).

Table 6. Correlation matrix (Pearson (n)).

Variables DPPH HCT116 CaCo-2 AChE 15-LOX Alpha-Amylase TPC

DPPH 1 0.316 −0.153 0.671 0.247 0.366 0.792
HCT116 0.316 1 0.212 0.763 0.624 0.744 0.627
CaCo-2 −0.153 0.212 1 −0.074 0.472 −0.028 0.113
AChE 0.671 0.763 −0.074 1 0.369 0.594 0.912

15-LOX 0.247 0.624 0.472 0.369 1 0.527 0.470
Alpha-amylase 0.366 0.744 −0.028 0.594 0.527 1 0.517

TPC 0.792 0.627 0.113 0.912 0.470 0.517 1

Values in bold are different from 0 with a significance level alpha = 0.05.

2.5.3. Cytotoxic Activity

In this study, the determination of the cytotoxic activity of the grape stem extracts
was conducted using the MTT method against two cancer cell lines (HCT-116 and Caco-2).
The extracts were adjusted at 50 µg/mL and tamoxifen was used as a reference. The
results of the inhibition activity are shown in Figure 8. Statistically, there was a significant
difference between the extraction methods, as well as with the extraction solvents. Firstly,
for the HCT-116 cell line, the highest inhibition activity was detected for the ethyl acetate
extract obtained at 97.9% by maceration (IC50 = 12.5 µg/mL) and 55.5% by ASE, the other
extracts exhibited moderate to low inhibition activity, with the highest being the DCM
extract by ASE, with 44.2% of inhibition activity. For the second cell line, the inhibition
activity exhibited by the majority of the extracts was moderate to low with the highest
value recorded for the CHYA extract obtained by maceration with 51.2%, and for the ASE
technique, the DCM extract with 47.3%. The variation in the cytotoxic activity of extracts
can be due to various reasons, such as the specificity of the chemical composition of each
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extract, or the difference in the mechanism of lysis of the cancer cell. In the same context, a
study conducted by Amico et al. [79] on the antiproliferative effect of the stem extract from
a grape of the Sicilian V. vinifera variety ‘Nerello Mascalese’ has shown that ethyl acetate
extract inhibits MCF7 with 62% at 1000 µg/mL. In other research, stem extracts from four
Greek varieties were tested against four cell lines. The obtained results were lower than
the IC50 of the ethyl acetate extract against the HCT-116 cell, and the values of IC50 were
121–230 (MCF-7), 121–184 (MDA-MD-23), 175–309 (HT29), 159–314 (K1), 180–225 (786-O)
and 134–>400 µg/mL (Caki-1) [14].
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Figure 8. Cytotoxic activity of different extracts of V. vinifera stem against two cell types (HCT
116: (a); CaCo-2: (b)). (CYHA: Cyclohexane; DCM: Dichloromethane; ETOAC: Ethyl acetate;
MeOH: Methanol; Tamoxifen: used as referance at 100 µM). Extracts were tested at 50 µg/mL. Means
values ± SD (n = 3); Different letter on the histograms means a significant difference (p ≤ 0.05).

2.5.4. Antidiabetic Activity

The determination of the antidiabetic potential of the grape stem extracts was es-
tablished using the alpha-amylase assay. Extracts were prepared at 50 µg/mL, acarbose
was used as a positive standard. The results of the antidiabetic activity are presented in
Figure 9. Statistically, there is no significant difference between the extractions methods
as well as between the extraction solvents except for the ethyl acetate. The EtOAc extract
obtained by maceration was the only one that exerted a high inhibition activity among
all the tested extracts. It inhibits amylase activity with 81.9% (IC50 = 13.4 µg/mL); for the
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extracts obtained by ASE only the MeOH extract presented a moderate activity, with 43.6%.
The variation in the results could be due to the difference in the extraction conditions
(temperature, pressure; extraction time) as well as the affinity of the bioactive compounds
to the extraction solvents. In the same context, a study on the antidiabetic activity of grape
stem extract, conducted by Ahmed et al. [80] proved that the chloroform and the ethanolic
stem extract reduced blood glucose levels in a dose-dependent manner with the highest
activity at 200 mg/kg bodyweight concentration.
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Figure 9. Antidiabetic Activity of different extracts of V. vinifera stem (CYHA: Cyclohexane;
DCM: Dichloromethane; EtOAc: Ethyl acetate; MeOH: Methanol; Acarbose: used as reference at
50 µg/mL). Extracts were tested at 50 µg/mL Means values ± SD (n = 3); Different letter on the
histograms means a significant difference (p ≤ 0.05).

