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Abstract: Untargeted metabolomics based on liquid chromatography coupled with mass spectrom-
etry (LC–MS) can detect thousands of features in samples and produce highly complex datasets.
The accurate extraction of meaningful features and the building of discriminant models are two
crucial steps in the data analysis pipeline of untargeted metabolomics. In this study, pure ion
chromatograms were extracted from a liquor dataset and left-sided colon cancer (LCC) dataset by
K-means-clustering-based Pure Ion Chromatogram extraction method version 2.0 (KPIC2). Then,
the nonlinear low-dimensional embedding by uniform manifold approximation and projection
(UMAP) showed the separation of samples from different groups in reduced dimensions. The dis-
criminant models were established by extreme gradient boosting (XGBoost) based on the features
extracted by KPIC2. Results showed that features extracted by KPIC2 achieved 100% classification
accuracy on the test sets of the liquor dataset and the LCC dataset, which demonstrated the rationality
of the XGBoost model based on KPIC2 compared with the results of XCMS (92% and 96% for liquor
and LCC datasets respectively). Finally, XGBoost can achieve better performance than the linear
method and traditional nonlinear modeling methods on these datasets. UMAP and XGBoost are
integrated into KPIC2 package to extend its performance in complex situations, which are not only
able to effectively process nonlinear dataset but also can greatly improve the accuracy of data analysis
in non-target metabolomics.

Keywords: Pure Ion Chromatogram; UMAP; XGBoost; KPIC2; LC–MS

1. Introduction

Metabolomics aims at the unbiased and comprehensive quantification of metabolites
in organisms, tissues, or cells [1,2]. For untargeted metabolomics, its goal is the simul-
taneous detection of as many metabolites as possible in samples and the discovery of
metabolomic changes between groups [3]. At present, the combination of chromatography
and mass spectrometry has become the key technology for the analysis of metabolites in
biological systems [4,5]. Compaed with gas chromatography coupled to mass spectrometry
(GC–MS) [6–8], high-performance liquid chromatography–mass spectrometry (LC–MS)
can analyze compounds with semi-polar and lower volatility in a wider mass range with-
out derivatization [9–11]. The samples are separated by the chromatographic column
after injection and identified by analyzing the spectra acquired by the mass spectrometer.
Since each eluted metabolite produces multiple mass signals, such as fragments, adducts
and isotope peaks, LC–MS data contain thousands of metabolomic features for complex
samples. Therefore, the pre-processing methods are needed to extract meaningful features
for further statistical analysis.
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The data preprocessing methods should extract the features in each sample, align the
features between samples, and obtain the table containing m/z, retention time, and intensity.
Ideally, the extracted feature of one metabolite should not contain the information from
other metabolites with similar retention time and m/z. Many software tools have been
developed to automate the preprocessing of LC–MS datasets, such as MetAlign [12,13],
MZmine [14,15], XCMS [16,17] and OpenMS [18–20]. Traditional methods split m/z axis
into bins, construct the extracted ion chromatogram (EIC) and detect the features in EICs.
This strategy was widely used in preprocessing of LC–MS datasets. However, the ions
of the same metabolite are sometimes assigned to two adjacent m/z bins. To solve this
problem, the matchedFilter algorithm was integrated into XCMS, which creates overlapping
combined chromatograms for peak detection [16]. However, it is difficult to handle the co-
eluting peaks with similar m/z in the same bin. The centroidPicker in MZmine has the same
problem as well [15]. Therefore, the centWave method was proposed, which combined
the regions of interest and the continuous wavelet transform (CWT)-based approach for
chromatographic peak deconvolution [21]. The centWave method avoids disadvantages
of binning to some extent, and multi-scale peak detection can achieve high sensitivity,
so it has been quickly integrated into XCMS and MZmine. To this day, it still one of the
most popular feature extraction methods in LC–MS analysis. However, the relative mass
difference between adjacent ions is related to intensity, and the relative mass difference
tolerance of different mass spectrometers is also different [22]. Moreover, the change in
temperature will affect the high voltage drift of the power during heating, which will affect
the quality and accuracy of the time of flight (TOF) instruments [23]. Therefore, the fixed
tolerance may split peaks due to the inconsistent relative mass differences [24].

To avoid the mentioned shortcomings of the previous methods, the pure ion chro-
matogram (PIC) has been proposed [21,25]. It is particularly suitable for high-resolution
LC–MS datasets. PIC refers to the chromatogram containing only one intensity per scan,
and the intensity should come from the ions derived from the same metabolite. There are
many PIC-based methods, including TracMass [25], Massifquant [26], TracMass2 [27] and
PITracer [24]. The TracMass method tracks data points in m/z and intensity space by
Kalman tracking. It can extract PICs without noises and eliminate the problems related to
binning. However, the source code of TracMass is not publicly available. Subsequently,
Massifquant was implemented and open-sourced. Since the Kalman filter is complex
and time-consuming, the pure ion is tracked by the greedy nearest neighbor strategy in
TracMass2. It assigns a PIC ID to each data point in the first scan. In the next scan, the data
points are assigned the same PIC ID if the m/z value is close enough to the PIC of the
previous scan. If there is no PIC with a similar m/z value in the previous scan, a new PIC
ID is assigned to the data point. TracMass2 can get the same results as TracMass with much
faster speed. PITracer can adaptively estimate the relative mass difference tolerance for
each scan and calibrate the m/z value to remove discontinuous ions in LC–MS profiles.
However, if there are missing points and irregular distribution in a scan, the length of the
PIC will be shortened and separated. In LC–MS datasets, the ions of the same metabolite
have almost the same m/z values, and these ions tend to cluster in the m/z dimension.
KPIC extracts PIC by k-means clustering to avoid the above problems [28]. Then, an inte-
grated framework called K-means-clustering-based Pure Ion Chromatogram extraction
method version 2.0 (KPIC2) was developed, which improves the accuracy of PIC extraction
by considering the intensity of ions [29]. In addition, KPIC2 includes peak detection,
peak alignment, grouping, missing value filling, and traditional pattern recognition for
analyzing LC–MS-based metabolomic datasets.

