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Abstract: RNA interference (RNAi) can mediate gene-silencing by knocking down the expression
of a target gene via cellular machinery with much higher efficiency in contrast to other antisense-
based approaches which represents an emerging therapeutic strategy for combating cancer. Distinct
characters of nanoparticles, such as distinctive size, are fundamental for the efficient delivery of RNAi
therapeutics, allowing for higher targeting and safety. In this review, we present the mechanism
of RNAIi and briefly describe the hurdles and concerns of RNAi as a cancer treatment approach
in systemic delivery. Furthermore, the current nanovectors for effective tumor delivery of RNAi
therapeutics are classified, and the characteristics of different nanocarriers are summarized.
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1. Introduction

Cancer is still defined as a major public health problem in the world [1]. Traditional
cancer treatments, such as chemotherapy and radiation therapy, may result in toxicity
to normal organs and tissues due to the fact of their non-targeting properties. Since the
conversion of normal cells to malignant cells is associated with the deregulation of gene
expression, emerging cancer treatment strategies, such as gene therapy, are gaining a lot
of attention.

A report by Andrew Fire et al. [2], published in 1998, showed that double-stranded
RNA led to more effective interference effects compared with single-stranded RNA; this
is the oldest finding demonstrating the significance of double-stranded RNA for RNA
interference. Then, Sayda M. Elbashir et al. [3] found that the expression of endogenous
and heterologous genes could be efficiently inhibited in cultured mammalian cells by
using 21-nucleotide siRNA duplexes in 2001. It is widely accepted that every gene related
to disease has the potential to become the target of siRNA, which can easily inhibit the
expression of any gene via a base sequence alone [4]. Over the past 20 years, significant
progress has been made in the clinical application of RNAi therapy due to the efforts,
including financial resources and manpower, made by researchers. It is particularly worth
mentioning that in 2018, the first RN Ai-based therapeutic drug patisiran (Onpattro®), a
lipid-based system aimed at triggering TTR gene silencing in patients with hereditary
transthyretin-mediated amyloidosis (hATTR amyloidosis), was approved by the FDA,
which is promising news [5,6].

Remarkable advances in molecular and cell biology pave the way for the application
of RNAi-mediated gene silencing in cancer treatment [7]. RNA interference regulates the
cancer-relevant target gene including those that are difficult to address with conventional
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therapeutics and holds the promise for developing new cancer treatment drugs with lower
toxicity and higher selectivity. An RNAi-based therapeutic can offer a new paradigm
for anti-cancer intervention in contrast to other inhibitors. However, naked siRNA can
easily trigger an innate immune response and be degraded by ribonucleases. Moreover,
siRNA is negatively charged and the molecular weight of it is too large (~13 kDa) so that
it is difficult for siRNA to cross cellular membranes. As a consequence of its inherent
properties, the issues of non-toxicity and effective delivery are thought to be the most
significant barriers between RNAi technology and its clinical application. In comparison to
other carriers, nanoparticles provide unique benefits and have great potential to serve as
the shield for the effective delivery of siRNA in the circulatory system. In 2014, Atu027,
a lipid-based RNAI therapeutic aimed against the protein kinase N3 (PKN3) mRNA in
the vascular endothelium to treat pancreatic ductal adenocarcinoma (PDAC), was well
tolerated in a dose—escalation phase I clinical trial. More than 90% of Atu027 adverse events
were limited to Grade 1 or 2, showing great safety [8]. In addition, another lipid-based
siRNA nanoparticle, termed DCR-MYC, was developed to downregulate the MYC, which
is an oncoprotein that is deregulated in most malignancies. In a dose—escalation phase I
clinical trial, patients with different tumor types, including neuroendocrine tumor (NET),
metastatic breast cancer (MBC), colorectal cancer (CRC) or others, were treated with DCR-
MYC across five dose levels. Tumor shrinkage was observed in multiple patients after
treatment [9]. All those results suggest that nanoparticle-based RNAi approaches are a
promising avenue for cancer treatment. Table 1 details the RNAi-based cancer therapies in
clinical trials.

Table 1. Clinical trials with RNAi-based therapies (Available online: https://clinicaltrials.gov, accessed on 20 November 2020).

Name

Target

Disease Phase Carrier Status Ref.

