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Abstract: A non-thermal plasma (NTP) is a promising tool against the development of bacterial,
viral, and fungal diseases. The recently revealed development of microbial resistance to traditional
drugs has increased interest in the use of NTPs. We have studied and compared the physical and
microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-
point electrode configuration and a corona discharge in the point-to-ring electrode configuration.
The electrical and emission properties of both discharges are reported. The microbicidal effect
of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the
methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the
micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of
NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the
point-to-ring electrode configuration, the second type of discharge has higher stability and provides
larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP
sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for
bacteria and an individual effect for microscopic fungi.

Keywords: Candida albicans; corona discharge; Pseudomonas aeruginosa; microbicidal effect;
Staphylococcus aureus; Trichophyton interdigitale

1. Introduction

Recently, resistance to commonly used antibiotics has been demonstrated in most
clinically relevant pathogens [1–6]. The ability of microorganisms to develop defense
mechanisms against traditional drug therapy has led to the necessity to search for new
possible treatment methods. A non-thermal plasma (NTP) is a promising tool for the
treatment microbial infections due to its special mechanism of action, which is based,
for example, on damage to the microbial membrane, as described in a comprehensive
review of Liao et al. [7] or Scholtz et al. [8].

NTP is usually generated by the electric discharges of various types, as summarized in
different studies [9–13]. The most common electric discharges used as sources of NTP are
various types of DC discharges in the air [14,15], atmospheric pressure plasma jets (includ-
ing plasma needle, plasma torch, and plasma pen) [16,17], dielectric barrier discharges [18],
gliding arc discharges [19], microwave discharges [20], and others.

In works [21,22], we reported a new type of DC discharge formed in the air with
some interesting and promising characteristics. We named it a cometary discharge because
of its specific appearance resembling a comet’s tail, which is similar to an atmospheric
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pressure plasma jet. The most attractive feature of the cometary discharge is that it creates
a flow of plasma species propagating from the tail. The flow of plasma species makes it
possible to treat indirectly various surfaces in the air as a plasma jet but without the external
gas supply.

Atmospheric pressure plasma jets require the injection of working gas into the dis-
charge area. This makes such an NTP source more expensive and less portable. In contrast
to atmospheric pressure plasma jets, the cometary discharge forms a plasma jet in the air
without injecting gas into the discharge region. Moreover, the cometary discharge does not
require an expensive pulsed, AC, or RF high-voltage power supply. Therefore, an NTP
source based on the cometary discharge is a cheap, simple, and portable device (Figure 1a),
which requires only two needle electrodes and a high-voltage DC power supply. This
type of discharge has been used in a number of different applications: for human skin
disinfection, healing of dermatomycosis in animal models and human patients, for the
treatment of human onychomycosis [21–29]. It has been shown to be a source of NTP with
a well-pronounced microbicidal and even antibiofilm effect [25,29]. However, the cometary
discharge requires solving the problem of its stabilization for a more reliable operation.
Unfortunately, this issue has not received due attention.
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source of NTP based on the point-to-ring discharge. 

Later, our group adopted a DC corona discharge in the point-to-ring electrode con-
figuration for treating various surfaces in the air. In contrast to the cometary discharge, 
the point-to-ring discharge does not form a plasma jet but tangibly blows out plasma spe-
cies through the ring electrode without pumping any feed gas. The NTP source based on 
the point-to-ring discharge is also a cheap, simple, and portable device (Figure 1b), which, 
in principle, requires only two electrodes and an inexpensive low-power DC high-voltage 
supply. For ease of use, the source of NTP is made in a compact plastic case printed on a 
3D printer and is a ready-made device. The NTP source based on the point-to-ring dis-
charge has already been successfully used for the inactivation of fungi [30,31]. 

The NTP sources based on the cometary and point-to-ring discharges are actively 
used in our practice for a variety of applications. We take advantage of their simplicity, 

Figure 1. The developed sources of NTP: (a) source of NTP based on the cometary discharge;
(b) source of NTP based on the point-to-ring discharge.