After the construction of the peak table, it is important to visualize the dataset before
further statistical analysis. However, the dimensionality reduction and visualization
methods are not provided in KPIC2. Principal component analysis (PCA) is the most
widely used dimensionality reduction method through the linear combination of the
original variables [30–32]. However, PCA tries to preserve the global structure of the data
at the risk of losing the local structure, and it may fail on the nonlinear and complex dataset.
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The t-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimensionality
reduction method that converts the similarity of data points into joint probabilities and
minimizing the Kullback–Leibler divergence between low-dimensional data and high-
dimensional data [33]. However, t-SNE suffers from limitations such as loss of global data
structure, slow calculation speed and inability to meaningfully represent big datasets [34].
The unified manifold approximation and projection (UMAP) has been constructed from
a theoretical framework based on Riemannian geometry and algebraic topology [35,36].
It can achieve a better balance between the local data structures and global data structures
than t-SNE and PCA.

The discriminant models should be built to learn the decision rules, predict new
samples and screen the biomarkers. Therefore, advanced machine learning methods
and variable selection methods are required. Partial least squares discriminant analysis
(PLS-DA) [37], orthogonal partial least squares discriminant analysis (OPLS-DA) [38] and
Random Forest (RF) [39] were implemented in KPIC2 for pattern recognition and biomarker
selection. PLS–DA is widely used in chemometrics and metabolomics, and it is based on the
group membership encoding and the partial least squares regression [40]. OPLS–DA [41]
divides the variables into predictive and orthogonal information with orthogonal signal
correction (OSC) technology [42]. Compared with PLS–DA, it provides better visualiza-
tion and interpretation and has been widely used in modeling and biomarker discovery
for metabolomics [43,44]. However, PLS–DA and OPLS–DA are suitable for linear and
collinearity datasets and may fail on the nonlinear datasets. RF is an ensemble machine
learning method based on classification and regression tree (CART), and it can be used to
classify high-dimensional and nonlinear datasets well [39]. In 2014, extreme gradient boost-
ing (XGBoost) was released by Chen et al., which can achieve the goal of fast calculation
and excellent performance [45,46]. It builds multiple weak learners on the bootstrapped
data, trains the subsequent models, and aggregates the models to reduce both the variance
and bias of the prediction.

In this study, advanced machine learning methods, UMAP and XGBoost, are inte-
grated into KPIC2 to improve its performances on complex LC–MS-based metabolomic
datasets. The KPIC2 framework was applied to perform extraction of PICs, peak detec-
tion, peak alignment, grouping and missing value filling for the liquor and LCC datasets.
Peak tables containing retention time, m/z and intensity were obtained. The features
were visualized by PCA, t-SNE and UMAP respectively, and XGBoost was used to build
the discriminant models. Since XCMS is still widely used, it is necessary to study the
performance of the XGBoost model based on KPIC2 compared with XCMS. Therefore,
the proposed pipeline comprising KPIC2 and XGBoost was compared with XCMS by
evaluating the accuracy of the models. In order to evaluate the advantages of the XGBoost
model, the XGBoost model based on the features extracted by KPIC2 was compared with
PLS–DA, support vector machine (SVM) and Random Forest (RF). The schematic diagram
of this proposed data analysis pipeline is depicted in Scheme 1.
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Scheme 1. Schematic diagram of the proposed data analysis pipeline for complex liquid chromatography-mass spectrometry
(LC–MS)-based untargeted metabolomics. It can be divided into five parts: the extraction of metabolites from samples,
LC–MS analysis, data preprocessing, visualization and statistical analysis. In the study, K-means-clustering-based Pure
Ion Chromatogram extraction method version 2.0 (KPIC2) is used to extract pure ion chromatograms. The samples from
different groups are visualized through uniform manifold approximation and projection (UMAP). Extreme gradient boosting
(XGBoost) is used to build discriminant models and screen differential metabolites.

2. Materials and Methods
2.1. Theory of KPIC2

The details of the theoretical parts of KPIC2 have been described in the reference [29].
KPIC2 is an integrated framework and has been developed for metabolomics studies.
It can extract pure ions by the optimal k-means clustering, detect pure ions accurately,
align PICs across samples, group PICs to identify isotope and potential adduct PICs,
fill missing peaks and perform multivariate pattern recognition. KPIC2 is an effective
analytical framework for metabolomics datasets that integrates the concept of pure ion
chromatograms, which can improve the accuracy of quantification, classification and
biomarker identification. In addition, KPIC2 is implemented in R programming language
and can be used as an open-source software package.

