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Abstract: Three new (1–3) and 25 known compounds were isolated from the crude extract of Cassia
abbreviata. The chemical structures of new compounds were established by extensive spectroscopic
analyses including 1D and 2D NMR and HRESIMS. Cassiabrevone (1) is the first heterodimer of
guibourtinidol and planchol A. Compound 2 was a new chalcane, while 3 was a new naphthalene.
Cassiabrevone (1), guibourtinidol-(4α→8)-epiafzelechin (4), taxifolin (8), oleanolic acid (17), piceatan-
nol (22), and palmitic acid (28), exhibited potent anti-HIV-1 activity with IC50 values of 11.89 µM,
15.39 µM, 49.04 µM, 7.95 µM, 3.58 µM, and 15.97 µM, respectively.

Keywords: Cassia abbreviata; Fabaceae; anti-HIV; heterodimer; flavonoid

1. Introduction

Cassia abbreviata is a small-to-medium-sized branched tree of the Fabaceae. It is widely
spread in the tropics, especially in southeast Africa, with a long history in traditional
medicine for the treatment of numerous conditions [1], such as headaches, diarrhea, con-
stipation, some skin diseases, malaria, syphilis, pneumonia, stomach troubles, uterine
pains, and gonorrhea [2,3]. Pharmacological studies indicated that C. abbreviata showed a
broad spectrum of biological activities, including CNS depression [4], hypoglycemia [5],
anti-AIDS [6], hepatoprotection [7], antioxidant [8], antibacterial [9], etc. Although some
fatty acid compositions were analyzed from its seed oil by gas chromatography (GC) [10],
while several dimeric and trimeric flavonoids were proposed on the basis of the UPLC–MS
spectroscopic data [11], the chemical component investigation on C. abbreviata was seldom
reported. Up to now, only a new flavan [12] and two novel trimeric proanthocyanidins [9]
were isolated.

Recently, we screened several crude extracts from different plants of Cassia species
and found that C. abbreviata showed potent anti-HIV-1 activity. Therefore, a systematic
phytochemical investigation was carried out, which led to the isolation of three new (1–3)
and 25 known (4–28) compounds (Figure 1). Herein, we report the isolation, structure, and
anti-HIV-1 activity of these compounds.

Molecules 2021, 26, 2455. https://doi.org/10.3390/molecules26092455 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4967-0844
https://orcid.org/0000-0001-9613-5425
https://doi.org/10.3390/molecules26092455
https://doi.org/10.3390/molecules26092455
https://doi.org/10.3390/molecules26092455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26092455
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26092455?type=check_update&version=2


Molecules 2021, 26, 2455 2 of 8Molecules 2021, 26, x FOR PEER REVIEW 2 of 8 
 

 

 
Figure 1. Compounds 1–28 from Cassia abbreviata. Figure 1. Compounds 1–28 from Cassia abbreviata.
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2. Results and Discussion

Compound 1 showed a molecular ion peak at m/z 535.1590 [M + H]+ in its positive
HRESIMS (Figure S18), corresponding to the molecular formula of C29H26O10. Its 1H and
13C NMR spectroscopic data in DMSO-d6 (Table 1) exhibited 29 carbon signals, consisting
of one ABX [δH 6.12 (1H, d, J = 2.4 Hz, H-8); 6.15 (1H, dd, J = 8.4, 2.4 Hz, H-6); 6.40 (1H,
d, J = 8.4 Hz, H-5); δC 102.0 (d, C-8), 108.3 (d, C-6), 118.6 (s, C-10), 129.5 (d, C-5), 155.3 (s,
C-9), 155.8 (s, C-7)], one 1,4-disubsituted [δH 6.76 (2H, d, J = 8.5 Hz, H-3′,5′); 7.24 (2H, d,
J = 8.6 Hz, H-2′,6′); δC 114.8 (d × 2, C-3′,5′), 129.3 (d × 2, C-2′,6′), 130.3 (s, C-1′), 157.1 (s,
C-4′)] and one penta-substituted [δH 6.09 (1H, s, H-6′′); δC 95.2 (d, C-6′′), 97.4 (s, C-10′′),
107.7 (s, C-8′′), 151.7 (s, C-9′′), 154.0 (s, C-5′′), 155.4 (s, C-7′′)] benzoic moieties, besides to
one methyl [δH 0.97 (3H, s, Me-17′′); δC 23.8 (q, C-17′′)], two sp3 methylenes [δH 2.57 (dd,
J = 17.7, 5.3 Hz, H-4′′β), 2.67 (d, J = 17.7 Hz, H-4′′α); 2.62 (dd, J = 19.0, 4.8 Hz, H-12′′α),
2.98 (dd, J = 19.0, 11.6 Hz, H-12′′β); δC 20.2 (t, C-4′′), 31.1 (t, C-12′′)], four oxygenated sp3