Later, our group adopted a DC corona discharge in the point-to-ring electrode config-
uration for treating various surfaces in the air. In contrast to the cometary discharge, the
point-to-ring discharge does not form a plasma jet but tangibly blows out plasma species
through the ring electrode without pumping any feed gas. The NTP source based on the
point-to-ring discharge is also a cheap, simple, and portable device (Figure 1b), which, in
principle, requires only two electrodes and an inexpensive low-power DC high-voltage
supply. For ease of use, the source of NTP is made in a compact plastic case printed on a 3D
printer and is a ready-made device. The NTP source based on the point-to-ring discharge
has already been successfully used for the inactivation of fungi [30,31].

The NTP sources based on the cometary and point-to-ring discharges are actively used
in our practice for a variety of applications. We take advantage of their simplicity, low cost,
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portability, and the pronounced property of blowing out plasma species. However, we
found it necessary to obtain systematic data on the microbicidal efficiency of the cometary
and point-to-ring discharges to enable the selection of the appropriate NTP source for a
particular application.

This work aims at studying and comparing the electrical, emission, and microbicidal
properties of the NTP sources based on the cometary and point-to-ring discharges as well
as presenting their features and prospects.

2. Results
2.1. Electrical Properties of the Cometary and Point-to-Ring Discharges

The volt–ampere (VA) characteristic of the cometary discharge in the point-to-point
electrode system is shown in Figure 2a. In the initial part of the characteristic, correspond-
ing to discharge currents of less than 60 µA, a bipolar corona discharge was observed.
The cometary discharge took place in the range of the discharge currents of 60 to 150 µA.
However, the discharge in this range was rather unstable. At discharge currents of 60 to
80 µA, the cometary discharge did not last long enough and disappeared, switching to the
bipolar corona discharge mode. At higher currents, the cometary discharge was accom-
panied by random single sparks, the number of which increased with increasing current.
At discharge currents higher than 100 µA, the cometary discharge could spontaneously
switch to the transient spark regime, and the higher the discharge current, the higher the
transition probability. When the discharge current exceeded 150 µA, only a transient spark
discharge was observed.
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Figure 2. The volt–ampere characteristics and relevant images of the cometary discharge (a) and the 
point-to-ring discharge (b). 

As can be seen in Figure 2a, the part of the VA characteristic that corresponds to the 
cometary discharge mode is not monotonic, indicating poor stability of the cometary dis-
charge. According to our observations, the cometary discharge appeared to be the most 
stable in the range of discharge currents of 80 to 100 μA. However, even under these con-
ditions, the discharge was quite unstable and behaved as an unsteady flame changing its 
shape. The dimensions of the cometary discharge and the discharge current continuously 
fluctuated, increasing and decreasing in magnitude. It should be mentioned that no spe-
cial measures were taken to stabilize the cometary discharge. 

During the study of the microbicidal effect of the cometary discharge, the discharge 
current was approximately 90 μA, and the discharge voltage was 5.5 kV. The electric 
power delivered to the cometary discharge plasma was approximately 0.5 W. 

Figure 2b shows a VA characteristic of a discharge in the point-to-ring electrode sys-
tem. The characteristic can be divided into two parts corresponding to different discharge 

Figure 2. The volt–ampere characteristics and relevant images of the cometary discharge (a) and the
point-to-ring discharge (b).

As can be seen in Figure 2a, the part of the VA characteristic that corresponds to
the cometary discharge mode is not monotonic, indicating poor stability of the cometary
discharge. According to our observations, the cometary discharge appeared to be the
most stable in the range of discharge currents of 80 to 100 µA. However, even under these
conditions, the discharge was quite unstable and behaved as an unsteady flame changing its
shape. The dimensions of the cometary discharge and the discharge current continuously
fluctuated, increasing and decreasing in magnitude. It should be mentioned that no special
measures were taken to stabilize the cometary discharge.