2.6. Principal Component Analysis (PCA)

The Kaiser–Meyer–Olkin (KMO) test was performed to assess the use of factorial
analysis and PCA for the studied variables in this research. The KMO index obtained is
0.549 > 0.5, indicating that this test is suitable for the data of the study. The PCA analysis
was performed to establish the correlation between the TPC and the different biological
activities. The axes of inertia have been withheld from this analysis. The percentage of the
total variation was recorded at 76.83%. The PC1 and the PC2 axes expressed 55.9% and
20.9% of variability as presented in Figure 10. The loadings in the PCA loading plot express,
simultaneously, the correlation of the principal components with the original variables,
and the correlations between the different activities and TPC. PC1 was well correlated
with TPC, DPPH, anti-inflammatory, antidiabetic, and anti-Alzheimer activities, and the
cytotoxic activity against the HCT-116 cell line with loading of 0.906, 0.694, 0.665, 0.771,
0.906, and 0.857, respectively. The PC2 was in positive correlation with the cytotoxic activity
against Caco-2 with loading of 0.853 as mentioned in Table 7. Based on Figure 10 and the
correlation matrix (Table 6), we can observe that there is a good correlation between TPC,
DPPH, HCT-116, and AchE, which suggest that the phenolic compounds present in stem
extracts could be responsible for those activities. A large scale of phenolic compounds has
been identified, such as resorcinol and resveratrol which are known for their beneficial
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activities. The alpha-amylase, 15-LOX, in addition to the cytotoxic activity (HCT-116 and
CaCo-2) seemed somehow correlated. This could be explained by the presence of bioactive
compounds in the extracts responsible for those activities. The oval forms grouped the
different extracts into three classes as shown in Figure 11; C1 (M-MeOH, A-EtOAc, and
A-MeOH), C2 (M-EtOAc), and C3 (A-aqueous; M-aqueous, A-CHYA, M-CHYA, M-DCM,
A-DCM, A-H2O, and M-H2O). The correlation between variables and observations was
shown in Figure 12. The M-EtOAc extract is near TPC, AChE, alpha-amylase, and HCT-116.
This correlation is related to the phenolic composition present in this extract that let us
suggest compounds, such as Baicalein, resorcinol, and resveratrol.
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3. Materials and Methods 
3.1. Plant Material 

The sample used in this study was the stem of the white Sauvignon variety of the V. 
vinifera species (France). After air-drying, the collected plant material was ground (LGC 
France) using a Lescha super-ZAK grounder Hamburg (Germany) and stored at room 
temperature. 

3.2. Extraction 
Two methods were used to extract the secondary metabolites from the collected stem: 
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of V. vinifera stem extracts.

3. Materials and Methods
3.1. Plant Material

The sample used in this study was the stem of the white Sauvignon variety of the
V. vinifera species (France). After air-drying, the collected plant material was ground
(LGC France) using a Lescha super-ZAK grounder Hamburg (Germany) and stored at
room temperature.
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3.2. Extraction

Two methods were used to extract the secondary metabolites from the collected stem:
maceration and ASE. The purpose of using organic solvents was to deplete the plant matter
of their metabolites and to split them according to polarity.

3.2.1. Maceration

One hundred grams of dried sample were successively extracted with organic solvents
of increasing polarity: CYHA, DCM, EtOAc, MeOH, and H2O for 2 h under medium
agitation at ambient pressure and temperature. The mixture was filtered using Wattman
paper and the solvents were evaporated using a rotary evaporator under a vacuum at 35 ◦C
(IKA, RV 10 auto V, Staufen Germany). Separately 50 g of the same sample was extracted
with water under the same conditions described above.

3.2.2. Accelerated Solvent Extraction (ASE)

ASE was performed by the Dionex extraction system (ASE 100, Sunnyvale, CA, USA).
for the fractioned extraction, the extraction cell was filled with 30 g of the sample using,
respectively, the organic solvents CYHA, DCM, EtOAc, MeOH, and H2O for the aqueous
extraction, the same weight was extracted using the water. The extraction conditions were
as follows, the temperature was 80 ◦C; the pressure was 110 bar. Nitrogen was used as a
purge gas. The obtained extract was collected in a 250 mL collection bottle then the solvent
was evaporated using a rotary evaporator under a vacuum at 35 ◦C (IKA, RV 10 auto V,
Staufen Germany).

3.3. Total Phenolic Content (TPC)

The TPC of the obtained extracts was determined using the Folin–Ciocalteu method
as described by Rahmani et al. [81] with some modification. Briefly, In a 96-well microplate,
20 µL of each plant extract (1 mg/mL) was mixed with 100 µL of Folin–Ciocalteu reagent
(0.2 N). After 5 min of incubation at 25 ◦C, 80 µL of Na2CO3 (75 g/L) was added then the
reaction mixture was reincubated for 15 min. The absorbance was measured at 765 nm
using a microplate reader (Multiskan Go, F1-01620, Thermo Fisher Scientific, Vantaa,
Finland). A standard calibration curve was plotted using Gallic acid (0 to 115 mg/L).
Results were expressed as mg of Gallic acid equivalents (GAE)/g DW.