methines [δH 4.19 (d, J = 1.6 Hz, H-2′′); 4.26 (br. t, J = 9.1 Hz, H-3); 4.39 (t, J = 2.5 Hz, H-3′′);
4.48 (d, J = 9.5 Hz, H-2); δC 69.5 (d, C-3), 72.8 (d, C-3′′), 78.7 (d, C-2′′), 82.9 (d, C-2)], two sp3

methines [δH 2.36 (dd, J = 11.7, 4.6 Hz, H-11′′); 4.40 (d, J = 9.1 Hz, H-4); δC 40.4 (d, C-4),
50.2 (d, C-11′′)], one carbonyl (δC 174.5 s, C-13′′), and one acetalic quaternary carbon (δC
115.6 s, C-15′′).

Table 1. 1H (500 Hz) and 13C (125 Hz) NMR spectroscopic data of 1–3 (δ in ppm, J in Hz within parentheses).

No.
1 a 1 b 2 b 3 b

δC δH δC δH δC δH δC δH

1 153.7 C
2 82.9 CH 4.48 (d, 9.5) 84.3 CH 4.56 (d, 9.6) 80.1 CH 4.90 overlap 123.3 C
3 69.5 CH 4.26 (dd, 9.5, 9.1) 72.3 CH 4.40 (dd, 9.6, 9.1) 67.8 CH 4.19 (br. t, 4.0) 135.1 C
4 40.4 CH 4.40 (d, 9.1) 41.8 CH 4.58 (d, 9.1) 34.1 CH2 3.14 (dd, 16.2, 4.2) 119.6 CH 6.86 s

2.75 (dd, 16.2, 3.0)
5 129.5 CH 6.40 (d, 8.4) 130.2 CH 6.60 (d, 8.6) 156.7 C 104.8 CH 6.64 (d, 2.0)
6 108.3 CH 6.15 (dd, 8.4, 2.4) 109.9 CH 6.24 (dd, 8.6, 2.4) 104.0 CH (d, 2.4) 157.9 C
7 155.8 C 157.0 C 157.8 C 102.7 d 6.74 (d, 2.0)
8 102.0 CH 6.12 (d, 2.4) 103.3 CH 6.24 (d, 2.4) 109.6 CH (dd, 8.2, 2.4) 156.5 C
9 155.3 C 156.9 C 131.7 CH 6.90 (d, 8.2) 109.3 C
10 118.6 C 120.6 C 111.9 C 139.5 C
1′ 130.3 C 131.7 C 132.2 C 104.8 CH 4.75 (d, 7.7)
2′ 129.3 CH 7.24 (d, 8.6) 130.3 CH 7.31 (d, 8.5) 115.4 CH 6.99 (d, 1.7) 79.8 CH 3.89 m
3′ 114.8 CH 6.76 (d, 8.5) 116.0 CH 6.81 (d, 8.5) 145.9 C 78.0 CH 3.34 m
4′ 157.1 C 158.5 C 146.0 C 78.2 CH 3.76 m
5′ 114.8 CH 6.76 (d, 8.5) 116.0 CH 6.81 (d, 8.5) 116.0 CH 6.78 (d, 8.2) 71.0 CH 3.50 m
6′ 129.3 CH 7.24 (d, 8.6) 130.3 CH 7.31 (d, 8.5) 119.4 CH 6.82 (dd, 8.2, 1.7) 66.9 CH2 3.23 m; 3.92 m
1′′ 100.4 CH 5.23 (d, 7.9)
2′′ 78.7 CH 4.19 (d, 1.6) 81.0 CH 4.22 (d, 2.4) 78.4 CH 3.54 m
3′′ 72.8 CH 4.39 (dd, 5.3, 1.6) 75.0 CH 4.45 (ddd, 5.1, 2.4, 1.5) 78.0 CH 3.34 m
4′′ 20.2 CH2 2.67 (d, 17.7) 21.3 CH2 2.89(d, 17.9) 75.4 CH 3.25 m