2.2. Theory of Advanced Machine Learning Methods
2.2.1. Visualization Methods

UMAP is a novel manifold learning technique for dimensionality reduction, which can
be used for visualization and non-linear dimensionality reduction [35]. The algorithm is
based on three assumptions about the data: (1) the data are uniformly distributed on the
Riemannian manifold; (2) the Riemannian metric is locally constant; (3) the manifold is
locally connected. Based on the above assumptions, UMAP can model manifolds with
fuzzy topology. The embedding is found by searching for the low-dimensional projection
that has the closest equivalent fuzzy topology data. Compared with t-SNE and PCA,
its dimensionality reduction calculation speed is fast and can achieve a better balance
between the local and global data structures. This allows us to generate high-quality
embedding of larger datasets in two or three dimensions for visualization.
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2.2.2. XGBoost

XGBoost is an optimized and highly efficient gradient boosting decision tree (GBDT)
implementation and can solve problems beyond billions of samples [45]. It performs the
second-order Taylor expansion of the loss function and adds a regular term, which effec-
tively avoids overfitting and speeds up the convergence. XGBoost continuously creates
new decision trees and fits the residuals of previous predictions to improve the accuracy.
It can be expressed in a form of addition in Equation (1):

∧
yi =

K

∑
k=1

fk(xi), fk ∈ F (1)

Among them, ∧yi is the predicted value of the model. K is the number of trees. fk repre-
sents the k-th sub-model. xi is the i-th sample in data; F represents the set of all trees.

First, a number of training samples consisting of input vector x and output variable
y are randomly given T = (x1, y1), (x2, y2), · · · , (xN , yN). The XGBoost model is trained
by optimizing the objective function. The objective function of XGBoost consists of a loss
function and a regular term:

obj =
n

∑
i=1

l(yi,
∧
y

i
(t) ) +

t

∑
i=1

Ω( fi) (2)

Ω( f ) = γT +
1
2

λ‖ω‖2 (3)

obj is the objective function of the t-th iteration.
∧
y

i
(t) is the predicted value of the t-th

iteration. Ω( fk) represents the regular term of model of the t-th iteration. The γ and λ are
the parameters of the regular term to control the complexity of the decision trees. T is the
number of leaf nodes in the decision tree. The regular term Ω( fk) can simplify models and
prevent over-fitting.

Taylor expansion was applied to this objective function. l(yi,
∧
y

i
(t−1) ) is the loss function

of the i-th samples with
∧
y

i
(t−1) as the independent variable, and gi and hi are their first and

second derivative, respectively. This makes the value of the objective function only depend
on gi and hi. The minimum of the objective function can be found by the derivation. Then,
important variable features are selected by finding the optimal split point, and the scoring
formula used for node splitting in the tree model can be derived:

Gain =
1
2

[
(∑ i∈IL gi)

2

∑ i∈IL hi + λ
+

(∑ i∈IR gi)
2

∑ i∈IR hi + λ
− (∑ i∈I gi)

2

∑ i∈Ihi + λ

]
− γ (4)

Here, I is a subset of the available observations in the current node and IL, IR are
subsets of the available observations in the left and right nodes after the split. Finally,
the XGBoost boosted tree is obtained through successive loop iterations.

There are three reasons XGBoost has better performance and efficiency than GBDT:
(1) The regular term is introduced in the XGBoost model to control the complexity of
the model, which makes the trained model simpler and prevents overfitting. (2) Before
the XGBoost model is trained, the data are sorted in advance and then saved as a block
structure. Therefore, the gain calculation of each feature can be performed in multiple
threads. (3) Column-sampling works similarly to random forests, which not only reduces
overfitting but also reduces calculations.
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2.3. Datasets
2.3.1. Liquor Dataset

This dataset is publicly available, and it was described in reference [47]. Six types
of liquor samples (BJ-1, BJ-2, BJ-3, BJ-4, BJ-5, BJ-6) were purchased from the local market,
and 6 repeats were sampled for each type. Each type of liquor was brewed through a
special winemaking process. The specific experimental procedure is as follows: 500 µL
of liquor sample was added to the sample tube, and the sample was diluted to 1 mL
using water/methanol (1/1, v/v) solution. The samples were then vortexed for 5 min and
analyzed by Agilent 1290–6545 UPLC-QTOF (Agilent Technologies, Santa Clara, CA, USA).

2.3.2. LCC Dataset

This is also publicly available on the MetaboLights repository with the identifier MT-
BLS1129. Samples of the left-sided colon cancer (LCC) dataset were obtained from surgical
colectomy specimens, and they were selected from male patients who were ≥55 years old.
All normal colon tissues were selected from stage I-IV colorectal cancer (CRC) patients
(n = 27), and tumor tissue samples were selected from LCC stage I-III (n = 54). The detailed
experimental protocol of this dataset was described in reference [48]. A UPLC system
(H-Class ACQUITY, Waters Corporation, MA, USA) coupled to a quadrupole time-of-flight
(QTOF) mass spectrometer (Xevo G2-XS QTOF, Waters Corporation, MA, USA) was used
for MS data acquisition.

2.4. Comparison of KPIC2 and XCMS

The raw data of LC–MS instruments are often stored in a proprietary format. Therefore,
raw files were exported in mzXML format and converted from mzXML to mzML format
using OpenMS (version = 2.4.0, Python package) [19]. The mzML files were imported
into XCMS (version = 3.11.3, R package) for data preprocessing. The mzXML files were
imported into KPIC2 (version = 2.4.0, R package) for data preprocessing.

KPIC2 is an integrated framework for metabolomics research. It can accurately detect
PICs, align PICs between samples, group PICs to identify isotopes and potential adducts,
and fill in missing peaks. XCMS is the de facto standard to process untargeted metabolomic
data, which comprises nonlinear retention time alignment, matching filtering, peak detec-
tion, peak matching and missing value filling. CAMERA [49] (version = 1.44.0, R package)
is used to annotate the isotope peaks and adduct ions in peak lists detected by XCMS.
KPIC2 and XCMS were applied to the liquor dataset and the LCC dataset. Feature detection,
peak alignment, grouping between samples and missing value filling were performed on
these datasets. The peak tables containing retention time, m/z and intensity were obtained
for subsequent statistical analysis.

