The Effect of the Liposomal Encapsulated Saffron Extract on the Physicochemical Properties of a Functional Ricotta Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Saffron Extract
2.3. Preparation of Nanoliposomes Containing Saffron Extract
2.4. Particle Size and Zeta Potential
2.5. Physical Stability of Nanoliposomes
2.6. Encapsulation Efficiency
2.7. Manufacture of the Functional Ricotta Cheese
2.8. Compositional Analysis of Cheese Samples
2.9. pH
2.10. Cheese Color Analysis
2.11. Texture Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Liposome Size
3.2. Zeta Potential
3.3. Physical Stability of Nanoliposomes
3.4. Encapsulation Efficiency (EE)
3.5. Chemical Composition and pH of Ricotta Cheese
3.6. Color Analysis
3.7. Texture Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rashidinejad, A. Cheese as a Delivery Vehicle for Green Tea Catechins; University of Otago: Dunedin, New Zealand, 2015. [Google Scholar]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; Zujovic, Z.; Akbarinejad, A.; Nieuwoudt, M.; Seal, C.K.; McGillivray, D.J. The interactions between the two negatively charged polysaccharides: Gum Arabic and alginate. Food Hydrocoll. 2021, 112, 106343. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Everett, D.W. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: Manufacture and recovery following simulated digestion. Food Funct. 2016, 7, 3283–3294. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Sun-Waterhouse, D.; Everett, D.W. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 2014, 156, 176–183. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Birch, E.J.; Everett, D.W. Interactions between milk fat globules and green tea catechins. Food Chem. 2016, 199, 347–355. [Google Scholar] [CrossRef]
- Tavakoli, H.; Hosseini, O.; Jafari, S.M.; Katouzian, I. Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. J. Agric. Food Chem. 2018, 66, 9231–9240. [Google Scholar] [CrossRef]
- Najafi, H.; Moatamedzadegan, A. Process Optimization of Ricotta Cheese According to Iranian Preferences. J. Agric. Sci. Technol. 2001, 3, 237–240. [Google Scholar]
- Asensio, C.M.; Gallucci, N.; de las Mercedes Oliva, M.; Demo, M.S.; Grosso, N.R. Sensory and bio-chemical preservation of ricotta cheese using natural products. Int. J. Food Sci. Technol. 2014, 49, 2692–2702. [Google Scholar] [CrossRef]
- Innosa, D.; Bennato, F.; Ianni, A.; Martino, C.; Grotta, L.; Pomilio, F.; Martino, G. Influence of olive leaves feeding on chemical-nutritional quality of goat ricotta cheese. Eur. Food Res. Technol. 2020, 246, 1–8. [Google Scholar] [CrossRef]
- Ghaffari, S.; Roshanravan, N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed. Pharmacother. 2019, 109, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Singletary, K. Saffron: Potential health benefits. Nutr. Today 2020, 55, 294–303. [Google Scholar] [CrossRef]
- Khan, A.; Muhamad, N.A.; Ismail, H.; Nasir, A.; Khalil, A.A.K.; Anwar, Y.; Khan, Z.; Ali, A.; Taha, R.M.; Al-Shara, B. Potential Nutraceutical Benefits of In Vivo Grown Saffron (Crocus sativus L.) As Analgesic, Anti-inflammatory, Anticoagulant, and Antidepressant in Mice. Plants 2020, 9, 1414. [Google Scholar] [CrossRef] [PubMed]
- Ashktorab, H.; Soleimani, A.; Singh, G.; Amin, A.; Tabtabaei, S.; Latella, G.; Stein, U.; Akhondzadeh, S.; Solanki, N.; Gondré-Lewis, M.C. Saffron: The golden spice with therapeutic properties on digestive diseases. Nutrients 2019, 11, 943. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vo, T.S.; Vo, T.T.B.C.; Vo, T.T.T.N. A short review: Characterization and Heath Effects of Saffron Utilizing in Disease Treatment and Prevention. J. Res. Clin. Med. 2021, 9, 28. [Google Scholar] [CrossRef]
- Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G. Extraction optimization of saffron nutraceuticals through response surface methodology. Food Anal. Methods 2015, 8, 2273–2285. [Google Scholar] [CrossRef]
- Alehosseini, A.; Gómez-Mascaraque, L.G.; Ghorani, B.; López-Rubio, A. Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures. Lwt 2019, 113, 108280. [Google Scholar] [CrossRef]