Mesenchymal
stromal cell-derived
exosomes with
KRAS G12D siRNA

KrasG12D Pancreatic ductal adenocarcinoma, I Exosome

Metastatic pancreatic adenocarcinoma,
Not yet

recruiting [10]

Stage IV Pancreatic Cancer AJCCv8

EphA2-siRNA

EphA2

Advanced malignant solid neoplasm 1 Liposomes Recruiting [11]

Atu027

PKN3

Completed [8]
Completed [12]
Completed [13]
Completed [14]

Advanced solid tumors,
Carcinoma,
Pancreatic Ductal

Liposomes

CALAA-01

RRM2

Cyclodextrin
Solid tumors I polymer-based  Terminated [15]
NPs

DCR-MYC

MYC

Hepatocellular
Carcinoma,
Solid tumors,
Multiple myeloma, I Lipid
non-Hodgkin’s lymphoma, I nanoparticle
pancreatic neuroendocrine tumors,
PNET,
NHL

Terminated [16,17]

TKM-080301

PLK1

Hepatocellular
Carcinoma
Hepatoma
Liver cancer, Adult
liver cell
Carcinoma, Adultneuroendocrine tumors,
NET, 1 Lipid
Adrenocortical carcinoma, I nanoparticle
ACC,
Colorectal cancer with hepatic metastases,
Pancreas cancer with hepatic metastases,
Gastric cancer with hepatic metastases,
Breast cancer with hepatic metastases,
Ovarian cancer with hepatic metastases

[18]
Completed [19]
[20]
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Table 1. Cont.

Name

Target

Disease Phase Carrier Status Ref.

siG12D LODER

KRAS

Miniature
Pancreatic ductal adenocarcinoma, biodegradable
Pancreatic cancer polymeric
matrix

Completed [21]

2. The Mechanism of RNA Interference

One pathway of RNAi begins with mature siRNA in the perinuclear region of the
cytoplasm [22]. In detail, foreign double-stranded RNAs (dsRNA) are typically excised by
Dicer, an endoribonuclease or helicase with RINase motif, into 21-24 nucleotides, termed
mature siRNA. Then, the guide strand binds to the RISC to mediate the gene silencing activ-
ity, while the non-guiding strand of the mature siRNA is degraded by Argonaute 2 (Ago2).
Subsequently, the guide strand in complex with RISC searches the target mRNA according
to the Watson—Crick base pairing principle. Once located, the Ago2 protein in RISC cleaves
the target mRNA for degradation, at which point the ability of target genes to express pro-
teins is inhibited. Unlike to antisense oligonucleotides, RISC can facilitate multiple rounds
of target mRNA cleavage so that siRNA is more effective in silencing effect. Another path-
way commences with the transcription of microRNAs (miRNA), which have been studied
as a significant regulator of gene expression in recent years. The miRNAs are transcribed
from the host genome by RNA polymerase II as a primary miRNA (pri-miRNA) and then
processed by a protein complex containing the Drosha into 65-70 nucleotide hairpin-like
pre-miRNA (precursor miRNA). It is then transported from the nucleus through exportin-5
(Expb), a specialized nuclear membrane protein, to the cytoplasm. Here, pre-miRNAs
also can be processed by Dicer to form 18-25 nucleotide mature miRNAs that can bind to
RISC, leading the mRNA cleavage and translation repression (Figure 1). Unlike the siRNA
pathway, not all nucleotide sequences of the mature miRNA can bind to the target mRNA
due to the fact of its specific non-linear structure. Thus, individual miRNAs usually have
several different target mRNAs in the regulation of gene expression. On the other hand,
short hairpin RNA (shRNA), a nucleotide sequence in the nucleus from the transcription
of a DNA vector, can facilitate long-term gene silencing via RNAi, since the shRNA can be
synthesized by the host cell continuously [23]. In detail, the primary transcript, pri-shRNA,
is processed by Drosha to form a structure with a 50-70 nucleotide long loop-stem called
pre-shRNA and then transported to the cytoplasm by Exp-5 to mediate gene silencing via a
pathway similar to the synthetic siRNA. The general properties between siRNA, miRNA,
and shRNA are illustrated in Table 2.

Table 2. Comparison of general properties among siRNA, miRNA, and shRNA.

Properties

siRNA miRNA shRNA

Source

Chemically synthesized; Endogenic; chemically
Processed from long dsRNA synthesized; expressed from  Expressed from shRNA vector
or Pre-shRNA miRNA vector

Structure

18-25 nucleotides; a Pre-shRNA cleaved by Dicer
characteristic two-nucleotide  to obtain the structure similar
3’ overhang to siRNA

Double stranded; 21-24
nucleotides

mRNA target

Single Multiple Single
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Figure 1. The mechanism behind RNAi.

