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Abstract: Novel polyacrylamide gel electrolytes (PGEs) doped with nano carbons with enhanced
electrochemical, thermal, and mechanical properties are presented. Carboxylated carbon nanotubes
(fCNTs), graphene oxide sheets (GO), and the hybrid of fCNT/GO were embedded in the PGEs to
serve as supercapacitor (SC) electrolytes. Thermal stability of the unmodified PGE increased with
the addition of the nano carbons which led to lower capacitance degradation and longer cycling
life of the SCs. The fCNT/GO-PGE showed the best thermal stability, which was 50% higher than
original PGE. Viscoelastic properties of PGEs were also improved with the incorporation of GO
and fCNT/GO. Oxygen-containing functional groups in GO and fCNT/GO hydrogen bonded
with the polymer chains and improved the elasticity of PGEs. The fCNT-PGE demonstrated a
slightly lower viscous strain uninform distribution of CNTs in the polymer matrix and the defects
formed within. Furthermore, ion diffusion between GO layers was enhanced in fCNT/GO-PGE
because fCNT decreased the aggregation of GO sheets and improved the ion channels, increasing
the gel ionic conductivity from 41 to 132 mS cm−1. Finally, MnO2-based supercapacitors using PGE,
fCNT-PGE, GO-PGE, and fCNT/GO-PGE electrolytes were fabricated with the electrode-specific
capacitance measured to be 39.5, 65.5, 77.6, and 83.3 F·g−1, respectively. This research demonstrates
the effectiveness of nano carbons as dopants in polymer gel electrolytes for property enhancements.

Keywords: polymer electrolyte; gel electrolyte; supercapacitor; graphene oxide; carbon nanotube

1. Introduction

The development of new generation portable and flexible electronics has increased
the demand for lightweight, flexible, long cycle life, high performance, and safe energy
storage devices [1–4]. Supercapacitors (SC) are essential energy storage devices [5,6] that
play a crucial role in increasing battery life and energy efficiency [7–10]. Additionally, SCs
are candidates to replace rechargeable batteries due to their high-speed charge-discharge
capabilities, high power densities, low costs, and long cycle life [11]. Along with enhancing
electrode capacitance, there has been much interest in improving the electrochemical
potential of electrolytes [12,13].

SC electrolytes can be liquid, gel, and solid [14]. Liquid electrolytes have low dynamic
viscosity and high conductivity compared to gel and solid electrolytes [15]. However,
their shortcomings are safety, high costs of packaging, narrower operating temperature
windows, and lower decomposition voltages [16–20]. It is also difficult to package in
flexible and conformal devices. Flexible electrodes along with solid-state electrolytes have
been used in flexible devices [21]. While they have good mechanical properties and are
very suited to flexible devices, the solid electrolytes typically show low ionic conductivity
and overall performance. Gel polymer electrolytes (GE) are a great compromise between
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the liquid and solid, have relatively good mechanical properties, are lightweight, can be
packaged easily, and can have higher ionic conductivity than the solids [22–26].

Designing composites with optimal thermal, mechanical, and electrochemical prop-
erties is an important consideration in the new generation GE development [27–35]. A
variety of aqueous, non-aqueous, redox and ionic liquid GEs has been reported. [17,27].
Polymers such as poly(acrylonitrile) (PAN) [28], poly(vinyl alcohol) (PVA) [29], polyaniline
(PANI) [30], poly(ethylene oxide) (PEO) [31], poly(methyl methacrylate) (PMMA) [32],
and poly(vinylidene fluoride) (PVDF) [33] have been studied for gel polymer electrolyte
applications. Another important parameter in GE synthesis is the electrolyte selection such
as acidic, alkali and neutral. PVA is the most commonly used GE with KOH electrolyte but
has several limitations such as low ionic conductivity and mechanical strength, and limited
work has been reported for neutral electrolytes such as lithium chloride (LiCl) [27,34]. At
this point, there is a need to explore other gel electrolytes, especially for neutral electrolytes
such as Li+ which have lower corrosion and lower water content. Polyacrylamide (PAM) is
a promising candidate for gel electrolytes with higher ionic conductivity due to its porous
nature and improved mechanical properties [36]. PAM along with lithium sulphate (LiSO4)
is potentially a good combination for fabricating neutral PGE as Li with its small radius
can show faster diffusion.