3.4. Determination of DPPH Radical Scavenging Activity

The antioxidant scavenging activity was studied using 1,1-diphenyl-2-picrylhydrazyl
free radical (DPPH), as described by Blois, [39] with some modifications. In a 96-well
microplate (Micro Well, Thermo Fisher Scientific, Illkirch France), 20 µL of the diluted
plant extract (0.5 mg/mL) was added to 180 µL of 0.2 mM methanolic DPPH solution. The
reaction mixture was incubated at 25 ◦C for 25 min, then the absorbance was measured
at 524 nm using a microplate reader (Multiskan Go, F1-01620, Thermo Fisher Scientific,
Vantaa, Finland). Ascorbic acid (4 µg/mL) was used as the positive control. The DPPH
inhibition was calculated as % inhibition = 100 × (Ablank − Asample)/Ablank. The Ablank
was measured without extract.

3.5. Biological Activity
3.5.1. Anti-Inflammatory Activity

The anti-inflammatory activity of the V. vinifera stem extracts was determined with soy-
bean lipoxygenase as described by Rahmani et al. [81] with some modifications. The activity
measurement was tested in a 96-well plate containing: 20 µL of the plant extract (625 mg/L),
150µL of 100 mM phosphate buffer (pH 7.4), 60µL of linoleic acid, and 20 µL of 5-LOX
enzyme solution. The mixture was then incubated at 25 ◦C for 10 min and the absorbance
was measured at 234 nm. NDGA (0.5 mg/mL) was used as a standard. The enzyme activity
inhibition was calculated as follows: % inhibition = 100 × (Ablank − Asample)/Ablank.
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3.5.2. Anti-Cholinesterase Activity

The anti-cholinesterase activity of the plant extracts was performed using Ellman’s
method, as previously reported by Bekir et al. [82] with some modifications. In a 96 well
microplate, 50 µL of sodium phosphate buffer (0.1 mM, pH = 8) was added to 25 µL of
plant extract (0.5 mg/mL), 125 µL of DTNB and 25 µL of AchE solution. The reaction
mixture was incubated at 25 ◦C for 15 min then 25 µL of acetylthiocholine iodide substrate
is added. After 10 min of incubation at 25 ◦C, the hydrolysis of acetylthiocholine iodide
was monitored by the formation of the yellow 5-thio-2-nitrobenzoate anion; the result of
the reaction of DTNB with thiocholines, was catalyzed by enzymes at a wavelength of
412 nm. GaHbr at 15 mg/L was used as a positive control. The enzyme activity inhibition
was calculated as follows: % inhibition = 100 × (Ablank − Asample)/Ablank.

3.5.3. Anti-α-Amylase Activity

The anti-α-amylase activity of the plant extracts was measured by the DNS method as
described by Premakumara et al. [83]. With modifications, in this practice, a reaction blend
containing 25 µL of the plant extract (1.3 mg/mL) and 25 µL of enzyme solution (2 mg/mL)
were incubated at 25 ◦C for 10 min, and then 50 µL of starch solution 1% was added to
the reaction mixture. After 3 min the enzyme reaction was terminated by adding 50 µL of
3,5-dinitrosalicylic acid (96 mM). The mixture was then boiled for 10 min in a water bath
and then cooled at ambient temperature and 500 µL of sodium phosphate buffer (0.1 mM)
was added. The α-amylase-inhibitory activity was measured at 530 nm using a Multiskan
Go microplate reader (Thermo Fisher Scientific, Vantaa, Finland). Acarbose (1.3 mg/mL)
was used as a positive control. The enzyme activity inhibition was calculated as follows:
% inhibition = 100 × (Ablank − Asample)/Ablank.

3.5.4. Cytotoxic Activity

Cytotoxic activity of the obtained extracts was estimated on the human colon cancer
cell line, HCT 116 and the human colon adenocarcinoma cell line, Caco-2 (American Type
Culture Collection, Manassas, VA, USA) as described by Rahmani et al. [81] with some
modifications. In a 96-well microplate, cells were distributed at 13 × 103 cells/well for
HCT116 and 12 × 103 cells/well for Caco-2 in 100 µL. After 24 h of incubation at 37 ◦C,
100 µL of each extract diluted in the medium after being solubilized in DMSO was added to
100 µL of the corresponding culture medium; RPMI (RPMI 1640, Thermo Fisher Scientific,
Illkirch France) for HCT-116, or DMEM (Advanced DMEM, Thermo Fisher Scientific). The
plate was then incubated for 48 h at 37 ◦C and the cytotoxic potential of the tested samples
was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. After removing the supernatant, cells were treated with 50 µL of MTT solution, and
the plate was incubated for 40 min at 37 ◦C; then MTT was eliminated and 80 µL of DMSO
was added. The absorbance was measured at 605 nm using a microplate reader (Multiskan
Go, F1-01620, Thermo Fisher Scientific, Vantaa, Finland). Tamoxifen at 100 µM was used as
a positive control.

