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Abstract: Pomelo peel waste-derived porous carbon (PPPC) was prepared by a facile one-step ZnCl2
activation method. The preparation parameters of PPPC were the mass ratio of ZnCl2 to pomelo
peel of 2:1, carbonization temperature of 500 ◦C, and carbonization time of 1 h. This obtained PPPC
possessed abundant macro-,meso-, and micro-porous structures, and a large specific surface area of
939.4 m2 g−1. Surprisingly, it had excellent adsorption ability for methylene blue, including a high
adsorption capacity of 602.4 mg g−1 and good reusability. The adsorption isotherm and kinetic fitted
with Langmuir and pseudo-second order kinetic models. This work provides a novel strategy for
pomelo peel waste utilization and a potential adsorbent for treating dye wastewater.

Keywords: porous carbon; pomelo peel; adsorbent; methylene blue

1. Introduction

Organic dye wastewater produced from textile, printing, leather, and paper indus-
tries becomes a serious pollution problem once it is discharged into the environment
without effective treatment [1]. Methylene blue (MB) is a commonly used dye in these
industries and has potential toxicities for aquatic environments and humans [2,3]. Impor-
tantly, MB molecule in wastewater is difficult to decompose under natural conditions [4].
Therefore, removing MB from wastewater is urgently necessary.

According to previous reports, many techniques such as adsorption, membrane filtra-
tion, biodegradation, photocatalysis, chemical oxidation, and so on, have been used to treat
dye wastewater [5]. Among these methods, adsorption is a competitive approach owing to
its low cost and easy operation [6]. Porous carbon has many applications in wastewater
treatment, electrochemical uses, and medicine [7,8]. Particularly, it is a very promising ad-
sorbent for organic dye removal, attributed to its highly specific surface area and abundant
hierarchical pore structures [9]. Previous studies reported that the macropores in porous
carbon could promote the mass transfer process, and the mesopores and micropores could
catch MB molecules [10,11]. Recently, several porous carbons derived from various biomass
raw materials such as ficus carica bast, coconut leaves, and palm shell were developed as
adsorbents for MB removal [12–14]. However, it is still necessary to seek abundant and
low-cost biomass sources to prepare porous carbons with good adsorption performance.

Pomelo is widely planted in the south of China and is consumed freshly or processed
in large amounts annually. Pomelo peel (PP) accounts for half of fresh fruit weight, which
is mostly discarded as waste in juice or jam-processing industries [15]. Seriously, it can
cause a series of environmental problems and the wastage of pomelo resources. In addition,
PP has a sponge-like mesh porous structure and contains abundant cellulose (46.22%)
and hemicellulose (18.84%) [16]. Therefore, using PP as a raw material to prepare porous
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carbon material is worth considering. Liu et al. prepared PP-derived porous carbon with a
BET-specific surface area of 832 m2 g−1 by the combination of hydrothermal carbonization
and KOH activation at 700 ◦C for 2 h [17]. Li et al. synthesized porous carbon by the
pre-carbonization of PP at 450 ◦C and followed by KOH activation and carbonization at
800 ◦C [18]. Although its BET-specific surface area can reach up to 1892.10 m2 g−1, the
carbonization time (t) is up to 6 h. It can be found that the above steps are tedious, time
consuming, and involve high energy consumption. Moreover, KOH could cause serious
corrosion to the synthesis equipment. Herein, PP-derived porous carbon (PPPC) was
developed by a one-step ZnCl2 activation method (Figure 1), and their adsorption ability
and reusability for MB was evaluated.
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2. Materials and Methods
2.1. Materials

The mature ‘Liangpingyou’ pomelos were obtained from a pomelo orchard in Liang-
ping District, Chongqing, China, and their peels were subsequently dried, smashed, and
sieved through a 60-mesh sieve. MB were purchased from Sigma-Aldrich Co. LLC.
(St Louis, MO, USA). Other chemicals of analytical reagent grade were obtained from
Chengdu Kelong Chemical Reagent Co. (Chengdu, Sichuan, China). Ultrapure water was
used for all experiments.

2.2. Preparation of PPPC

In a typical process, 1.0 g PP powder and 0.5–4 g ZnCl2 were added into 50 mL water
under vigorous stirring for 2 h. Subsequently, the mixtures were freeze-dried. The dried
mixtures were transferred in a tube furnace and heated at 300–700 ◦C under nitrogen flow
with a rate of 5 ◦C min−1 for 0.5–2.5 h. Then, the prepared samples were washed with
1 mol L−1 HCl solution and water, respectively. Finally, the products were dried at 60 ◦C in
an oven.