Typical GEs suffer from low ionic migration compared to liquid electrolytes and it
is crucial to design a new generation of GEs with proper ionic conductivity, mechanical
strength and thermal stability for better performance SCs. Carbon-based nanomaterials
have excellent thermal, electrical, and mechanical properties and are among the most
commonly used additives to improve electrolytes as well as electrodes [13,29,37]. The in-
corporation of carboxyl functionalized carbon nanotubes (fCNTs) and graphene oxide (GO)
into PGEs have been shown to alter ionic conductivity and mechanical properties in PVA
aqueous alkali, PAM non-aqueous and PVDF ionic liquid gel electrolytes [34,38,39]. More-
over, using carbon-nanomaterials in electrolytes also can increase electrode/electrolyte
compatibility. The objective of this study was to develop novel neutral PAM-based GEs in-
corporated with nanocarbons in order to improve thermal, mechanical and electrochemical
properties.

2. Results and Discussion
2.1. Morphology of PGEs

Scanning Electron Microscope (SEM) images of PGEs and electrode material are
presented in Figures 1 and 2. Figure 1a shows a flat structure of the dried PGE without any
additive. Figure 1b–d show the structures of the doped GEs by nano carbons, namely fCNTs,
GO, fCNT/GO in the gel structures. fCNTs tended to tangle and cluster, while the GO
layers were stacked and agglomerated, causing the uneven distribution of nanomaterials
through the PGEs. On the other hand, in the fCNT/GO hybrid, there are π-π stacking
interactions between fCNTs and graphene layers, which increase synergistic effects in the
hybrids [40] in the gel scaffolds [41]. Figure 1e,f show synthesized MnO2 as active material
in SCs. Roughness and wrinkles on the synthesized MnO2 increased the surface area and
improved the overall performance of SCs.

To further study the distribution of carbon nanomaterials in the PGE structure, Raman
chemical imaging was performed. A 523 nm excitation laser was selected for an exposure
time of 0.05 s in five scans. Multivariate Curve Resolution (MCR) was used to investigate
the composition via color coding with 50x magnification [42] and the images of PGEs
are presented in Figure 2. Each color on the MCR image represents a component in the
PGE, and each component’s identification was based on the Raman spectrum. Figure 2a
shows the uniform structure of the PGE matrix, and the black color shows saturation of the
individual Raman spectrum. Figure 2b,c show an accumulation of fCNTs (blue) and GO
(green) in the gel structure, respectively. From chemical composition images, it is observed
that the distribution of the doping materials throughout the fCNT/GO-PGE was uniform,
and all the components diffused evenly (Figure 2d).
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2.2. Thermal Stability Analysis

The thermal stability of the GE plays an important role in SC stability and its life
cycle. Heat is produced and temperature rises during the SC charge-discharge process,
followed by electrolyte decomposition and device failure if not properly treated. These
even lead to safety issues. Additionally, the performance of SCs is expected to remain
stable in high-temperature environments [16,43].

The thermal stability of GEs was evaluated by a Thermo Gravimetric Analyzer (TGA)
and is presented in Figure 3. Measurements were performed under heating the temperature
from 30 to 700 ◦C at a heating rate of 10 ◦C/min. Thermal degradation occurred in three
steps. The first weight loss was from removal of moisture. During the next stage, the
co-polymer degraded (from 150 to 430 ◦C). The addition of GO and fCNTs enhanced the
thermal stability. Since GO sheets had higher oxygen contents (~45%), the weight loss at the
initial stage was more significant than the others. fCNT/GO-PGE showed the best thermal
stability among tested samples which would cause the lowest capacitance degradation.
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Differential Scanning Calorimeter (DSC) measurements were performed from 30 to
300 ◦C in the presence of N2 gas at a heating rate of 10 ◦C/min and cooling from 300 to 30 ◦C
at the same rate of 10 ◦C/min. DSC is a useful for measuring the thermodynamic properties
of the gel electrolytes. Glass transition temperature (Tg) and the melting enthalpy (∆Hm)
based on DSC curves are presented in Table 1. According to Table 1, Tg of the electrolytes
increased upon adding NCs due to strong intermolecular interaction between the NCs and
the polymer chains. This interaction also reduced chain mobility. Since GO contained more
oxygen-containing functional groups than fCNTs, the hydrogen bonds within GO-PGE
were more abundant than in fCNT-PGE. More effective hydrogen bonds in the electrolyte
structures brought a higher Tg for fCNT/GO-PGE compared to other electrolytes. The gel
is a mixture containing water, which is removed between 150 and 200◦ C. After that, only
the polymer is left. The melting enthalpy is that of the polymer composite rather than the
gel itself. Reduction in ∆Hm from 177 to 91 J/g indicated decreasing crystallinity of GEs
after doping with carbon nanomaterials. Lower alignments in polymer chains also formed
canals within the gels for better ion diffusion.
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Table 1. Thermal and mechanical properties of gels incorporated by carbon nanomaterials.