2.5. Pattern Recognition

With the extracted features in the previous section, advanced machine learning meth-
ods were applied for pattern recognition of the LC–MS-based metabolomic datasets, includ-
ing visualization and modeling. The features were normalized by removing the mean and
scaling to unit variance. Samples in the liquor dataset and the LCC dataset were dimension-
ally reduced and visualized through PCA, t-SNE and UMAP. The low-dimensional plots
can discover the patterns in the datasets. Then, each dataset was divided randomly into
the training set (67%) and test set (33%). The training set was used to build the XGBoost
models, and the test set was used to evaluate their performances. In order to establish
reliable and accurate models, some important parameters in XGBoost were optimized.
In addition, some traditional methods, including PLS-DA, SVM (kernel = “rbf”) and RF,
were applied to the classification between different samples in each dataset, and their
parameters were optimized through Grid Search. Finally, their classification results were
evaluated by evaluation criteria for discriminant models.
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2.6. Evaluation Criteria

The performance of the XGBoost models must be evaluated by the proper evaluation
criteria. In this study, the accuracy, precision, recall, F1 score (F1_score) and receiver oper-
ating characteristic (ROC) curve were used as the criteria to evaluate the XGBoost models.

The accuracy is the ratio of the number of samples correctly classified by the classifier
to the total number of samples in the dataset, as shown in Equation (5):

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP is the number of positive samples predicted to be positive by the model, TN is
the number of negative samples predicted to be negative by the model, FP is the number of
negative samples predicted to be positive by the model and FN is the number of positive
samples predicted to be negative by the model.

The precision is the ratio of the number of positive samples predicted correctly to the
number of positive samples predicted, as shown in Equation (6):

Precision =
TP

TP + FP
(6)

The recall (or sensitivity) is the ratio of the number of positive samples predicted
correctly to the total number of positive samples, as shown in Equation (7).

Recall =
TP

TP + FN
(7)

The specificity is the ratio of the number of negative samples predicted correctly to
the total number of negative samples, as shown in Equation (8).

Speci f icity =
TN

TN + FP
(8)

F1_score is the harmonic mean of precision and recall, as shown in Equation (9).

F1_score =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

The ROC curve is a comprehensive criterion that reflects the sensitivity and speci-
ficity of continuous variables. For binary classification problems, each point of the curve
represents a threshold, and the classifier gives each sample a score. If the score is greater
than the threshold, we consider it as a positive sample, and if the score is less than the
threshold, we consider it as a negative sample. The horizontal axis of the curve is the false
positive rate, that is, the ratio of the number of negative samples predicted error to the total
negative samples. The vertical axis of the curve is the true positive rate, that is, the ratio of
the number of positive samples predicted correctly to the total number of positive samples.

3. Results and Discussion
3.1. Comparison of XGBoost Performance Based on KPIC2 and XCMS
3.1.1. Results of Feature Extraction
Liquor Dataset

Features of the liquor samples were extracted by XCMS and KPIC2, and the numbers
of extracted features are shown in the Venn diagram (Figure 1). The centWave method was
used as a peak detection algorithm in XCMS, and the parameters of XCMS were optimized
by the software package IPO. The parameters in KPIC2 were set to the same values if they
have the same meaning as the parameters in XCMS.



Molecules 2021, 26, 2715 8 of 16

Figure 1. Venn diagram of the numbers of features in liquor dataset extracted by KPIC2 and
XCMS. There are 259 features that are unique in KPIC2, and 231 features are also unique in XCMS.
There are 504 features that are extracted by both KPIC2 and XCMS, which indicated the reliability of
extraction results.

As shown in Figure 1, the numbers of features by KPIC2 and XCMS were 763 and
735, respectively, and 504 common features were extracted by both methods. Therefore,
approximately 75% of the features can be extracted by both KPIC2 and XCMS, which means
that PICs detected by KPIC2 method are reliable. There are also some unique features for
each method because of their different principles. A detailed description of the rationality
of KPIC2 has been explained in the reference [29].

LCC Dataset

The LCC dataset was processed by KPIC2 and XCMS. Similarly, the parameters of
XCMS are optimized by IPO. The parameters of KPIC2 were set according to XCMS.
The numbers of extracted features are shown in Figure 2. It can be seen from the figure that
approximately 70% of features can be detected by both KPIC2 and XCMS. The numbers
of unique features by KPIC2 and XCMS were 433 and 287, respectively, and 958 common
features were extracted by both methods. There are also some unique features for each
method because of their different principles. There are more features extracted by KPIC2
than XCMS, which may be because of KPIC2 can eliminate noise signals and the true
features are not covered by noise [29].

Figure 2. Venn diagram of the numbers of features in LCC dataset extracted by KPIC2 and XCMS.
There are 433 features that are unique in KPIC2, and 287 features are also unique in XCMS. There are
958 common features detected by both KPIC2 and XCMS, which indicated the reliability of extrac-
tion results.