3.6. Chromatographic Analysis
3.6.1. High-Performance Liquid Chromatography Analysis (HPLC-DAD)

The HPLC analysis of the different extracts was performed in a Thermo Scientific
Spectra SYSTEM P1000XR pump equipped with a PDA detector Waters 996. Separation was
accomplished using an RP-C18 column (Phenomenex, Le Pecq, France) with dimensions
of 25 cm × 4.6 mm and particle size of 5 µm. Elution was carried out at a flow rate of
1.2 mL/min with a mobile phase made up of acidified water (pH = 2.65) as Solvent A and
acidified water/ACN (20:80 v/v) as solvent B. The samples were eluted by the following
linear gradient: from 12% B to 30% B for 35 min, from 30% B to 50% B for 5 min, from
50% B to 99.9% B for 5 min, and finally from 99.9% B to 12% B for 15 min. Extracts were
prepared at the concentration of 20 mg/mL using acidified water/ACN (80:20 v/v) and
filtered using a filter (Sigma Aldrich, Millex-HA filter 0.45 µm, Saint-Quentin fallavier,
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France). The identification of the compounds was accomplished by comparing them with
the retention time of some known standards.

3.6.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The analysis of the volatile profile of the Grape stem extracts was carried out using the
method mentioned Rahmani et al. [81] with slight modifications. Extracts were dissolved in
their extraction solvents (except for water extract, where methanol was used) at 5 mg/mL.
Saturn 2000 Gas Chromatography (Les Ulis, France) was used in this analysis. Chromato-
graphic conditions were 60 ◦C held for 1 min, up to 260 ◦C at a gradient of 5 ◦C/min, then
hold for 15 min at 260 ◦C. A second gradient was applied to reach 340 ◦C at 40 ◦C/min.
The trap temperature was 250 ◦C and that of the transfer line was 270 ◦C. Mass scanning
was performed from 70 to 650 m/z; 2µL of each extract was injected.

• Derivatization method:

The derivatization method was that described by Rahmani et al. [84] with some
modifications. Extracts were solubilized in acetonitrile at 5 mg/mL. Then 60 µL of N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) reagent was added to 340 µL of each extract.
The reaction mixture was incubated at 40 ◦C for 30 min; 2 µL of each derivative solution
was injected into the GC-MS and analyzed as described in the previous section.

• Compounds identification:

The identification of volatile compounds by GC-MS of grapevine stem extracts has
been performed by using the Xcalibur software version 3.0.63 by comparison of their mass
spectra with those recorded in the Nist MS library version 2.4 build 25 March 2020.

3.7. Statistical Analysis

All data were expressed as means ± standard deviations of triplicate measurements.
The confidence limits were set at p < 0.05 calculated according to the ANOVA test using the
Statistical Package for the Social Sciences (SPSS) 22 (Version IBM. 22.0. 2013, San Francisco,
CA, USA, www.ibm.com (accessed on 15 January 2022)). The difference between the used
solvents and extraction methods was estimated by Tukey’s test. Principal component
analysis (PCA) was also conducted using XLSTAT (version 2021.3.1, Addinsoft, Pearson
edition, Waltham, MA, USA).

4. Conclusions

The present study gives new insights into the biological activities as well as the
chemical composition of V. vinifera stem extracts. The HPLC-DAD analysis allowed for the
identification of 17 compounds not previously detected in the grape plant. The GC-MS has
led to the identification of 36 compounds of which 29 were revealed for the first time in the
grape stem part. Moreover, the biological investigation of the obtained extracts showed
that EtOAc extract obtained by maceration has significant potential compared to most of
the tested assays: antioxidant (IC50 = 42.5 µg/mL), anti-Alzheimer (IC50 = 14.1 µg/mL),
antidiabetic (IC50 = 13.4 µg/mL), cytotoxic with HCT-116 (IC50 = 12.5 µg/mL), and anti-
inflammatory (IC50 = 26.6 µg/mL), as well as showing the highest polyphenol content
(207.9 mg GAE/g DW). The obtained findings encourage us to search for the bioactive
compounds that are responsible for biological activities by using advanced fractionation
techniques.
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