- Rajabi, H.; Jafari, S.M.; Rajabzadeh, G.; Sarfarazi, M.; Sedaghati, S. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf. A 2019, 578, 123644. [Google Scholar] [CrossRef]
- Maqsoudlou, A.; Assadpour, E.; Mohebodini, H.; Jafari, S.M. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv. Colloid Interface Sci. 2020, 278, 102122. [Google Scholar] [CrossRef] [PubMed]
- Saroglu, O.; Bekiroglu, H.; Karadag, A. Encapsulation of saffron bioactive compounds. In Saffron; Elsevier: Amsterdam, The Netherlands, 2021; pp. 183–220. [Google Scholar]
- Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. J. Food Eng. 2015, 165, 149–155. [Google Scholar] [CrossRef]
- Garavand, F.; Rahaee, S.; Vahedikia, N.; Jafari, S.M. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci. Technol. 2019, 89, 26–44. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef]
- de Freitas Zômpero, R.H.; López-Rubio, A.; de Pinho, S.C.; Lagaron, J.M.; de la Torre, L.G. Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers. Colloids Surf. B Biointerfaces 2015, 134, 475–482. [Google Scholar] [CrossRef]
- Liu, W.; Hou, Y.; Jin, Y.; Wang, Y.; Xu, X.; Han, J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol. 2020, 104, 177–189. [Google Scholar] [CrossRef]
- Khorasani, S.; Danaei, M.; Mozafari, M. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018, 79, 106–115. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 1–9. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gregoriadis, G. , Liposome Technology. Volume I: Preparation of Liposomes; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Subramani, T.; Ganapathyswamy, H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020, 57, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-J.; Lee, Y.-K.; Ganesan, P.; Kwak, H.-S.; Chang, Y.H. Physicochemical, microbial, and sensory properties of queso blanco cheese supplemented with powdered microcapsules of tomato extracts. Korean J. Food Sci. Anim. Resour. 2017, 37, 342. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Niro, S.; Succi, M.; Cinquanta, L.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Panfili, G. Production of functional ricotta cheese. Agro. Food Ind. Hi-Tech. 2013, 24, 56–59. [Google Scholar]
- Hamdy, S.M.; Hafaz, Y.M. The Combined Effect of Dried Rosemary, Thyme and Basil with Fresh Garlic on Quality Characteristics of Ricotta Cheese during Storage. Egypt. J. Food Sci. 2018, 46, 125–132. [Google Scholar]
- Hadavi, R.; Jafari, S.M.; Katouzian, I. Nanoliposomal encapsulation of saffron bioactive compounds; Characterization and optimization. Int. J. Biol. Macromol. 2020, 164, 4046–4053. [Google Scholar] [CrossRef]
- Zongram, O.; Ruangrungsi, N.; Palanuvej, C.; Rungsihirunrat, K. Standardization of Gardenia jasminoides fruits and crocin content analysis using UV/visible spectrophotometry. Chiang Mai J. Sci. 2017, 44, 1453–1462. [Google Scholar]
- Rahmani, S. Evaluation the effect of different foaming agents and stabilizer on ricotta cheese foam characteristics. Food Sci. Technol. 2019, 16, 385–394. [Google Scholar]
- El-Sheikh, M.; Farrag, A.; Zaghloul, A. Ricotta cheese from whey protein concentrate. J. Am. Sci. 2010, 6, 321–325. [Google Scholar]
- Ortiz Araque, L.C.; Darré, M.; Ortiz, C.M.; Massolo, J.F.; Vicente, A.R. Quality and yield of Ricotta cheese as affected by milk fat content and coagulant type. Int. J. Dairy Technol. 2018, 71, 340–346. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Bashiri, S.; Hamishekar, H.; Dehgannya, J. The study of the colloidal properties of nano liposomes containing beta-carotene produced by thermal method. Iran. J. Food Sci. Technol. Res. 2016, 12, 609–619. [Google Scholar]
- Gibis, M.; Vogt, E.; Weiss, J. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food Funct. 2012, 3, 246–254. [Google Scholar] [CrossRef]
- Alexander, M.; Lopez, A.A.; Fang, Y.; Corredig, M. Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. LWT 2012, 47, 427–436. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