3.1.2. Discriminant Models for Liquor and LCC Datasets

The XGBoost model is an advanced machine learning algorithm with fast calculation
speed and excellent performance, and it is robust to overfitting. Therefore, XGBoost was
used to build discriminant models based on the liquor and LCC datasets. The discriminant
model was trained with the training set to learn decision rules for future prediction.
Since XCMS is still widely used, it is necessary to study the performance of the XGBoost
model based on KPIC2 compared with XCMS. In this study, the training sets of the liquor
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and LCC datasets were used for training the XGBoost models. With the established models,
we can compare the discriminant ability of features extracted by XCMS and KPIC2.

The parameters of the XGBoost directly affect the performance of the model. The ba-
sis of the XGBoost algorithm is the gradient boosting algorithm, so the parameters (in-
cluding n_estimators, learning_rate, silent and subsample) related to the boosting algo-
rithm are first optimized. Then, the parameters (including max_depth, booster, gamma,
min_child_weight and colsample_bytree) related to the weak learner are optimized through
cross-validation. The optimal parameters were used to build the XGBoost model. The per-
formance of the models was evaluated by the evaluation criteria in Section 2.6. The opti-
mized parameters and evaluation criteria of the models are shown in Table 1. The results
show that the XGBoost model on the test sets based on KPIC2 has high accuracy, precision,
recall and F1 score. This means that the extracted features by KPIC2 have a higher discrim-
inant ability. Therefore, the combination of KPIC2 and XGBoost is reasonable, which can
more efficiently and accurately classify different sample groups. Moreover, this lays the
foundation for the subsequent accurate analysis of differential metabolites.

Table 1. The parameters of optimized models and their evaluation criteria on the test sets.

KPIC2 XCMS/CAMERA

Liquor
Dataset LCC Dataset Liquor

Dataset LCC Dataset

Parameters

n_estimators 11 20 11 22

learning_rate 0.01 0.01 0.1 0.01

silent 1 1 1 1

subsample 1 0.9 1 1

max_depth 2 1 3 1

booster gbtree gbtree gbtree gbtree

gamma 0 0 0 0

min_child_weight 1 3 1 1

colsample_bytree 0.1 0.2 0.1 0.5

Model

Accuracy 1.000 1.000 0.917 0.963

Precision 1.000 1.000 0.917 1.000

Recall/Sensitivity 1.000 1.000 0.958 0.941

Specificity 1.000 1.000 0.958 1.000

F1_score 1.000 1.000 0.921 0.970

The confusion matrices of XGBoost models on the test sets of the liquor and LCC
datasets are shown in Tables 2 and 3, respectively. From the results of the liquor dataset
listed in Table 2, it can see that the KPIC2-based XGBoost model achieves 100% testing
accuracy, while XCMS only has 92% testing accuracy. The result of classification in the LCC
dataset is shown in Table 3, and the classification performance of the extraction results
based on KPIC2 is better than that of XCMS.
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Table 2. Classification results of the liquor dataset on the test sets.

Actual BJ-1 BJ-2 BJ-3 BJ-4 BJ-5 BJ-6 Class_Error Error_Rate

KPIC2

BJ-1 1 0 0 0 0 0 0

0.00%

BJ-2 0 2 0 0 0 0 0

BJ-3 0 0 1 0 0 0 0

BJ-4 0 0 0 2 0 0 0

BJ-5 0 0 0 0 4 0 0

BJ-6 0 0 0 0 0 2 0

XCMS/
CAMERA

BJ-1 1 0 0 0 0 0 0

8.33%

BJ-2 0 2 0 0 0 0 0

BJ-3 0 0 1 0 0 0 0

BJ-4 0 0 0 2 0 0 0

BJ-5 0 0 1 0 3 0 0.25

BJ-6 0 0 0 0 0 2 0

Table 3. Classification results of the LCC dataset on the test sets.

Actual
Normal Tumor Class_Error Error_Rate

KPIC2
Normal 10 0 0

0.00%
Tumor 0 17 0

XCMS/CAMERA
Normal 10 0 0

3.70%
Tumor 1 16 0.06

The trained model assigns a probability score to each peak group as a true peak.
At the threshold cut-off value of each score, true positive rate and false positive rate were
determined. The ROC curve was used to investigate the performance of the machine
learning model at each threshold. In the liquor dataset, the ROC curves of the XGBoost
model with features extracted by KPIC2 and XCMS are displayed in Figure 3A,B. The AUC
of the test set of KPIC2 is 1.00, indicating that the model can better classify samples from
different groups. Since it is multi-class problem, the true positive rate and false positive
rate of each class under the threshold of each score are calculated and shown in Figure 3.
In the LCC dataset, the AUC of each class is shown in Figure 3C,D, and the AUC value
based on the results extracted by KPIC2 is better than the results of XCMS on the whole.



Molecules 2021, 26, 2715 11 of 16

Figure 3. The receiver operating characteristic (ROC) curves of XGBoost models on the liquor dataset
and the LCC dataset. Each color represents a class. (A) The ROC curve of XGBoost model trained by
features of KPIC2 on the liquor dataset; (B) the ROC curve of XGBoost model trained by features of
XCMS on the liquor dataset; (C) the ROC curve of XGBoost model trained by features of KPIC2 on the
LCC dataset; (D) the ROC curve of XGBoost model trained by features of XCMS on the LCC dataset.

3.2. Visualization of Liquor and LCC Datasets

Here, PCA, t-SNE and UMAP were used to reduce dimensionality and visualize
samples in the liquor and LCC datasets. KPIC2 was used to extract the peak tables from
these datasets. Then, the peak tables were visualized by PCA, t-SNE and UMAP. Since the
data of real metabolomic samples often have some uncertainties, and we did not know
ground-truth global and local structures. Therefore, we chose the Woolly Mammoth
dataset to evaluate the differences between PCA, t-SNE and UMAP (Figures S1 and S2).
It can be seen from the results that UMAP can achieve the best visualization results in the
preservation of both local and global structures in the reduced dimensions compared to
PCA and t-SNE.