Gel Electrolytes Tg(◦C) ∆H m( J
g )

Elastic Modulus
(kPa) Loss Factor (tan δ)

PGE 93.7 177.44 2.3 0.06
fCNT-PGE 118.5 169.44 1.5 0.05
GO-PGE 121.2 138.38 4.9 0.40

fCNT/GO-PGE 130.8 91.39 4.3 0.43

2.3. Viscoelastic Properties of GEs

The rheological behaviors of samples were studied with an oscillator. A dynamic
strain sweep test was performed under the constant strain amplitude of 1 Hz at room
temperature to investigate the effect of shear stress on the viscoelastic behavior of the GEs.
Storage (elastic) modulus (G′) and the loss (viscous) modulus (G”) were collected and
presented as a function of strain percentage in Figure 4. The increment of G′ in GO-PGE and
fCNT/GO-PGE highlights the viscoelastic properties of the viscous gel into a stiffer and
elastic composite. This alteration may be due to that the oxygen-containing groups present
in GO and fCNT/GO group formed hydrogen bonds with polymer chains, potentially
improving the mechanical strength of the gel [34].
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Conversely, fCNTs that contained fewer carboxyl groups than GO agglomerated more
within the PGE complex, forming defect areas. Nanomaterial agglomeration also caused
a lack of hydrogen bonds between the fCNTs and polymer matrix. The ratio of G” to G′

introduced as loss factor (tan δ) is presented in Table 1. Tan δ describes the s elastic (G′) and
viscous (G”) characteristics of the PGEs, specifically when the ratio of G” to G′ is equivalent
to 1. The fCNT-PGE in Figure 4b highlighted this interaction: when the externally applied
force was greater than intermolecular forces of the material, an irreversible collapse would
occur [44]. A lower loss factor for PGE and fCNT-PGE represented a more solid-like
structure, while a higher loss factor for GO-PGE and fCNT/PGE represented a more gel-
like sticky structure. Adhesive properties are desired properties in SC applications in order
to increase the contact between electrolytes and electrodes [45].
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2.4. EIS and CV Analysis for Gel Electrolytes

Electrochemical impedance spectroscopy (EIS), an alternating current (AC) based
measurement was performed to reach detailed information about PGEs [46]. The efficiency
of SCs strongly depends on ion redox and ionic conductivity of the electrolytes. Two probe
analysis was carried out by connecting a working/sense electrode to an anode graphite
sheet and counter/reference electrode to a cathode graphite. The electrode graphite sheets
with controlled areas were placed in a three-dimensional printed case filled with gel
electrolytes. After the formation of the GPEs, probes were connected to the graphite sheets.
The distance between the electrodes was also controlled based on the casing designs.
Measurements were performed under 10 mHz to 100 kHz with 5 mV amplitude and 0 DC
voltage, and an oscillating current response through the sample was collected. Nyquist and
bode plots presented in Figure 5a,b are to compare prepared PGEs, and the summary of the
data is presented in Table 2. Interception in the high-frequency region and x-axis in Nyquist
plot (Real Z versus Imaginary Z) showed the bulk resistance (Rb) of the PGEs. In general,
Nyquist plots are separated into three regions, including semicircle at high frequencies,
which is the interfacial charge transfer region, diffusion, and capacitive region. According
to Figure 5a, the semicircles of Nyquist plots for the gel electrolytes were unnoticeable.
This was because of the very small charge transfer resistance at the electrode-electrolyte
interfaces [47,48].
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The ionic conductivity, which can be extracted from the Nyquist plot, is a critical
parameter in electrolyte properties. As bulk resistance increases, the conducting nature will
decrease. Ionic conductivity (σ) of gels was calculated using Equation (1) and the resulted
values were listed in Table 2:

σ =
L

Rb A
(1)

where L is the thickness of electrolyte and A is the contact area between graphite sheets
and gels. Ionic conductivity values of the gel electrolytes were listed as 41.2, 58.8, 60, and
132 mS cm−1, respectively, for PGE, fCNT-PGE, GO-PGE, and fCNT/GO-PGE. The reason
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for the conductivity increment was that the Li+ with a small ionic radius diffused between
GO layers and increased the final ionic conductivity. The charge transfer of fCNT/GO-
PGE was three times higher than pure PGE electrolyte; it was also higher than fCNT-PGE
and GO-PGE, for the distribution of carbon nanomaterials was more uniform in this gel
electrolyte, facilitating the diffusion and migration of ions.

Table 2. Electrochemical properties of gels incorporated by carbon nanomaterials.