- Lu, Q.; Li, D.-C.; Jiang, J.-G. Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. J. Agric. Food Chem. 2011, 59, 13004–13011. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.-Q.; Liu, W.; Liu, W.-L.; Liang, R.-H.; Li, T.; Liu, C.-M.; Cao, Y.-L.; Niu, J.; Liu, Z. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J. Agric. Food Chem. 2014, 62, 934–941. [Google Scholar] [CrossRef]
- Sebaaly, C.; Jraij, A.; Fessi, H.; Charcosset, C.; Greige-Gerges, H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem. 2015, 178, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Sebaaly, C.; Greige-Gerges, H.; Agusti, G.; Fessi, H.; Charcosset, C. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. J. Liposome Res. 2016, 26, 126–138. [Google Scholar] [CrossRef]
- Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta Rev. Biomembr. 2000, 1469, 159–195. [Google Scholar] [CrossRef][Green Version]
- Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- Reza Mozafari, M.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 2008, 18, 309–327. [Google Scholar] [CrossRef]
- Makino, K.; Yamada, T.; Kimura, M.; Oka, T.; Ohshima, H.; Kondo, T. Temperature-and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys. Chem. 1991, 41, 175–183. [Google Scholar] [CrossRef]
- Fatouros, D.G.; Antimisiaris, S.G. Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: A study with prednisolone, diazepam, and griseofulvin. J. Colloid Interface Sci. 2002, 251, 271–277. [Google Scholar] [CrossRef]
- Ghorbanzade, T.; Jafari, S.M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017, 216, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-potential, vesicle size, and encapsulation efficiency. Food Biophys. 2007, 2, 1–9. [Google Scholar] [CrossRef]
- Dubey, V.; Mishra, D.; Nahar, M.; Jain, N. Elastic liposomes mediated transdermal delivery of an anti-jet lag agent: Preparation, characterization and in vitro human skin transport study. Curr. Drug Deliv. 2008, 5, 199–206. [Google Scholar] [CrossRef]
- Wink, M.; Schimmer, O. Molecular modes of action of defensive secondary metabolites. Annu. Plant Rev. Online 2018, 39, 21–161. [Google Scholar]
- Bouarab, L.; Maherani, B.; Kheirolomoom, A.; Hasan, M.; Aliakbarian, B.; Linder, M.; Arab-Tehrany, E. Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids Surf. B Biointerfaces 2014, 115, 197–204. [Google Scholar] [CrossRef]
- Liu, N.; Park, H.-J. Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes. Colloids Surf. B Biointerfaces 2010, 76, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Gonnet, M.; Lethuaut, L.; Boury, F. New trends in encapsulation of liposoluble vitamins. J. Control. Release 2010, 146, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Kamaraki Farahani, A.; Baghaee, P.; Rezaee, M.; Jaimand, K. Methodes for the analysis of carotenoides (crocins and crocetin of Saffron) using Thin layer chromatography (TLC). Iran. J. Med. Aromat. Plants Res. 2005, 20, 407–416. [Google Scholar]
- Laloy, E.; Vuillemard, J.-C.; Simard, R. Characterization of liposomes and their effect on the properties of Cheddar cheese during ripening. Lait 1998, 78, 401–412. [Google Scholar] [CrossRef][Green Version]
- Drake, M.; Herrett, W.; Boylston, T.; Swanson, B. Lecithin improves texture of reduced fat cheeses. J. Food Sci. 1996, 61, 639–642. [Google Scholar] [CrossRef]
- Aminifar, M.; Emam-Djome, Z.; Belgheisi, S. Effect of xanthan and milk protein concentrate on hardness, microstructure and ester release of low-fat brined cheese. Iran. J. Nutr. Sci. Food Technol. 2014, 9, 83–92. [Google Scholar]
- Prudêncio, E.S.; Müller, C.M.; Fritzen-Freire, C.B.; Amboni, R.D.C.; Petrus, J.C.C. Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese. Food Res. Int. 2014, 56, 92–99. [Google Scholar] [CrossRef]
- Küpeli, E.; Kartal, M.; Aslan, S.; Yesilada, E. Comparative evaluation of the anti-inflammatory and antinociceptive activity of Turkish Eryngium species. J. Ethnopharmacol. 2006, 107, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Ong, L.; Dagastine, R.R.; Kentish, S.E.; Gras, S.L. The effect of pH at renneting on the microstructure, composition and texture of Cheddar cheese. Food Res. Int. 2012, 48, 119–130. [Google Scholar] [CrossRef]