2.3. Material Characterizations

The morphology of PPPC was observed by a JEOL JSM-7100F field-emission scan-
ning electron microscope (FESEM, Tokyo, Japan) operated at 10 kV. Nitrogen adsorption-
desorption isotherm was measured using a Quadrasorb instrument (Quantachrome, Boyn-
ton Beach, FL, USA) at 150 ◦C, and the data analysis was performed with Quantachrome
software. X-ray diffraction (XRD) patterns were studied using a Rigaku Ultima IV X-ray
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diffractometer with Cu-Kα radiation (λ = 0.15418 nm). Fourier transform-infrared (FTIR)
spectrum was recorded using a Nicolet 6700 spectrophotometer (Thermo Fisher, Cleve-
land, OH, USA). Raman spectrum was performed by a DXR Raman spectroscopy system
(Thermo Fisher, Cleveland, OH, USA). Zeta potential was determined using a Malvern
Zetasizer Nano ZS 90 spectrometer.

2.4. Adsorption and Regeneration Experiments

Adsorption experiments were performed in glass bottles containing 5.0 mg PPPC
and 10 mL MB aqueous solutions with various initial concentrations. Subsequently, the
mixtures were shaken at 200 rpm with different pH, time, and temperature, respectively.
Then, the samples were centrifuged and the supernatant concentrations were determined
by a UV-Vis spectrophotometer at 664 nm. For the effect of pH on the adsorption, the
different calibration curves were used to determine MB concentration at different pH.
The equations of MB adsorption capacity, pseudo-first-order kinetic, pseudo-second-order
kinetic, Langmuir, and Freundlich models were listed as follows.

qe =
(c0 − ce)V

m
(1)

log(qe − qt)= log qe −
k1t

2.303
(2)

t
qt

=
1

k2q2
e
+

t
qe

(3)

ce

qe
=

ce

qm
+

1
bqm

(4)

log qe= log k+
1
n

log ce (5)

where, qe (mg g−1) is the equilibrium adsorption capacity; c0 (mg L−1) and ce (mg L−1) are
the initial and equilibrium concentrations of MB, respectively; V (L) is solution volume; m
(g) is the mass of PPPC; qt (mg g−1) is the adsorption capacity at any time; k1(min−1) and
k2 (g mg−1 min−1) are the kinetics adsorption rate constants; t is contact time (min); qm
(mg g−1) is the maximum adsorption capacity; b (L mg−1) is the adsorption constant; k is
the indicator of adsorption capacity; and 1/n is the heterogeneity factor.

For the regeneration study, 5.0 mg of PPPC was added to 10 mL MB solution (100 mg L−1)
at pH 12 and the mixtures were shaken at 200 rpm for 2 h at 25 ◦C. After adsorption and
centrifugation, the supernatant was discarded leaving PPPC. Then, MB-adsorbed PPPC
was added to 10 mL pH = 2 ethanol and shaken at 200 rpm for 10 min. Subsequently,
PPPC was isolated from the solution by centrifugation and used for the next cycle. The
final concentration of MB was determined by UV-vis spectra. The adsorption-desorption
processes were conducted five times.

3. Results and Discussion
3.1. Synthesis of PPPC

In the study, PPPC was successfully prepared by a one-step ZnCl2 activation method.
To obtain PPPC with better adsorption performance for MB, the mass ratio of ZnCl2 to
PP (MRZP), carbonization temperature (T), and t were optimized by one-factor-at-a-time
approach (OFAT). As shown in Figure 2A, qe of PPPC increased with the increasing MRZP
until 2:1, and reached the highest of 397.4 mg g−1 for 2:1. Subsequently, it decreased when
MRZP was over 2:1. According to previous reports, it was considered that impregnation
with suitable ZnCl2 could make PP undergo oxidative degradation and catalytic dehy-
dration during the carbonization process, which led to aromatization and charring of
carbon skeleton and formed more pores to improve the qe [19]. In addition, qe of PPPC
increased sharply with the increasing T from 300 ◦C to 500 ◦C and reached a maximum of
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394.4 mg g−1 at 500 ◦C. However, it decreased when T was over 500 ◦C (Figure 2B). This
was probably because the higher temperature (600 and 700 ◦C) could destroy the pore
structures of PPPC and caused the decrease of specific surface area [17], which led to the
decrease of qe. Moreover, with the extension of t until 1 h, qe of PPPC increased gradually
(Figure 2C) and reached the highest value of 398.18 mg g−1 at 1 h. Then, qe showed a
decreasing trend over 1 h. It was found that appropriate MRZP, T, and t could improve the
adsorption performance of PPPC greatly. Therefore, MRZP of 2:1, T of 500 ◦C, and t of 1 h
were chosen as the optimum preparation parameters of PPPC.
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3.2. Characterizations of PPPC