Gel
Electrolytes

Bulk
Resistance

Rb (Ω)

Ionic
Conductivity

σ

(mS cm−1)

Phase
(◦)

Average
Electrons

LifeTime τ

(mS)

Specific
Capacitance

(F·g−1)

PGE 16 41 −45 0.016 39.5
fCNT-PGE 11 59 −56 0.005 65.5
GO-PGE 10 64 −70 0.004 77.6

fCNT/GO-
PGE 5 132 −83 0.001 83.3

Bode plot is a frequency-based plot of EIS measurements, and the phase vs. frequency
diagram includes three different areas: capacitive behavior at lower frequency, followed
by diffusion and interfacial charge transfer [48]. The collected angle difference between
the charging voltage and the current is presented as phase degree in Table 2. The negative
angle degree is related to the leading current from voltage by 90 degrees [49]. Another
parameter that was calculated from the bode plot was the average electrons lifetime (τ) by
peak frequency (fp) as shown in Equation (2) [50].

τ =
1

2 π fp
(2)

Since τ was as low as 0.001 mS for fCNT/GO-PGE, ions transferred faster, and this
was in line with its higher ionic conductivity than other PGEs.

Electrochemical properties of gel electrolytes were further examined by cyclic voltam-
metry (CV) at 5, 10, 50, and 100 mV s−1 at room temperature. Symmetrical carbon cloth
electrodes have been used as anode and cathode to establish cyclic voltammograms for
a scan rate of 100 mV s−1 presented in Figure 5. The gel electrolytes incorporated with
NCs showed better performance than PGE under all scan rates, which was due to the
enhancement of ion transfer in the presence of fCNTs, GO and fCNT/GO in PGEs.

2.5. Galvanostatic Charge-Discharge Studies

The prepared electrodes and GEs were fabricated into supercapacitors and examined
by galvanostatic charge-discharge measurements performed on an MTI Battery Analyzer.
Supercapacitors were cycled between 0 and 1.5 V at the rate of 0.1 A g−1. Galvanostatic
charge-discharge curves are presented in Figure 6. Capacitance was calculated from
Equation (3) and listed in Table 2:

Csp : Speci f ic capacitance
(

F·g−1
)
=

I
dV
dt ×m

(3)

where I is discharge current (A cm−2), dv/dt is the slope of the discharge curve, and m is
the mass of electrode material (g). Calculated capacitance values for fifth cycle were 39.5,
65.5, 77.6, and 83.3 F·g−1 for PGE, fCNT-PGE, GO-PGE, and fCNT/GO-PGE, respectively.
The specific capacitances of SCs were improved by adding the NCs due to the increment
of ionic conductivity in PGEs. The addition of the NCs in the PGE framework facilitated
ion migration between the electrodes by generating nano pores and channels within the
PGEs. fCNT/GO hybrid with a homogenous structure had less additive aggregation in
composites and benefited from multiple parameters, demonstrating the best electrolyte



Molecules 2021, 26, 2631 8 of 12

properties. On the other hand, more gel-like properties of fCNT/GO-PGE provided better
adhesion and fewer voids at the electrode-electrolyte interface. Charge-discharge curves of
an fCNT/GO-PGE supercapacitor cycled at 1 A g−1, 0.5 A g−1, and 0.1 A g−1 are shown in
Figure 6b. The performance retention was 98% after 1000 cycles, indicating high stability
and reliability of the fCNT- and GO-doped polymer gel electrolyte (Figure 6c).
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Figure 6. Electrochemical performance of GE based SCs, (i) PGE, (ii) fCNT-PGE, (iii) GO-PGE, (iv) fCNT/GO-PGE, (a)
Galvanostatic Charge-Discharge curves under the current density of 0.1 A g−1, (b) Galvanostatic charge-discharge curves of
fCNT/GO-PGE SC cell under the current density of 0.1, 0.5 and 1 A g−1, (c) Cycling performance of fCNT/GO-PGE SC cell
at a current density of 1 A g−1.

3. Materials and Methods

Acrylamide (AA), N, N′-methylene bisacrylamide (MBA), potassium persulfate,
lithium sulfate, potassium permanganate, polyethylene oxide (PEO), carbon black, poly(3,4-
ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS, 1.3 wt%), hydrochloric acid
and sulfuric acid with the purity of 99+% were purchased from Sigma Aldrich. Carbon nan-
otubes (CNTs), graphene oxide (GO), and carbon cloth were purchased from Cheaptubes
(Grafton, VT, USA), Graphenea (Cambridge, MA, USA), and the Fuel Cell Store (College
Station, TX, USA), respectively.
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3.1. Preparation of fCNT, fCNT/GO Composite

fCNTs and fCNT/GO composites were prepared by methods reported before [51,52].
In short, pristine CNTs were added to a mixture of concentrated HCl and H2SO4 (1:1
volume ratio) and reacted under 100 ◦C for 40 min. The sample was dried in a vacuum
oven overnight after being filtered and triple washed to obtain fCNTs. Oxygen contents in
the fCNTs were measured to be 18%. fCNT/GO composite was prepared by mixing 1:1
weight ratio of the two carbons and sonicating at room temperature for 3 h.