2.57 (dd, 17.7, 5.3) 2.64 (dd, 17.9, 5.1)
5′′ 154.0 C 155.6 C 71.0 CH 3.50 m
6′′ 95.2 CH 6.09 s 96.3 CH 6.09 s 62.3 CH2 3.74 m; 3.93 m
7′′ 155.4 C 157.1 C
8′′ 107.7 C 109.4 C
9′′ 151.7 C 153.0 C
10′′ 97.4 C 99.6 C

11′′(11) 50.2 CH 2.36 (dd, 11.7, 4.7) 52.1 CH 2.39 (dd, 11.6, 4.5) 208.3 C
12′′(12) 31.1 CH2 2.98 (dd, 19.0, 11.7) 32.8 CH2 2.93 (dd, 19.2, 11.6) 32.7 CH3 2.58 s

2.62 (dd, 19.0, 4.7) 2.60 (dd, 19.2, 4.5)
13′′(13) 174.8 C 177.2 C 20.2 CH3 2.23 s

15′′ 115.9 C 118.4 C
17′′ 23.8 CH3 0.97 s 24.4 CH3 1.10 s

a Recorded in DMSO-d6. b Recorded in CD3OD.

In the heteronuclear multiple bond connectivity (HMBC) spectrum, a diagnostic ketal-
γ-lactone moiety could easily be deduced according to correlations of H-2′′ to C-3′′/C-15′′,
H-3′′ to C-10′′, H-11′′ to C-3′′/C-13′′, H2-12′′ to C-13′′/C-15′′, and H3-17′′ to C-11′′/C-15′′,
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which by further cross peaks of H2-4′′ to C-5′′/C-9′′/C-10′′ constructed the fragment of
planchol A (6) [13]. Moreover, HMBC correlations of H-2 to C-1′/C-2′/C-9, H-3 to C-
1′/C-2/C-4/C-10, and H-4 to C-5/C-9/C-10 and the large coupling constant of H-2/H-3
(3JH2-H3 = 9.5 Hz) could be used to establish another fragment of guibourtinidol [14]. These
two fragments could be connected via C-4 and C-8′′ by the key HMBC correlations of
H-4 to C-7′′/C-9′′ (Figure 2). According to the large coupling constant between H-3 and
H-4 (3JH3-H4 = 9.1 Hz), the stereochemistry of C-4 was assumed to be α-orientation [15].
On the basis of the above evidence and from the perspective of the biosynthetic pathway,
the structure of 1 was then determined to be guibourtinidol (4α→8) planchol A, and
named cassiabrevone.
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Although dimers or trimers of flavonoids were commonly found in nature, cas-
siabrevone is the first example of a heterodimer formed by flavanol and planchol A. It
might be biosynthesized from a natural chalconol by dehydration, oxidation, and final endo-
attacking via neighboring group participation induced Friedel–Crafts reaction (Figure 3).

Compound 2 was assigned the molecular formula C15H16O6 from its positive HRES-
IMS at m/z 293.0947 [M + H]+. The 1H and 13C NMR spectroscopic data of 2 were very
similar to those of epifiliferol [16,17], except that an ABX aromatic ring instead of an AX
benzoic moiety was found in 2. The assumption was confirmed by the HMBC correlation
of H2-4 (δH 2.75, 1H, dd, J = 16.2, 3.0 Hz, H-4a; 3.14,1H, dd, J = 16.2, 4.0 Hz, H-4b) to C-5 (δC
156.7 s)/C-9 (δC 131.7 d)/C-10 (δC 111.9 s). The small coupling constant between H-2 and
H-3 (3JH2/H3 = 4.0 Hz) further confirmed the erythro-configuration of 2. Accordingly, the
structure of 2 was assigned as 9-dehydroxyepifiliferol. Interestingly, it might be originated
by the same biosynthetic precursor as 1, via a nucleophilic displacement reaction, followed
by the oxidation reaction.