FESEM image in Figure 3A showed that the optimized PPPC possessed rich and
uniform macropores. To further investigate the mesopore and micropore characteristics
as well as the specific surface area of PPPC, the nitrogen adsorption-desorption isotherm
was performed. As seen in Figure 3B, the isotherm increased sharply at a low relative
pressure of P/P0 < 0.05, suggesting that PPPC had abundant micropores [20]. Subsequently,
a hysteresis loop appeared on the isotherm of PPPC at 0.4 < P/P0 < 1.0, indicating the
existence of many mesopores in PPPC [20]. Moreover, the pore size distribution result
also proved that PPPC possessed rich micropores and mesopores (Figure 3C). The total
pore volume and average pore diameter of PPPC were 0.62 cm3 g−1 and 2.6 nm. Together
with SEM analysis, PPPC indeed had abundant porous structures. Notably, these porous
structures not only make MB molecules enter PPPC surface quickly, but also entrap and
adsorb more MB molecules to improve the adsorption capacity of PPPC [11]. Particularly,
the specific surface area of PPPC was up to 939.4.2 m2 g−1, and it was larger than those of
previously reported porous carbons (Table S1), except the KOH-activated PP-based porous
carbon (1892.1 m2 g−1).

XRD pattern was employed for exploring the structure and phase composition of
PPPC. The broad two peaks at 25.4◦ and 43.3◦ corresponded to the (002) and (101) planes
of the disordered carbon layer (Figure 3D), indicating that the carbon with a turbostratic
structure with low crystallinity existed in PPPC [21]. According to the previous report, the
turbostratic structures were beneficial for the adsorption of dye molecules [22]. Moreover,
the low angle region (2θ < 15◦) appeared to have high intensity, which was ascribed to the
abundant micropores in PPPC [11,21], which confirmed the results of nitrogen adsorption-
desorption isotherm and size distribution studies. Raman spectrum showed that the peaks
at 1586 cm−1 (G-band) and 1334 cm−1 (D-band) corresponded to the ordered graphitic car-
bon and lattice defects carbon in PPPC [23] (Figure 3E), respectively. Furthermore, the ID/IG
ratio was calculated to be 0.89, revealing the existence of rich disordered carbons in PPPC. In
addition, the full width at half maximum (FWHM) of the D band was obviously wider than
that of the G band, indicating a high percentage of disorder and defects in the carbons [21],
which was in agreement with the XRD result. FTIR spectrum was used to study the surface
organic groups of PPPC. As shown in Figure 3F, the bands at 3458 and 3315 cm−1; 2923 and
2854 cm−1; 1869 cm−1; 1614 and 1567 cm−1; 1153 and 1074 cm−1; and 889 and 802 cm−1,
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represented –OH, –CH2, C=O, C=C, C–O, and C-H groups respectively, which were de-
rived from the carbonization of PP during the carbonization process [3,20]. Based on the
above results, it was known that many oxygenated groups existed on the surface of PPPC.
To be emphasized, these oxygenated groups were critical for MB adsorption due to the
interactions and offered numerous adsorption sites [13].
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3.3. Adsorption Performance of PPPC