In Figure 4, the PCA, t-SNE and UMAP analysis of the liquor dataset is shown.
In Figure 4A, BJ-3, BJ-5 and BJ-6 are not well separated. Compared with the results of
PCA, t-SNE can separate different liquor samples (Figure 4B). In Figure 4C, UMAP analysis
can separate different liquor samples under a tighter coordinate axis, and the degree of
aggregation within each group is closer. This is because it can keep both the global data
structure and the local data structure by adjusting the parameter values of n_neighbors,
and min_dist is used to adjust the tightness between different samples. Therefore, the sep-
aration trend of UMAP is better than PCA and t-SNE between different clusters of the
liquor dataset.



Molecules 2021, 26, 2715 12 of 16

Figure 4. Visualization of the liquor dataset by PCA, t-SNE and UMAP. Each shape represents a sample. (A) The PCA
plot based on features extracted by KPIC2 of the liquor dataset, and the percentage of variance explained by each selected
component is displayed on the axis; (B) the t-SNE plot based on features extracted by KPIC2 of the liquor dataset; (C) the
UMAP plot based on features extracted by KPIC2 of the liquor dataset.

For the LCC dataset, the separation boundary between the two groups is not obvious,
and the samples in the group are too scattered in the PCA plot (Figure 5A). Compared with
the PCA plot, the t-SNE analysis makes the trend of separation between the two groups
more obvious, but the group is still in a state of dispersion (Figure 5B). In Figure 5C, the two
sets of samples also have a clear trend of separation, and UMAP can make the aggregation
trend of samples better on a smaller axis. Therefore, UMAP can better show the aggregation
tendency of the sample, and the tightness within the sample is smaller. This shows that
the features extracted by KPIC2 lay the solid foundation for subsequent statistical analysis.
The introduction of the UMAP method can better visualize the aggregation trend between
different samples. Compared to PCA, UMAP is a non-linear dimensionality-reduction
method, which has wider applicability to datasets.

Figure 5. Visualization of the LCC dataset by PCA, t-SNE and UMAP. Each shape represents a sample. (A) The PCA plot
is based on features extracted by KPIC2 of the LCC dataset, and the percentage of variance explained by each selected
component is displayed on the axis; (B) the t-SNE plot is based on features extracted by KPIC2 of the LCC dataset; (C) the
UMAP plot is based on features extracted by KPIC2 of the LCC dataset.

3.3. Comparison of Classification Models Based on KPIC2

PLS-DA is a linear discriminant model based on PLS regression, which can be used
for predictive and descriptive modeling as well as for discriminative variable selection.
SVM can specify different kernel functions for decision-making functions. RF is an ensem-
ble learning method that works by constructing multiple decision trees. Both SVM and
RF are methods that can be applied to nonlinear modeling. Based on the feature detection
results of KPIC2, different classification algorithms (PLS-DA, SVM, RF and XGBoost) were
compared. The classification results are evaluated in terms of the accuracy, precision,
recall and F1 value of performance measurement indicators of the machine learning model.
The classification results of the two datasets are shown in Table 4.
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Table 4. Comparison of classification performance of different classification models on the test sets.

Dataset Model Accuracy Precision Recall Specificity F1_score

Liquor

PLS-DA 0.667 0.611 0.833 0.833 0.689

SVM 0.833 0.889 0.917 0.917 0.861

RF 0.750 0.875 0.875 0.875 0.780

XGBoost 1.000 1.000 1.000 1.000 1.000

LCC

PLS-DA 0.741 0.778 0.824 0.600 0.800

SVM 0.852 0.842 0.941 0.700 0.889

RF 0.963 0.944 1.000 0.900 0.971

XGBoost 1.000 1.000 1.000 1.000 1.000

It can be seen from Table 4 that the traditional linear discriminant model PLS-DA
is obviously not applicable, and the five evaluation indicators of the model are signifi-
cantly lower than other modeling results. SVM and RF can deal with nonlinear problems,
which have a wider range of applications. The kernel type of the SVM model can be chosen,
and adding a regular term can avoid overfitting. Therefore, the performance of SVM can
sometimes be better classified compared to RF. It can be seen from Figures 4A and 5A that
samples of different groups do not have a good clustering trend even using the nonlinear
dimensionality reduction methods. Therefore, these two datasets have a certain degree of
non-linearity. This once again confirms the poor effect of the PLS-DA model. For the liquor
dataset, the classification accuracy, precision, recall rate, specificity and F1 score of SVM
are all higher than RF. The performance of the XGBoost model is much higher than that
of PLS-DA, SVM and RF. This shows that the introduction of XGBoost can classify differ-
ent samples well, and the accuracy of the discriminant model will be greatly improved.
This may be because the XGBoost model uses the iteratively learning weak classifiers to
reduce both bias and variance of the ensemble model and introduces the regular terms to
avoid overfitting. For the LCC dataset, the classification performance of XGBoost model
is still higher than PLS-DA, SVM and RF, and the classification results of the nonlinear
discriminant models are better than PLS-DA. Among them, the classification performance
of RF is better than SVM. This may be since that the data in the mapped space of SVM
is not so linearly separable, which reduces the generalizability of the model, resulting in
lower accuracy than RF. Therefore, the introduction of the XGBoost model can greatly
improve the accuracy of data analysis, and it can be widely used in linear and non-linear
datasets. In the future, the screening and identification of differential metabolites will
become more accurate.