The molecular formula of compound 3 was assigned to be C24H30O13 according to its
sodium adduct ion peak at m/z 557.1792 [M + H]+, suggesting ten degrees of unsaturation.
The 1H and 13C NMR spectra (Table 1) of 3 were almost the same as those of cassiaglycoside
II (17) [18], except that the β-D-glucopyranosyl moiety at the C-6 position was shifted to
the C-2′ position. This was evidenced by the downfield shift from 74.9 to 79.8 of the C-2′

position. Further confirmation could be observed by the HMBC correlations of H-1′′ (δH
5.23, 1H, d, J = 7.9 Hz) to C-2′ (δC 79.8 d) and H-1′ (δH 1H, 4.75, d, J = 7.7 Hz) to C-8 (δC
156.5 s). By detailed analysis of its HSQC, COSY, and HMBC NMR spectroscopic data,
compound 3 was then elucidated as 6-deglucopyranosyl-2′-glucopyransoyl cassiaglycoside
II, and named cassiaglycoside V.

By comparison of the NMR and MS data with those published in the literature,
25 known compounds were determined to be guibourtinidol-(4α→8)-epiafzelechin (4) [15],
guibourtinidol-(4α→8)-epicatechin (5) [15], planchol A (6) [13], (+)-afzelechin (7) [19],
taxifolin (8) [20], dihydrokaempferol (9) [20,21], naringenin (10) [22], rhusopolyphenol



Molecules 2021, 26, 2455 5 of 8

E (11) [23], cascaroside D (12) [24], 1′′-deoxyaloin B-1-O-β-D-glucopyranoside (13) [24],
10-hydroxycascaroside C (14) [24], cassialoin (15) [24], chrysophanol (16) [25], oleanolic
acid (17) [26], erythrodiol (18) [26], lupeol (19) [27], β-sitosterone (20) [28], β-sitosterol
(21) [29], piceatannol (22) [30], markhamioside F (23) [31], vanillic acid (24) [32], cassiagly-
coside II (25) [18], (7S, 8S)-syringoylglycerol (26) [33], β-D-glucopyranosyl (1→2)-β-D-
glucopyranoside (27) [34], and palmitic aicd (28) [35].

The crude extract of Cassia abbreviata and all isolated compounds were assessed for
their anti-HIV activity in MT4 cells infected by the reference strain HIV-1 IIIB (Figure 3).
Cassiabrevone (1), guibourtinidol-(4α→8)-epiafzelechin (4), taxifolin (8), oleanolic acid
(17), piceatannol (22), and palmitic acid (28) inhibited HIV-1 infection at noncytotoxic
concentration and showed IC50 values ranging from 3.58 to 49.04 µM (Table 2). Enfuvirtide
and Plerixafor are entry inhibitors for positive controls.

Table 2. The IC50 values of compounds 1, 4, 8, 17, 22, and 28 harboring an anti-HIV-1 activity.

Compounds
IC50 (µM)

HIV-1 Infection (µM) Cytotoxicity

CE a 9.98 ± 3.88 (µg/mL) >1000 (µg/mL)
Cassiabrevone (1) 11.89 ± 2.14 >333

Guibourtinidol-(4α→8)-epiafzelechin (4) 15.39 ± 9.09 >333
Taxifolin (8) 49.04 ± 5.02 >333

Oleanolic acid (17) 7.95 ± 2.57 >333
Piceatannol (22) 3.58 ± 0.27 >333

Palmitic acid (28) 15.97 ± 3.04 >333
Enfuvirtide (T20) b 0.0096 ± 0.001 >1

Plerixafor (AMD3100) b 0.075 ± 0.009 >1
a CE: crude extract of Cassia abbreviate. b Enfuvirtide and Plerixafor: positive controls. Each experiment was
conducted three times and data were expressed as means ± SD.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 8 
 

 

guibourtinidol-(4α→8)-epicatechin (5) [15], planchol A (6) [13], (+)-afzelechin (7) [19], tax-
ifolin (8) [20], dihydrokaempferol (9) [20,21], naringenin (10) [22], rhusopolyphenol E (11) 
[23], cascaroside D (12) [24], 1″-deoxyaloin B-1-O-β-D-glucopyranoside (13) [24], 10-hy-
droxycascaroside C (14) [24], cassialoin (15) [24], chrysophanol (16) [25], oleanolic acid (17) 
[26], erythrodiol (18) [26], lupeol (19) [27], β-sitosterone (20) [28], β-sitosterol (21) [29], 
piceatannol (22) [30], markhamioside F (23) [31], vanillic acid (24) [32], cassiaglycoside II 
(25) [18], (7S, 8S)-syringoylglycerol (26) [33], β-D-glucopyranosyl (1→2)-β-D-glucopyra-
noside (27) [34], and palmitic aicd (28) [35]. 