3. Limitations of RNAi as a Therapeutic Approach in Systemic Delivery
3.1. Modes of Administration

Due to the inherent properties of siRNA, such as being negatively charged and easily
degraded by nucleases, efficient delivery of siRNA to the target sites is a serious challenge.
Local administration, such as nasal sprays and eye drops, have been used to deliver
siRNA into the tissues that are external or readily accessible. Intravitreal injection of naked
siRNA with VEGF mRNA as the target is one of the earliest clinical trials of siRNA local
administration [4]. However, Bevasiranib, a 21 mer siRNA developed by Opko Health Inc.
ended with disappointing results due to the poor efficacy in reducing vision loss in Phase
III clinical trials [24]. In the vast majority of human diseases, many important target sites
are not directly accessible so that they can only be reached via systemic administration of
RNAI therapeutics instead of topical administration [25].

3.2. Renal Clearance and Size Dependency

Elimination by the kidneys leading to a short half-life and poor efficacy is a problem
in systemic administration of siRNA. A study related to biodistribution of siRNA in rats
conducted by Femke M. van de Water et al. [26], in 2006, showed that after intravenous
administration, siRNA mainly accumulated in the kidney and was excreted in the urine.
Thus, the kidney, an organ for blood filtration and excretion of waste, is of vital importance
in the transport and clearance of siRNA drugs in vivo. However, the kidney filtration effect
can be effectively avoided while the hydrodynamic diameter of an siRNA drug adminis-
tered intravenously into the circulatory system is greater than 6 nm [27]. Thus, a strategy to
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enhance the residence time of siRNA in the circulatory system is to appropriately increase
the particle size of siRNA delivery nanoparticles via a proper modification or formulation.

3.3. Nuclease Degradation and Immune System Recognition

Degradation by endogenous nucleases has always been a concern when an intravenous
siRNA therapeutic is navigating in the bloodstream. As a consequence of its instability,
the half-life of intravascular naked siRNA is very short [28]. In detail, nucleases bind to
RNAs and attack their unstable ends to generate fragments for degradation [22]. Given the
high activity of ribonucleases and inherent characteristics of siRNAs, a shield to prevent
siRNA from degradation is necessary. The siRNA therapy is further limited because certain
motifs in siRNA oligo can mediate innate immune response by Toll-like receptor 3, 7, and
8[29,30]. To reduce the potential toxicity of RNAi therapy and limit the uptake by immune
cells, a modification for siRNA delivery nanoparticles such as pegylation has been used to
help siRNA nanoparticles escape the uptake of phagocytes [31]. It is well established that
the design of siRNA delivery strategies to evade the recognition of the immune system
is important.

3.4. Heterogeneity of Tumor Vasculature

In order to accumulate in the tumor microenvironment (TME), the nanoparticles-
based siRNA complex must move through the extracellular matrix (ECM), a dense network
of fibrous proteins and polysaccharides, after leaving the bloodstream [32]. Given the
compactness of the ECM network, it can obstruct the transportation of nanoparticles. The
highly developed ECM hinders the diffusion of nanoparticles through the interstitium;
thus, part of the nanoparticles cannot have its intended treatment effect. Abnormal vascular
structure, aberrant blood flow, and lack of lymphatic drainage are the unique characteristics
of tumor tissue [33]. Thus, nanoparticles will passively accumulate in tumors to a greater
extent compared to the normal tissue, when ranging in size from 30 to 200 nm, thereby
leading to enhance of the therapeutic index, termed the EPR effect [33,34]. Due to the
inherent characteristics of tumor vasculature, not every region of the tumor shares the
same concentration of nanoparticles, so that despite the concentration of nanoparticles in
tumors being able to be increased through EPR’s effects, complete eradication of tumors
is still a difficult problem. Moreover, for solid tumors, the permeability of vessels may be
different and the EPR effect may not be exhibited, so the passive targeting strategy may be
subject to many limitations [35]. However, these limitations can be overcome by binding
the targeting ligands, such as antibodies and their fragments and peptides, to the surface
of siRNA-delivering nanoparticles [36].