- Souza, J.L.F.; da Silva, M.A.P.; da Silva, R.C.F.; do Carmo, R.M.; de Souza, R.G.; Célia, J.A.; de Oliveira, K.B.; Plácido, G.R.; Lage, M.E.; Nicolau, E.S. Effect of whey storage on physicochemical properties, microstructure and texture profile of ricotta cheese. Afr. J. Biotechnol. 2016, 15, 2649–2658. [Google Scholar]
- Shamsia, S.; El-Ghannam, M. Production and evaluation of processed cheese analogue using ricotta cheese prepared from sweet whey. Alex. J. Fd. Sci. Technol. 2017, 14, 1–11. [Google Scholar]
- Lawrence, R.; Creamer, L.; Gilles, J. Texture development during cheese ripening. J. Dairy Sci. 1987, 70, 1748–1760. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Ak, M.M. Cheese Rheology and Texture; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
Type of Liposomes | Z-Average Diameter (nm) | Zeta Potential (mV) | Encapsulation Efficiency (%) | Physical Stability (%) |
---|---|---|---|---|
Liposomes containing 0.5% (w/v) lecithin | 155.9 ± 1.17 d | −34.6 ± 0.3 d | 50.73 ± 7.57 b | 98.54 ± 1.46 a |
Liposomes containing 1% (w/v) lecithin | 167.8 ± 4.72 c | −36.8 ± 0.8 c | 54.78 ± 02.93 b | 96.16 ± 3.83 ab |
Liposomes containing 2% (w/v) lecithin | 190.2 ± 5.35 b | −41.7 ± 0.3 b | 57.30 ± 1.25 b | 94.13 ± 3.93 ab |
Liposomes containing 4% (w/v) lecithin | 208.1 ± 8.25 a | −43.4 ± 0.3 a | 67.02 ± 5.93 a | 91.85 ± 1.09 b |
Zeta Potential | Encapsulation Efficiency | Physical Stability | |
---|---|---|---|
Particle size | −0.98 | 0.95 | −0.99 |
Parameters | Treatments | |||
---|---|---|---|---|
Control (with No Liposomes) | Enriched Ricotta Cheese (mg/Kg) | |||
0.125% | 1% | 2% | ||
Protein (%) | 17.72 ± 0.04 a | 17.70 ± 0.02 a | 17.70 ± 0.01 a | 17.75 ± 0.02 a |
Moisture (%) | 53.22 ± 0.31 b | 53.76 ± 0.78 b | 54.89 ± 0.24 a | 55.55 ± 0.72 a |
Dry matter (%) | 46.78 ± 0.31 a | 46.24 ± 0.78 a | 45.10 ± 0.24 b | 44.44 ± 0.72 b |
Fat (%) | 19.83 ± 0.28 a | 19.33 ± 0.57 a | 19.500 ± 0.86 a | 19.66 ± 0.76 a |
Ash (%) | 2.27 ± 0.69 a | 2.07 ± 0.3 a | 2.01 ± 0.25 a | 2.04 ± 0.07 a |
pH | 5.63 ± 0.03 a | 5.62 ± 0.04 a | 5.41 ± 0.02 b | 5.39 ± 0.01 b |
Parameters | Treatments | |||
---|---|---|---|---|
Control (with No Liposomes) | Enriched Ricotta Cheese (mg/Kg) | |||
0.125% | 1% | 2% | ||
L* | 91.12 ± 1.28 a | 91.02 ± 0.82 a | 89.83 ± 0.78 a | 84.71 ± 0.10 b |
a* | −3.04 ± 0.17 a | −5.05 ± 0.43 b | −5.67 ± 0.42 b | −6.53 ± 0.45 c |
b* | 26.85 ± 0.96 c | 33.23 ± 3.33 b | 34.58 ± 3.50 b | 60.30 ± 1.62 a |
Parameters | Treatments | |||
---|---|---|---|---|
Control | Enriched Ricotta Cheese | |||
0.125% | 1% | 2% | ||
Hardness (g) | 642.34 ± 92.27 b | 839.04 ± 48.82 a | 807.85 ± 104.92 ab | 857.69 ± 94.61 a |
Adhesiveness (mJ) | 4.85 ± 1.05 a | 5.00 ± 0.69 a | 5.70 ± 1.70 a | 4.44 ± 1.68 a |
Cohesiveness | 0.41 ± 0.29 a | 0.32 ± 0.61 a | 0.30 ± 0.05 a | 0.29 ± 0.09 a |
Gumminess (g) | 202.38 ± 71.47 a | 254.61 ± 44.10 a | 182.39 ± 22.65 a | 206.85 ± 59.04 a |
Chewiness | 48.75 ± 9.92 b | 84.60 ± 13.05 a | 60.71 ± 12.37 ab | 60.65 ± 18.43 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siyar, Z.; Motamedzadegan, A.; Mohammadzadeh Milani, J.; Rashidinejad, A. The Effect of the Liposomal Encapsulated Saffron Extract on the Physicochemical Properties of a Functional Ricotta Cheese. Molecules 2022, 27, 120. https://doi.org/10.3390/molecules27010120
Siyar Z, Motamedzadegan A, Mohammadzadeh Milani J, Rashidinejad A. The Effect of the Liposomal Encapsulated Saffron Extract on the Physicochemical Properties of a Functional Ricotta Cheese. Molecules. 2022; 27(1):120. https://doi.org/10.3390/molecules27010120
Chicago/Turabian StyleSiyar, Zahra, Ali Motamedzadegan, Jafar Mohammadzadeh Milani, and Ali Rashidinejad. 2022. "The Effect of the Liposomal Encapsulated Saffron Extract on the Physicochemical Properties of a Functional Ricotta Cheese" Molecules 27, no. 1: 120. https://doi.org/10.3390/molecules27010120