During the study of the microbicidal effect of the cometary discharge, the discharge
current was approximately 90 µA, and the discharge voltage was 5.5 kV. The electric power
delivered to the cometary discharge plasma was approximately 0.5 W.
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Figure 2b shows a VA characteristic of a discharge in the point-to-ring electrode system.
The characteristic can be divided into two parts corresponding to different discharge
regimes. The first part up to the discharge voltage of approximately 6.5 kV corresponds to a
bipolar corona discharge, while the second part with higher discharge voltages corresponds
to a glow discharge. A further increase in the discharge voltage, when the discharge current
exceeded 500 µA, resulted in the transition of the discharge in the point-to-ring electrode
system to the spark regime. As can be seen, the VA characteristic of the discharge in the
point-to-ring electrode system has a rather smooth and monotonic course. This indicates a
high stability of both the bipolar corona and glow discharge regimes.

The microbicidal effect of a discharge in the point-to-ring electrode system was studied
at the discharge voltage of 6.7 kV, which corresponded to the discharge current of 150 µA.
The power delivered to the discharge plasma was 1 W (twice as high as in the case of the
cometary discharge). Under these conditions, the discharge in the point-to-ring electrode
system operated at the border between the bipolar corona and glow regimes. Nevertheless,
we still refer to this discharge as a corona, since the glow discharge is not fully developed
under these conditions.

2.2. Emission Properties of the Cometary and Point-to-Ring Discharges

Despite the differences in the electrical parameters of the cometary and point-to-
ring discharges, the spectral compositions of their radiation did not differ significantly,
indicating a similar composition of the cometary and point-to-ring discharge plasmas.
Further, we present a general description of their emission spectra.

Figure 3 shows a typical time-integrated emission spectrum of the cometary and
point-to-ring discharges in the spectral range from 250 to 1000 nm. The inset in Figure 3
shows the short-wavelength region of the emission spectrum with the peaks interpreted.
The pairs of numbers near the peaks indicate vibrational quantum numbers corresponding
to the transitions of the second positive system. The peaks were identified by comparing
the measured and calculated wavelengths. The wavelengths of the electronic–vibrational
transitions were calculated using vibrational constants of the nitrogen molecule [32,33].
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As can be seen in Figure 3, the emission spectrum is dominated by the second positive
system of the nitrogen molecule, N2

(
C 3Πu

)
→ N2

(
B 3Πg

)
. In the long-wavelength region
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of the spectrum, the first positive system of the nitrogen molecule, N2

(
B 3Πg

)
→ N2

(
A 3Σ+

u
)

,
with significantly lower intensity was observed. The emission of the first negative sys-
tem of the ionized nitrogen molecule, N+

2
(

B 2Σ+
u
)
→ N+

2

(
X 2Σ+

g

)
, was also registered,

but its intensity did not exceed a few percent relative to the main peak in the emission
spectrum, which is the N2

(
C 3Πu[υ = 0]

)
→ N2

(
B 3Πg[υ = 0]

)
electronic–vibrational tran-

sition (λ = 337.1 nm).
Spectral lines of oxygen atoms, corresponding to 3p 5P − 3s 5S0 and 3p 3P − 3s 3S0

resonance transitions, were also registered in the spectrum (λ = 777.4 and 844.6 nm, respec-
tively), but their intensities were about 1%. The emission of hydroxyl radical as well as
spectral lines of hydrogen, which are often observed in an air plasma, were not detected.
Furthermore, no spectral lines of atomic nitrogen were observed in the emission spectra
of the discharges. That was due to the relatively low specific power introduced into the
discharge plasmas.

The spectral intensity distribution of the second positive system indicates a relatively
high vibrational temperature of the nitrogen molecules. To estimate it, we used the Boltz-
mann plot method [34,35]. Figure 4 shows a Boltzmann plot of the distribution of the
N2

(
C 3Πu

)
nitrogen molecules over the first vibrational energy levels. The Boltzmann plot

was obtained by integrating the emission intensity of the individual vibrational bands
in the second positive system. The probabilities of the electronic–vibrational transitions
required for the Boltzmann plot were taken from the paper [36]. The slope of the linear fit to
the Boltzmann plot gave the vibrational temperature of Tυ ≈ 3000 K. Note that the partial
overlap of the vibrational bands makes it difficult to estimate the vibrational temperature
with high accuracy using the Boltzmann plot method.
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The composition of the emission spectrum indicates that the generated plasma must
contain an abundance of N2