The crude extract of Cassia abbreviata and all isolated compounds were assessed for 
their anti-HIV activity in MT4 cells infected by the reference strain HIV-1 IIIB (Figure 3). 
Cassiabrevone (1), guibourtinidol-(4α→8)-epiafzelechin (4), taxifolin (8), oleanolic acid 
(17), piceatannol (22), and palmitic acid (28) inhibited HIV-1 infection at noncytotoxic con-
centration and showed IC50 values ranging from 3.58 to 49.04 µM (Table 2). Enfuvirtide 
and Plerixafor are entry inhibitors for positive controls. 

Table 2. The IC50 values of compounds 1, 4, 8, 17, 22, and 28 harboring an anti-HIV-1 activity. 

Compounds 
IC50 (µM) 

HIV-1 Infection (µM) Cytotoxicity 
CE a 9.98 ± 3.88 (µg/mL) >1000 (μg/mL) 

Cassiabrevone (1) 11.89 ± 2.14 >333 
Guibourtinidol-(4α→8)-epiafzelechin (4) 15.39 ± 9.09 >333 

Taxifolin (8) 49.04 ± 5.02  >333 
Oleanolic acid (17) 7.95 ± 2.57 > 333 

Piceatannol (22) 3.58 ± 0.27 >333 
Palmitic acid (28) 15.97 ± 3.04 >333 

Enfuvirtide (T20) b 0.0096 ± 0.001 >1 
Plerixafor (AMD3100) b 0.075 ± 0.009 >1 

a CE: crude extract of Cassia abbreviate. b Enfuvirtide and Plerixafor: positive controls. Each experi-
ment was conducted three times and data were expressed as means ± SD. 

 
Figure 3. Protective effects of the crude extract (CE) along with compounds 1, 4, 8, 17, 22, and 28 of 
Cassia abbreviata against HIV-1 infection (n = 3). 

3. Materials and Methods 
3.1. General Experimental Procedures 

NMR spectra were recorded on Bruker 500 MHz spectrometer using TMS as an in-
ternal standard. The HRESIMS spectra were measured on a Waters Xevo G2 Q-TOF mass 
spectrometer. Optical rotations were measured with an Anton Paar MCP100 polarimeter. 
Chemical shifts were recorded in δ values using solvent signals DMSO-d6 (δH 2.50/δC 39.5) 
and CD3OD (δH 3.0/δC 49.0) as references. Column chromatography (CC) was performed 
on silica gel, Sephadex LH-20, and ODS (octadecyl silane). 

-8 -6 -4 -2 0
0

20

40

60

80

100

120

log10(M)

%
 P

ro
te

ct
io

n

CE (g/L)
1
4
8
17
22
28

Figure 3. Protective effects of the crude extract (CE) along with compounds 1, 4, 8, 17, 22, and 28 of
Cassia abbreviata against HIV-1 infection (n = 3).

3. Materials and Methods
3.1. General Experimental Procedures

NMR spectra were recorded on Bruker 500 MHz spectrometer using TMS as an
internal standard. The HRESIMS spectra were measured on a Waters Xevo G2 Q-TOF mass
spectrometer. Optical rotations were measured with an Anton Paar MCP100 polarimeter.
Chemical shifts were recorded in δ values using solvent signals DMSO-d6 (δH 2.50/δC 39.5)
and CD3OD (δH 3.0/δC 49.0) as references. Column chromatography (CC) was performed
on silica gel, Sephadex LH-20, and ODS (octadecyl silane).