3.2. Synthesis of Polyacrylamide Gel Polymer Electrolytes

The plain gel PGE was synthesized by mixing a weighted amount of AA, MBA, and
LiSO4 in MilliQ water and stirred at 80 ◦C for 1 h. This was followed by adding K2S2O8
aqueous solution and stirring for 1 min. The fluid was poured into a mold and gel was
then generated within a few minutes. The amount of each component was fixed at 5.5%
AA, 0.5% MBA, 18.5% LiSO4, 0.5% K2S2O8 and 75% water by weight. To incorporate
carbon nanomaterials into the gel, one step was added to the procedure. In total, 1 mL of
0.1 mg/mL aqueous solutions of fCNTs, GO, fCNT/GO (0.6%) were sonicated with AA in
water for 3 h prior to the first step of the synthesis. The rest of the process was kept the
same as described before. Figure 7 presents image of prepared PGEs.
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3.3. Electrode Preparation and Device Assembly

Manganese dioxide (MnO2) was synthesized as a base material for the electrodes.
A total of 100 mL 0.25 M potassium permanganate solution and 9 mL concentrated hy-
drochloric acid was mixed and stirred overnight at room temperature. The procedure was
followed by filtration and washing insoluble MnO2 using MiliQ water. The reaction is
presented below:

2KMnO4(aq) + 8HCl(aq) → 2KCl(aq)+ 2MnO2(s) + 4H2O+ 3Cl2(g)

The electrode composition was 85% MnO2, 5% PEO, and 10% carbon black. Total
amount of 1 g dry powder was added into 2.4 g PEDOT:PSS solution, mixed and applied
onto a conductive carbon cloth current collector. Total electrode materials were controlled
at around 6 mg for further experiments.

Prepared electrodes were placed in the three-dimensional printed cases before gel
electrolyte solutions were poured in for gelation processes. When the gels were totally
formed, the supercapacitors were tested. 3D printed casing design and the assembled
product are presented in Figure 8.

3.4. Characterization and Electrochemical Measurements

The morphologies of gel electrolytes were studied by JSM-7900F scanning electron
microscope (SEM) from JEOL and Thermo Scientific DXRxi Raman imaging microscope.
Thermal stability was investigated by Thermo Gravimetric Analyzer (TGA) and Differential
Scanning Calorimeter (DSC) from Perkin Elmer. The rheological behaviors and mechan-
ical properties of samples were studied by an oscillatory rheometer (Kinexus, Malvern
Instruments, Malvern, UK). Electrochemical impedance spectroscopy (EIS) and cyclic
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voltammetry (CV) experiments were carried out on the Gamry instrument. Galvanostatic
charge-discharge measurements were performed on an MTI Battery Analyzer.
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4. Conclusions

In conclusion, PAM gel electrolytes doped with carbon nanomaterials were prepared,
and their thermal, mechanical, and electrochemical properties were studied. PGE, fCNT-
PGE, GO-PGE, and fCNT/GO-PGE electrolytes were compared. It was found that the
incorporation of 0.6% carbon nanomaterials by weight altered the thermal and mechanical
properties of PGE. The Tg of the samples increased from 93.7 for PGE to 130.8 ◦C for
fCNT/GO-PGE. Using fCNTs along with GO in composite structures increased the syner-
getic effect and maintained the uniform distribution of integrated materials. Rheological
properties of PGEs were studied, and elastic modulus was doubled in fCNT/GO-PGE
compared to PGE owing to the hydrogen bonds formed between carboxyl groups in nano
carbons and gel polymer chains.

Additionally, from EIS measurements, the ionic conductivity was doubled by adding
fCNT/GO due to the formation of ion channels in the gel composition. The presence of
fCNTs prevented aggregation of GO sheets and increased overall performance compared
to fCNT-PGE and GO-PGE. By doping NCs into the GE, specific capacitance of SCs rose
from 39.5 to 83.3 F·g−1. In general, doping of NCs, especially the combination of carboxy-
lated nanotubes and graphene oxides, brought enhancement in thermal, mechanical, and
electrochemical properties of PAM-based gel electrolytes. These gel electrolytes also hold
great potential in flexible electrochemical device developments.
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