(
A 3Σ+

u
)

metastable nitrogen molecules, which is consistent
with other works [37–40]. This is because this metastable state is the first excited electronic
state of the nitrogen molecule and, on the other hand, it is a long-lived state with a radiative
lifetime of 2 s [36]. The metastable nitrogen molecules are produced by direct electron
impact excitation from the ground state [41]:

N2

(
X 1Σ+

g

)
+ e→ N2

(
A 3Σ+

u

)
+ e′ (1)
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and via radiative decay of excited nitrogen molecules

N2

(
C 3Πu

)
→ N2

(
B 3Πg

)
+ hv, (2)

N2

(
B 3Πg

)
→ N2

(
A 3Σ+

u

)
+ hv. (3)

As one can see, the radiative decay of the N2
(
C 3Πu

)
nitrogen molecules populates the

N2

(
B 3Πg

)
nitrogen molecules. Moreover, the effective cross-section for the electron impact

excitation of the N2

(
B 3Πg

)
nitrogen molecule is comparable to that of the N2

(
C 3Πu

)
nitrogen molecule [42]. Therefore, the fact that the intensity of the first positive system is
significantly lower than the intensity of the second positive system can be explained by a
collisional quenching of the N2

(
B 3Πg

)
nitrogen molecules by air species. The radiative

lifetime of the N2

(
B 3Πg

)
nitrogen molecule is 11 µs, and the radiative lifetime of the

N2
(
C 3Πu

)
nitrogen molecule is 37 ns [36]. Estimates show that the N2

(
C 3Πu

)
nitrogen

molecule experiences single collisions during the radiative lifetime, while the N2

(
B 3Πg

)
nitrogen molecule undergoes several hundred collisions by air species before emitting
a photon.

Metastable nitrogen molecules are known to play an important role in plasma kinetics
and are responsible for some key plasma–chemical processes [43,44]. Furthermore, having a
long radiative lifetime and excitation energy of 6.17 eV [32], metastable nitrogen molecules
may well initiate some plasma–chemical processes outside the discharge region. For
example, it is known that the metastable nitrogen molecules can cause the generation of
ozone [37,44–46]. The excitation energy of the metastable nitrogen molecule is high enough
to dissociate the oxygen molecule (5.17 eV) and form oxygen atoms

N2

(
A 3Σ+

u

)
+ O2 → N2

(
X 1Σ+

g

)
+ 2O. (4)

Then, the produced oxygen atoms form ozone in collisions with oxygen molecules
and a third partner

O + O2 + M→ O3 + M. (5)

The third collision partner, M, takes the excess energy to stabilize the ozone molecule.
As a rule, nitrogen molecules in the ground state act as the third collision partner due to their
abundance in the air. It is known that ozone is effectively produced in the post-discharge
time [46] and thus can be formed outside the discharge region. It should be mentioned that
the generation of ozone took place in our discharge plasmas. The characteristic smell of
ozone was perceptible both in the cometary and point-to-ring discharges.

In addition, the metastable nitrogen molecule can dissociate a water molecule (5.15 eV)
and form a hydroxyl radical [47]

N2

(
A 3Σ+

u

)
+ H2O→ N2

(
X 1Σ+

g

)
+ OH + H. (6)

Thus, the energy stored in the metastable nitrogen molecules can be transported
outside the discharge region and released there, leading to the formation of active species.

2.3. Microbicidal Properties of the Cometary and Point-to-Ring Discharges

The microbicidal effects of cometary and point-to-ring discharges on the individual
microorganisms are summarized in Tables 1 and 2. Table 1 presents areas of incomplete
inhibition where the population of survived microorganisms was noticeably reduced, and
Table 2 comprises areas of complete inhibition, containing no surviving microorganisms.
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Table 1. Areas of incomplete inhibition (in cm2) after exposure of individual microorganisms to the
cometary/point-to-ring discharge.