In addition, the quality of the model is crucial for accurately extracting differential
metabolites. After the boosting tree in XGBoost is created, the importance score of each
feature can be directly obtained. Therefore, the trained XGBoost model can automati-
cally calculate feature importance, and the differential metabolites can be screened by
feature importance of XGBoost. In the study, the higher accuracy of the model was ob-
tained by the introduction of XGBoost, which will improve the accuracy of the differential
metabolites screened.

4. Conclusions

In this study, we extended the KPIC2 with UMAP and XGBoost to analyze the complex
LC–MS-based untargeted metabolomic datasets. KPIC2 was used to extract PICs from
the liquor and LCC datasets. UMAP and XGBoost are used to visualize and discriminate
complex samples, respectively. The performance of the XGBoost model based on the extrac-
tion results of KPIC2 is compared with XCMS. Results show that the features extracted by
KPIC2 can achieve better classification accuracy (100%) on the test sets of the liquor dataset
when compared with XCMS (92%). The result based on KPIC2 is also better than that of
XCMS on the LCC dataset. Therefore, the combination of KPIC2 and XGBoost model is
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reasonable, and it can be used to classify features extracted based on KPIC2. By visualizing
the Woolly Mammoth dataset, it can be shown that UMAP has the best visualization
results in the preservation of both local and global structures in the reduced dimensions.
The PCA, t-SNE and UMAP methods were used to visualize the liquor and LCC datasets,
which also shows that UMAP can generate reasonable visualization in reduced dimensions
for metabolomic datasets. Finally, the performance of the XGBoost model with features
extracted by KPIC2 exceeds PLS-DA, SVM and RF on these two datasets. The combi-
nation of KPIC2, UMAP and XGBoost have the potential to be a promising pipeline to
analyze LC–MS-based untargeted metabolomic datasets of complex samples. In addition,
this method can effectively avoid overfitting due to the introduction of regular terms in the
XGBoost model. In the future, we will use the feature importance of XGBoost to screen the
biomarkers for further pathway analysis and mechanism investigations.

Supplementary Materials: The following are available online, Dataset: Introduction to the Woolly
Mammoth dataset. Figure S1: Visualization of the Woolly Mammoth dataset by PCA, t-SNE and
UMAP. Code: The code of features extraction methods (KPIC2), visualization methods (UMAP) and
modeling methods (XGBoost).

Author Contributions: This work presented here was carried out with collaboration among all au-
thors. Planning and designing the research, Z.Z. and M.T.; methodology, H.L. and X.W.; software, Y.C.,
Z.L., and W.Z.; writing—original draft preparation, M.T., X.W. and Y.C.; writing—review and editing,
Z.Z., J.Y. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Yunnan Science and Technology Innovation Project (Grant
Nos. 2019HB068) and the Yunnan Academy of Tobacco Agricultural Sciences (Grant Nos. 110202001015
(XX-11), 20200530000241004 and 2019530000241019). The studies meet the approval of the university’s
review board.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All raw data and associated metadata used in the LCC dataset are
publicly available on the MetaboLights repository with identifier MTBLS1129 (https://www.ebi.ac.
uk/metabolights/MTBLS1129, accessed date: 5 May 2021). The liquor dataset can be downloaded at:
http://software.tobaccodb.org/software/antdas2 (accessed date: 5 May 2021).

Acknowledgments: We are grateful to all employees of this institute for their encouragement and
support of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fiehn, O.; Kopka, J.; Dörmann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics.

Nat. Biotechnol. 2000, 18, 1157–1161. [CrossRef] [PubMed]
2. Musilová, J.; Glatz, Z. Metabolomics-Basic concepts, Strategies and Methodologies. Chemické Listy 2011, 105, 745–751.
3. Nam, S.L.; Mata, A.; Dias, R.P.; Harynuk, J.J. Towards Standardization of Data Normalization Strategies to Improve Urinary

Metabolomics Studies by GC× GC-TOFMS. Metabolites 2020, 10, 376. [CrossRef] [PubMed]
4. De Vos, R.C.; Moco, S.; Lommen, A.; Keurentjes, J.J.; Bino, R.J.; Hall, R.D. Untargeted large-scale plant metabolomics using liquid

chromatography coupled to mass spectrometry. Nat. Protoc. 2007, 2, 778–791. [CrossRef] [PubMed]
5. James, J.T.; Tugizimana, F.; Steenkamp, P.A.; Dubery, I.A. Metabolomic analysis of methyl jasmonate-induced triterpenoid

production in the medicinal herb Centella asiatica (L.) urban. Molecules 2013, 18, 4267–4281. [CrossRef] [PubMed]
6. Zarate, E.; Boyle, V.; Rupprecht, U.; Green, S.; Villas-Boas, S.G.; Baker, P.; Pinu, F.R. Fully automated trimethylsilyl (TMS)

derivatisation protocol for metabolite profiling by GC-MS. Metabolites 2017, 7, 1. [CrossRef]
7. Lee, J.; Jung, Y.; Shin, J.-H.; Kim, H.K.; Moon, B.C.; Ryu, D.H.; Hwang, G.-S. Secondary metabolite profiling of Curcuma species

grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules 2014, 19, 9535–9551. [CrossRef]
8. Lebanov, L.; Ghiasvand, A.; Paull, B. Data handling and data analysis in metabolomic studies of essential oils using GC-MS.