3.2. Plant Material

The mature shrubs of the plant (3 kg) were collected in Makueni County, Kenya, and
the identity of Cassia abbreviata was confirmed by DNA barcoding.
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3.3. Extraction and Isolation

Barks and roots of Cassia abbreviata were pulverized and extracted with 95% EtOH
four times at room temperature. The extracts were combined and concentrated to provide
a crude extract (CE, ca 420 g). Then, it was suspended in deionized water and partitioned
successively with CHCl3, EtOAc, and n-BuOH, to provide an EtOAc-soluble extract (306.7 g)
and an n-BuOH-soluble extract (103.5 g). The EtOAc extract was subjected to CC over silica
gel eluting with a gradient CHCl3-MeOH (0→100%) to obtain eight fractions (Fr.1–Fr.8).
Fr.2 was further separated by ODS and Sephadex LH-20 chromatography, and finally
obtained 16 (58.1 mg) and 19 (16.8 mg) by preparative thin-layer chromatography (prep.
TLC). Compounds 20 (32.7 mg) and 21 (68.5 mg) were purified from Fr.3 by repeated
ODS CC, Sephadex LH-20 chromatography, and prep. TLC. Fr.5 was subjected to ODS
CC, Sephadex LH-20 chromatography, and prep. TLC to give 9 (9.3 mg), 10 (11.5 mg), 11
(5.1 mg), 17 (0.8 mg), 18 (3.5 mg), 24 (11.5 mg), and 28 (6.9 mg). Purification of Fr.6 by
ODS and Sephadex LH-20 chromatography, followed by prep. TLC led to the isolation
of 1 (2.4 mg), 2 (3.4 mg), 4 (7.6 mg), 5 (6.5 mg), 6 (17.8 mg), 7 (40.9 mg), 8 (17.1 mg), 15
(140.3 mg), 22 (75.9 mg), and 26 (11.4 mg). The n-BuOH-soluble part was separated via
ODS CC and Sephadex LH-20 chromatography, respectively. Final purification by prep.
TLC obtained 3 (14.8 mg), 12 (20.0 mg), 13 (24.0 mg), 14 (22.0 mg), 23 (11.0 mg), 25 (21.0 mg),
and 27 (28.7 mg).

Cassiabrevone (1): pale yellow amorphous powder; [α]20
D −12.7 (c 0.1, MeOH); 1H and

13C NMR data, see Table 1; HRESIMS m/z 535.1590 [M + H]+ (calcd for C29H27O10, 535.1599).
9-Dehydroxyepifiliferol (2): white amorphous powder; [α]20

D −12.0 (c 0.1, MeOH); 1H
and 13C NMR data, see Table 1; HRESIMS m/z 293.1009 [M + H]+ (calcd for C15H17O6, 293.1020).

Cassiaglycoside V (3): pale yellow amorphous powder; [α]20
D −90.0 (c 0.1, MeOH); 1H

and 13C NMR data, see Table 1; HRESIMS m/z 557.1851 [M + H]+ (calcd for C25H33O14, 557.1865).

3.4. Anti-HIV-1 Infection Bioassay

MT4 cells were obtained through the NIH AIDS Reagent Program and cultured in
RPMI 1640 (Lonza, Wijchen, the Netherlands) supplemented with 10% heat-inactivated
fetal bovine serum (Lonza, the Netherlands) and 2mM L-glutamine (Invitrogen, Gosselies,
Belgium). MT-4 cells were incubated with the crude extract of Cassia abbreviatta or the tested
compounds alone to assess cytotoxicity, or HIV-1 IIIB alone or a mixture of the tested extract
and compounds and HIV-1 IIIB viruses to assess protection against HIV-1 infection. After
five days, protection from viral infection and the cytotoxicity were evaluated in parallel
using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma, Liège,
Belgium) by measuring OD540 and OD690 using a POLARstar Omega Plate Reader (BMG
Labtech, Ortenberg, Germany). Data were normalized to cells without treatment. Values
of OD540−OD690 were calculated to determine IC50 values in Prism. The entry inhibitors,
enfuvirtide, and AMD3100 (Sigma Aldrich, Liège, Belgium), were used as positive controls.

4. Conclusions

From Cassia abbreviata, three new compounds, cassiabrevone, 9-dehydroxyfiliferol, and
cassiaglycoside V, were isolated along with 25 known ones. Noteworthily, cassiabrevone
is the first heterodimer by flavanol guibourtinidol and tetracyclic phenolic planchol A.
Moreover, six compounds showed inhibition against HIV-1 infection with IC50 values
ranging from 3 to 50 µM.

Supplementary Materials: The following are available online, Figures S1–S17: The 1D and 2D NMR
spectra of 1–3.
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