Discharge Cometary Point-to-Ring

Exposure Time (min) 0 5 15 30 60 0 5 15 30 60

S. aureus ATCC 12600 0 12 19 20 23 0 0 31 39 40
S. aureus (MRSA) ATCC 14330 0 8 19 21 24 0 0 45 55 56

MRSA (M) 0 20 21 24 31 0 0 24 35 40

P. aeruginosa PA01 0 4 16 18 24 0 0 0 16 36
P. aeruginosa (L) 0 10 18 25 28 0 0 21 45 49

P. aeruginosa DBM 3181 0 13 20 24 28 0 0 46 53 53

C. albicans ATCC MYA-2876 0 4 5 16 20 0 31 44 48 40
C. albicans F7-39/IDE99 0 4 12 22 24 0 17 26 32 34

C. albicans N-873 0 0 13 15 16 0 0 0 15 40

T. interdigitale 6603 0 27 41 51 54 0 0 14 37 45
T. interdigitale 8776 0 23 39 50 52 0 0 6 18 16
T. interdigitale 8488 0 30 43 51 51 0 0 7 26 33

Table 2. Areas of complete inhibition (in cm2) after exposure of individual microorganisms to the
cometary/point-to-ring discharge.

Discharge Cometary Point-to-Ring

Exposure Time (min) 0 5 15 30 60 0 5 15 30 60

S. aureus ATCC 12600 0 0 1 3 10 0 0 0 6 14
S. aureus (MRSA) ATCC 14330 0 0 0 18 24 0 0 0 0 0

MRSA (M) 0 0 0 3 4 0 0 0 3 3

P. aeruginosa PA01 0 0 1 2 7 0 0 0 0 5
P. aeruginosa (L) 0 0 3 12 18 0 0 0 3 17

P. aeruginosa DBM 3181 0 0 1 4 17 0 0 0 1 28

C. albicans ATCC MYA-2876 0 4 5 13 20 0 6 14 24 36
C. albicans F7-39/IDE99 0 4 12 22 24 0 15 26 32 34

C. albicans N-873 0 0 5 10 16 0 0 0 15 40

T. interdigitale 6603 0 16 39 51 54 0 0 0 16 40
T. interdigitale 8776 0 0 1 13 20 0 0 0 0 0
T. interdigitale 8488 0 1 1 9 16 0 0 0 0 7

Areas of incomplete inhibition were larger than areas of complete inhibition for the
same strains, with both these areas regularly increasing with exposure time. For a better
comparison, the areas of incomplete and complete inhibition of the tested microorganisms
after the maximum exposure time of 60 min are shown in Figures 5 and 6, respectively.

As can be seen in Figure 5, the point-to-ring discharge showed better results in terms
of incomplete inhibition area for all tested microorganisms except T. interdigitale strains.
Similar results were observed at most other exposure times except for 5 min (see Table 1).
T. interdigitale generally showed the highest sensitivity to the cometary discharge exposure,
with incomplete inhibition of more than 90% in all tested strains after 60 min of exposure
and complete inhibition of T. interdigitale 6603, reaching 96% under the same conditions.
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Figure 6 demonstrates that the cometary discharge had better results in terms of
complete inhibition area for most tested microorganisms except for C. albicans strains,
S. aureus ATCC 12600, and P. aeruginosa DBM 3181. For these microorganisms, the point-to-
ring discharge had advantage over the cometary discharge in the view of both complete
and incomplete inhibition areas. For instance, the point-to-ring discharge resulted in more
than 60% complete inhibition area after 60 min of exposure for all tested strains of C. albicans
yeast. It is worth noting that the cometary discharge was somewhat more effective for the
treatment of T. interdigitale strains in terms of not only complete inhibition area but also of
incomplete one.

From the above, one can conclude that in terms of complete inhibition zones, the
cometary discharge was usually more effective, and, conversely, the point-to-ring dis-
charge showed better results in the view of incomplete inhibition zones. When using the
cometary discharge, the areas of incomplete inhibition zones for a given microorganism
were very similar, and when using the point-to-ring discharge, they were very dependent
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on the individual strain of a given microorganism. On a detailed comparison, it is notice-
able that different strains of the same microorganism show different sensitivities to the
same discharge.

Comparing the areas of incomplete inhibition zones of S. aureus, one can see (Table 1)
that at the shortest exposure time, the cometary discharge had a higher effect, but at longer
exposure time, the point-to-ring discharge prevailed (with more than 50% incomplete inhi-
bition after 30 min for all strains tested). The same trend was also observed for P. aeruginosa.
In the case of the incomplete inhibition zone of C. albicans, the effect of the point-to-ring
discharge was already higher, starting with the shortest exposure time.