J. Chromatogr. A 2021, 1640, 461896. [CrossRef]
9. von Roepenack-Lahaye, E.; Degenkolb, T.; Zerjeski, M.; Franz, M.; Roth, U.; Wessjohann, L.; Schmidt, J.; Scheel, D.; Clemens, S.

Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole
time-of-flight mass spectrometry. Plant Physiol. 2004, 134, 548–559. [CrossRef]

https://www.ebi.ac.uk/metabolights/MTBLS1129
https://www.ebi.ac.uk/metabolights/MTBLS1129
http://software.tobaccodb.org/software/antdas2
http://doi.org/10.1038/81137
http://www.ncbi.nlm.nih.gov/pubmed/11062433
http://doi.org/10.3390/metabo10090376
http://www.ncbi.nlm.nih.gov/pubmed/32961779
http://doi.org/10.1038/nprot.2007.95
http://www.ncbi.nlm.nih.gov/pubmed/17446877
http://doi.org/10.3390/molecules18044267
http://www.ncbi.nlm.nih.gov/pubmed/23579994
http://doi.org/10.3390/metabo7010001
http://doi.org/10.3390/molecules19079535
http://doi.org/10.1016/j.chroma.2021.461896
http://doi.org/10.1104/pp.103.032714


Molecules 2021, 26, 2715 15 of 16

10. Tikunov, Y.; Lommen, A.; De Vos, C.R.; Verhoeven, H.A.; Bino, R.J.; Hall, R.D.; Bovy, A.G. A novel approach for nontargeted data
analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol. 2005, 139, 1125–1137. [CrossRef]

11. Roca, M.; Alcoriza, M.I.; Garcia-Canaveras, J.C.; Lahoz, A.n. Reviewing the metabolome coverage provided by LC-MS: Focus on
sample preparation and chromatography-A tutorial. Anal. Chim. Acta 2020, 1147, 38–55. [CrossRef]

12. Lommen, A. MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data prepro-
cessing. Anal. Chem. 2009, 81, 3079–3086. [CrossRef]

13. Lommen, A.; Kools, H.J. MetAlign 3.0: Performance enhancement by efficient use of advances in computer hardware. Metabolomics
2012, 8, 719–726. [CrossRef]
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39. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens.
2016, 114, 24–31. [CrossRef]

40. Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. A J. Chemom. Soc. 2003, 17, 166–173. [CrossRef]
41. Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. A J. Chemom. Soc. 2002, 16, 119–128. [CrossRef]
42. Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics—a review in human disease diagnosis. Anal. Chim. Acta

2010, 659, 23–33. [CrossRef]
43. Verron, T.; Sabatier, R.; Joffre, R. Some theoretical properties of the O-PLS method. J. Chemom. A J. Chemom. Soc. 2004, 18, 62–68.

[CrossRef]
44. Lan, L.; Sun, W.; Chang, Q.; Sun, G. Comprehensive evaluation of Licorice Extract by five-dimensional quantitative profiling.

J. Chromatogr. A 2021, 1644, 462105. [CrossRef]
45. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2016; pp. 785–794.
46. Feng, C.; Xu, Q.; Qiu, X.; Ji, J.; Lin, Y.; Le, S.; She, J.; Lu, D.; Wang, G. Evaluation and application of machine learning-based

retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS. Chemosphere
2021, 271, 129447. [CrossRef]

47. Yu, Y.J.; Zheng, Q.X.; Zhang, Y.M.; Zhang, Q.; Zhang, Y.Y.; Liu, P.P.; Lu, P.; Fan, M.J.; Chen, Q.S.; Bai, C.C. Automatic data
analysis workflow for ultra-high performance liquid chromatography-high resolution mass spectrometry-based metabolomics.
J. Chromatogr. A 2019, 1585, 172–181. [CrossRef]

48. Cai, Y.; Rattray, N.J.; Zhang, Q.; Mironova, V.; Santos-Neto, A.; Hsu, K.-S.; Rattray, Z.; Cross, J.R.; Zhang, Y.; Paty, P.B.
Sex differences in colon cancer metabolism reveal a novel subphenotype. Sci. Rep. 2020, 10, 1–13. [CrossRef]

49. Kuhl, C.; Tautenhahn, R.; Bottcher, C.; Larson, T.R.; Neumann, S. CAMERA: An integrated strategy for compound spectra
extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012, 84, 283–289. [CrossRef]

http://doi.org/10.1021/acs.jproteome.5b00354
http://doi.org/10.1186/1471-2105-8-207
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1002/cem.785
http://doi.org/10.1002/cem.695
http://doi.org/10.1016/j.aca.2009.11.042
http://doi.org/10.1002/cem.847
http://doi.org/10.1016/j.chroma.2021.462105
http://doi.org/10.1016/j.chemosphere.2020.129447
http://doi.org/10.1016/j.chroma.2018.11.070
http://doi.org/10.1038/s41598-020-61851-0
http://doi.org/10.1021/ac202450g

	Introduction 
	Materials and Methods 
	Theory of KPIC2 
	Theory of Advanced Machine Learning Methods 
	Visualization Methods 
	XGBoost 

	Datasets 
	Liquor Dataset 
	LCC Dataset 

	Comparison of KPIC2 and XCMS 
	Pattern Recognition 
	Evaluation Criteria 

	Results and Discussion 
	Comparison of XGBoost Performance Based on KPIC2 and XCMS 
	Results of Feature Extraction 
	Discriminant Models for Liquor and LCC Datasets 

	Visualization of Liquor and LCC Datasets 
	Comparison of Classification Models Based on KPIC2 

	Conclusions 
	References