For MB dye adsorption, pH is an important influencing factor [24]. It was seen that
the qe increased from 261.7 mg g−1 to 393.6 mg g−1 as pH raised from 2 to 12 (Figure 4A).
According to the result, the surface charge of PPPC was negatively charged above pH 3.2
(pHpzc = 3.2, Figure S1A), owed to the surface functional groups including hydroxyl and
carboxyl [25], and MB is positively charged [26]. With the pH rise, the enhanced elec-
trostatic interaction between PPPC and MB resulted in a higher qe [12]. In addition, qe
improved with the increased c0 (Figure S1B), suggesting higher c0 could provide a stronger
driving force to promote the mass transfer of MB [27]. Moreover, qe increased with the
raised adsorption temperature (Figure S1C), suggesting the adsorption process was en-
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dothermic [28]. Figure 4B showed that the adsorption was fast (302.2 mg g−1 min−1) within
1 min because of the abundant vacant adsorption sites. Then, the rate dropped, owing to
the repulsive force between adsorbed dye molecules on PPPC and free dye molecules in
aqueous solution [29]. Finally, the adsorption system was at equilibrium at 60 min with
qe of 549.6 mg g−1. It can be found that the adsorption was a rapid process, which was
beneficial for the practical application of PPPC.
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The pseudo-first-order kinetic and pseudo-second-order kinetic were applied to an-
alyze the equilibrium kinetic data (Figure 4C,D; Table 1). It was shown that R2 (0.9999)
of the pseudo-second order kinetic was higher than R2 (0.8973) of the pseudo-first order
kinetic, and its calculated equilibrium adsorption capacity (qe,cal = 558.7 mg g−1) was
consistent with the experimental equilibrium adsorption capacity (qe,exp = 549.6 mg g−1).
This suggested that the adsorption process was well depicted by the pseudo-second order
kinetic and involved the chemisorption [30]. To quantitatively study the maximum ad-
sorption capacity (qm) and the characteristics of adsorption of MB by PPPC, Langmuir and
Freundlich isotherms were employed. As shown in Figure 4E and Figure S1D, and Table 2,
R2 (0.9995) of Langmuir isotherm was much higher than R2 (0.8327) of Freundlich isotherm,
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indicating the adsorption process obeyed Langmuir isotherm [31]. This revealed that the
adsorption of MB by PPPC was mainly a monolayer adsorption, which was consistent with
the previously reported porous carbons with similar pore structures [12,32,33]. Based on
Langmuir isotherm, the calculated qm was 602.4 mg g−1, which was larger than those of
various adsorbents (Table S2). In addition, the recyclability of PPPC is crucial for its applica-
tion value. Figure 4F showed that qe only reduced by 7.7% after five cycles, suggesting that
PPPC had good reusability for removing MB dye. According to our previous report [12],
the stable structure of PPPC might be the main reason for its good reusability.

Table 1. Pseudo-first order and pseudo-second order kinetics parameters.

Pseudo-First-Order Kinetics Pseudo-Second-Order Kinetics

c0 qe,exp qe,cal k1 R2 qe,cal k2 R2
(mg L−1) (mg g−1) (mg g−1) (min−1) (mg g−1) (g mg−1 min−1)

300 549.6 143.4 0.06 0.8973 558.7 0.0012 0.9999

Table 2. Langmuir and Freundlich isotherms parameters.

Langmuir Freundlich

qm (mg g−1) b (L mg−1) R2 k 1/n R2

602.4 1.02 0.9995 298.33 0.17 0.8327

The possible adsorption mechanism of PPPC toward MB was summarized. Adsorp-
tion is a complicated physicochemical phenomenon related to interphase mass-transfer,
surface interactions, intraparticle diffusion, and so on [34]. The excellent adsorption ability
of PPPC was attributed to its abundant pores, which could reduce hindrance to accelerate
the mass transfer process and capture more MB molecules [12]. Meanwhile, the electrostatic
interaction and H-bonding interaction between PPPC and MB caused by the rich function
groups of PPPC could influence the adsorption performance [3,10,35]. Furthermore, the
π-π interaction generated by the aromatic structures of PPPC and MB was beneficial for
MB adsorption [10]. From the analysis of pseudo-second order kinetic and the desorbed
MB amount (Figure S2), it can be inferred that chemisorption also existed in the adsorp-
tion process. In summary, the adsorption mechanism was due to the combined effect of
physisorption and chemisorption.

4. Conclusions

Pomelo peel-derived porous carbon with large specific surface area and abundant
pore structures were prepared by a facile one-step method. The porous carbon had high
adsorption capacity and excellent reusability toward MB, and the adsorption process
obeyed Langmuir and pseudo-second order kinetic models. The work opened a new
approach for pomelo peel utilization and a potential absorbent for wastewater treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27103096/s1. Figure S1: (A) Zeta potential of PPPC at different pH. Effect of (B)
c0 and (C) T for MB adsorption on PPPC and (D) Freundlich isotherm for MB adsorption on PPPC.
Figure S2: The desorbed MB concentrations in ethanol for five cycles. Table S1: The specific surface
area of various porous carbon materials. Table S2: The qm of various adsorbents [3,6,17,18,36–47].
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