3. Discussion

The microbicidal activity of different NTP sources usually varies considerably. This
fact was comprehensively summarized, among others, in our recent review [8], where we
described the different ways of generating NTP and the variability of its microbicidal effect
on the most life-threatening microorganisms. It is obvious that this activity depends mainly
on the NTP source used and that the difference in the microbicidal effect is often observed
even between very similar NTP sources. Overall, in terms of treatment time, plasma jets are
the most efficient sources of NTP, as complete suppression of microbial growth was typically
achieved in several minutes in a large number of studies [8,48–51]. Although it may seem
that further development of NTP sources is unnecessary, as there are already a large number
of prototypes, it should be noted that specific applications require different suitable devices.
As the main one, the mentioned plasma jets are able to treat only a relatively small area
of the exposed surface. On the contrary, corona discharges, also studied in this work, are
used for the treatment of much larger areas. Their possible application is the sterilization of
medical instruments, food packaging, etc., and their microbicidal effect is usually achieved
from half an hour to several hours of exposure [25,52–54].

Our research group has focused especially on the treatment of different microor-
ganisms using the cometary discharge. This discharge was developed about ten years
ago [21,22], and its capabilities and usefulness have been demonstrated in many works
dealing with inhibition of bacteria, fungi including yeasts, and prions [55]. However, the
use of the cometary discharge is limited by the instability outside the narrowly defined
range of its operating parameters; therefore, it was gradually replaced by the discharge in
the point-to-ring electrode configuration, which was expected to have an efficiency similar
to that of the cometary discharge. The physical parameters and microbicidal action of both
the cometary and point-to-ring discharge were evaluated and compared in this study.

The results showed that the point-to-ring discharge is better defined and is much more
stable than the cometary one. In addition, the cometary discharge was better in the view
of complete inhibition, and the point-to-ring discharge affected a larger area but with a
less pronounced microbicidal effect. To find out the reason for the different action of the
cometary and point-to-ring discharges, we studied their emission spectra. However, the
spectral characteristics of the discharges did not differ qualitatively, indicating a similar
composition of both plasmas.

It is generally accepted that the microbiocidal activity of plasma is mediated by re-
active oxygen and reactive nitrogen species produced in the plasma. The kinetics of
plasma–chemical reactions is rather complex. The microbicidal action of these reactive
particles was studied in different works (see, e.g. [56–59]). The role of UV radiation is also
widely discussed. Some studies show that UV radiation of plasma is of importance [60,61],
but some works impugn it [62,63]. This ambiguity is due to the different types of dis-
charges used. However, according to work [64], UV radiation of low-pressure discharge
plasma usually plays a significant role, while the microbicidal action of UV radiation from
atmospheric-pressure cold plasma is negligible. This conclusion is consistent with other
works [63,65–68]. Thus, it can be assumed that the contribution of UV radiation to the
microbicidal action of the cometary and point-to-ring discharges is also insignificant.
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Similar composition of plasmas produced by the cometary and point-to-ring dis-
charges indicates that the observed differences in the microbicidal action of the discharges
must consist in the spatial distribution of plasma species falling onto the treated surface.
Thus, the cometary discharge has a higher density of plasma species in the middle, while the
point-to-ring one has a more distributed density of plasma species over the whole surface.

However, detailed calculations using the data for the maximum exposure time of
60 min showed that in total, over all microorganisms, the difference in the areas of inhi-
bition by the cometary and point-to-ring discharges did not exceed 15%. Thus, at long
exposure times, both discharges have approximately the same microbicidal efficiency for
the inactivation of various microorganisms.

4. Materials and Methods
4.1. Non-Thermal Plasma Generation

The cometary and point-to-ring discharges were generated using two-electrode con-
figurations. The experimental setup is illustrated in Figure 7. The cometary discharge used
was previously described in detail in works [21,22,27]. In short, it was formed between
two needle electrodes (Medoject 0.6 mm × 25 mm intramuscular injection needles). The
electrode system of the cometary discharge is shown as configuration 1 in Figure 7. The
needles were positioned at an angle of 20–30◦ to each other, the horizontal and vertical gap
between the tips was 2 and 4.5 mm, respectively. In practical terms, the dominant part of
the discharge is the plasma jet, which burns from the upper positive electrode and blows
reactive particles from the discharge onto the exposed surface.Molecules 2022, 27, x FOR PEER REVIEW 11 of 16 
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The point-to-ring discharge was generated using a needle-ring configuration of elec-
trodes (configuration 2 in Figure 7). The ring electrode was conical in shape and was made
of brass. The top of the electrode was approximately 11 mm in diameter and was 3.3 mm
below the tip of the needle electrode (a Medoject 0.6 mm × 25 mm intramuscular injection
needle). The ring electrode was connected to the positive terminal of a high-voltage source,
while the needle electrode was connected to the negative one. In the vicinity of the tip, the
negative corona discharge is formed, and the positive one burns on the edge of the ring.
Thus, we obtain a bipolar corona discharge, where reactive species created in the plasma
are entrained by ions accelerated in the electric field between the electrodes. While most of
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the charged particles from the negative corona are obviously attracted to the ring electrode,
neutral reactive particles are blown through the ring electrode out of the discharge onto the
surface to be treated.

The electrode systems were fed by a high-voltage power supply composed of a DC
voltage source varied in the range of 0–20 V and a step-up high-voltage (up to 20 kV)
DC/DC converter with the galvanically separated primary and secondary circuits. No
additional ballast resistance was employed, since the used DC/DC converter had a high
output impedance.

To test the microbicidal action of the used discharges, we exposed various microor-
ganisms (for details, see Sections 4.4 and 4.5) to the generated plasmas. During plasma
exposure, inoculated Petri dishes were 2.5 cm below the electrode systems. The exposure
time was controlled by a timer. To distribute the flow of plasma species blown out by the
discharges over the area of a Petri dish, we placed a metal mesh under each discharge. The
meshes were neither grounded nor energized. The beneficial effect of a metal mesh was
reported in [23,27].

4.2. Electrical Properties of the Discharges

To compare cometary and point-to-ring discharges, we controlled their electrical
parameters. The discharge current was measured directly with a Metex M-3890DT dig-
ital multimeter (Metex Instruments, Toronto, Canada), and the discharge voltage was
monitored with a Metex M-3800 digital multimeter (Metex Instruments, Toronto, ON,
Canada) with a 1000:1 Pintek HVP-40 high-voltage probe (Pintek Electronics Co., Ltd., New
Taipei, Taiwan).

4.3. Emission Properties of the Discharges

In addition to the electrical parameters, we analyzed the compositions of the plasmas
generated by the cometary and point-to-ring discharges by studying and comparing their
emission spectra. The emission spectra were recorded using a Shamrock-300i Czerny-
Turner spectrograph (Andor, Oxford Instruments, Abingdon, UK) equipped with a Newton
971 EMCCD camera (Andor, Oxford Instruments, Abingdon, UK). The discharge radiation
was fed into the spectrometer via an optical fiber. The emission spectra were recorded over
the range of 250–1000 nm with a resolution of 1 nm and were corrected for the spectral
sensitivity of the optical system.

4.4. Microbial Strains

To study the microbicidal effects of the cometary and point-to-ring discharges, we
used some clinically important pathogens of Gram-positive and Gram-negative bacteria
and fungi. Three strains of Staphylococcus aureus were chosen as representatives of Gram-
positive bacteria: collection strains S. aureus ATCC 12600 (type strain) and methicillin-
resistant (MRSA) S. aureus ATCC 14330; a clinical isolate of MRSA (M), provided by Motol
University Hospital, Prague, Czech Republic.

Gram-negative bacteria were represented by the following strains: the reference strain
Pseudomonas aeruginosa PAO1; a clinical isolate P. aeruginosa DBM 3181, kindly provided by
the Department of Biochemistry and Microbiology (DBM), University of Chemistry and
Technology, Prague; a clinical isolate of P. aeruginosa (L.) originated from Liberec Regional
Hospital, Liberec, Czech Republic.

Yeast pathogens were as follows: C. albicans ATCC MYA-2876 (SC 5314, reference strain,
clinical specimen from human); a clinical isolate C. albicans F7-39/IDE99, received from
Palacký University Olomouc from a patient with oropharyngeal candidiasis; C. albicans
N-873, obtained from the Department of Medical Microbiology, 2nd Faculty of Medicine,
Charles University in Prague and Motol University Hospital, from a patient with vulvo-
vaginal candidiasis.

Fungal pathogens were represented by three strains of Trichophyton interdigitale clinical
isolates, kindly provided by Laboratory of Clinical Mycology, Public Health Institute in
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Ostrava: T. interdigitale 6603, isolated from nails; T. interdigitale 8776 from the lesion on the
forearm skin; T. interdigitale 8488 from the neck skin lesion.

The Gram-positive bacteria were cultivated on Tryptone Soya Agar (Oxoid, Bas-
ingstoke, UK) for 24 h at 37 ◦C. The Gram-negative ones were cultivated on Luria–Bertanni
Agar (Oxoid, Basingstoke, UK) for 24 h at 37 ◦C. The fungi were cultivated on Sabouraud
Agar (Oxoid, Basingstoke, UK) for 48 h at 37 ◦C in the case of C. albicans and 6 days at
25 ◦C in the case of T. interdigitale. Stock suspensions of all microorganisms were stored at
−70 ◦C in 50% glycerol before use.

4.5. Evaluation of Microbicidal Properties

The microbicidal efficiency of the NTP sources was evaluated by measuring the ar-
eas of inhibition zones on agar plates. The inoculum was prepared from the glycerol
stocks suspensions of studied strains by dilution in saline and adjusted to the optical
density of OD600nm = 0.022 ± 0.002, corresponding to the concentration of bacteria of
3 × 107 CFU/mL (colony-forming units per milliliter). The concentration of fungi was ad-
justed to 2.5 × 105 CFU/mL. An aliquot of 600 µL of the inoculum was evenly distributed
over the entire agar surface. Then, the inoculated plates were exposed to the cometary or
point-to-ring discharge for 0, 5, 15, 30, and 60 min and subsequently cultivated under the
conditions described above (see Section 4.4). To reveal a possible thermal effect of plasma
on microorganisms, we measured the temperature of the agar surface using a FLIR E4
Thermal Imaging Camera. However, even during 60 min of exposure, the temperature of
the agar surface did not deviate by more than 1–2 ◦C, which indicates that the plasma has
no thermal effect.

The microbicidal efficiency was determined as the area of inhibition zones on exposed
agar plates after cultivation. A typical appearance of the exposed samples is an area with
no microbial growth in the middle surrounded by an area of low microbial colony density.
This area with a noticeably reduced population of microorganisms was considered as an
incomplete inhibition zone, and an area with no microbial growth was considered as a
complete inhibition zone (see Figure 8 for details). The experiments were carried out in
triplicate for each microbial strain. The evaluated areas of inhibition zones were averaged
and standard deviations were calculated.Molecules 2022, 27, x FOR PEER REVIEW 13 of 16 
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5. Conclusions

The physical and microbicidal properties of NTP sources based on the cometary
discharge and point-to-ring discharge were compared. Despite some differences in the
electrical parameters, optical emission spectroscopy revealed no significant differences in
the emission spectra of the cometary and point-to-ring discharges, indicating a similar
composition of both plasmas.

As far as the microbicidal properties of the discharges are concerned, the cometary
discharge was usually better in terms of complete inhibition area, while the point-to-ring
discharge generally affected a larger area but with a less pronounced microbicidal effect.
The cometary discharge is best suited for more localized treatment, and the point-to-ring
discharge is better suited for treating a wider area. The choice of a suitable source of NTP
depends on the desired medical needs and, in combination with conventional drug therapy,
can potentially improve the treatment of various pathogens.

Overall, the NTP source based on the point-to-ring discharge met our expectations.
At long exposure times, it has a microbicidal effect similar to that of the cometary one
but is more stable and reliable in operation. The working conditions of the point-to-ring
discharge are as follows: the discharge voltage is 6.7 kV, the discharge current is 150 µA,
and the interelectrode gap is 3.3 mm.
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