3.5. Endosomal Escape

The siRNA-delivery vectors that have successfully arrived at the periphery of the
target cell must be internalized into the cytoplasm in which even further barriers await.
Endocytosis that occurs at the cell surface is the major cellular uptake mechanism for
any biological agents including siRNA [37,38]. Once endocytosed, the endocytic vesicles
containing siRNA transported in early endosomal vesicles and eventually fuse with the
lysosomes containing a variety of nucleases and a more acidic environment (pH 4.5-5).
After a long journey to reach the target cancer cells, a large portion of the siRNA will be
degraded instead of being released to mediate the RNAi pathway [39]. Thus, one of the
major obstacles to achieving an effective siRNA therapy is the lack of an endosomal escape
strategy. In order to avoid degradation by lysosomes as much as possible, many nanocarri-
ers that can facilitate the endosomal escape have been developed. Several chemical agents
have buffering capacities under certain conditions, such as polyethylenimine (PEI) in the
range of pH 5-8, which can help to improve endosomal escape via the proton sponge
effect [40]. Moreover, chloroquine can contribute to endosomal escape by increasing the pH
of the endosome environment to disrupt the endosomal membrane. However, due to the
fact of its toxicity, it is impractical to apply chloroquine to in vivo siRNA delivery [41]. Ad-
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ditionally, other agents that may be useful to enhance endosomal escape, such as proteins
and peptides, can be included in nanoparticle formulations [38].

4. Protective Carriers for siRNA Delivery

Given the intracellular and extracellular barriers of siRNA therapeutics, it is necessary
to develop a multi-functional vector to facilitate the safe and effective delivery of siRNA to
tumor cells. In recent years, nanoparticles, as the emerging protective delivery platforms
for siRNA, have attracted a lot of attention. In this part, RNAi delivery systems based on
nanoparticles are categorized and their properties are summarized.

4.1. Lipid-Based Nanoparticles

In the research of nanotechnology, many efforts are trying to create artificial mem-
branes, which are similar to cytomembranes in structures and functions. Naturally, lipid-
based nanoparticles emerged in various studies [42]. Lipid nanoparticles are composed of
one or more lipid bilayers, discovered first by British scientist Bangham in the 1960s [43].
The hydrophilic head of the phospholipid molecule is extended to the aqueous solution,
while lipophilic drugs can be loaded into the hydrophobic core of the lipid nanopar-
ticles [44,45]. The structure of lipid nanoparticles resembles the vesicles of cytomem-
brane [46,47]. Due to the special structure and properties, people quickly realized the
potential value of lipid materials in drug delivery. With the development, nanoparticles
made of lipids have become the most commonly used material for siRNA delivery to tumor
sites with the proportion up to 25% [48]. Up to now, commonly used lipid nanoparticles
include liposomes and solid lipid nanoparticles (SLNs).

4.1.1. Liposomes

For liposomes (Figure 2a), while they are widely used to deliver chemical drugs,
genes, and siRNAs (small interfering RN As) [49], it has low mechanical stability due to
the fact of their small membrane thickness, and they are accompanied by high leakage of
the encapsulated drugs [22], leading to restricted applications. In order to better apply
liposomes to drug delivery, scientists have developed a series of methods to overcome
these shortcomings such as tuning the compositions of phospholipids or adding new com-
ponents to improve stability and reducing the permeability of liposomes, e.g., for example,
increasing the membrane stiffness of the liposomes by incorporating cholesterol [50]. Be-
sides, cationic lipids have been used to further balance the negative charge on the surface
of nucleic acid drugs such as siRNA [51], thereby cationic liposomes (CLs) emerged at
the required time and were widely studied as a hotspot for gene delivery [52,53]. Gener-
ally, CLs are composed of cationic lipids, including 1,2-dioleoyl-3-trimethylammonium-
propane (DOTAP), 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP), N-[1-(2,3
dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1,2-dioleyloxy-N,N-
dimethyl-3-aminopropane (DODMA), and neutral auxiliary lipids including 1,2- dioleoyl-
sn-3-phosphoethanolamine (DOPE) and dioleoyl phosphatidylcholine (DOPC) [54]. Re-
search by Hattori et al. [55] confirmed that the type of cationic lipids has a huge impact on
the biological distribution and knockdown efficiency of siRNA in vivo. In other words, the
therapeutic effect of CLs is determined by the rational design of lipid composition [56].
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(H)Noncationic Polymer Nanoparticles ' (8) AuNPs
[ low-frequency hght
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Figure 2. Schematic images of each representative nanoparticle delivery system. (a) Liposomes;
(b) SLN; (c) Micelle; (d) PEI; (e) PAMAM; (f) Noncationic Polymer Nanoparticles; (g) AuNPs;
(h) MSNPs; (i) IONPs; (j) Upconversion Nanoparticles.

At the same time, with the emergence of multidrug resistance (MDR), it is often
difficult for a single chemotherapy drug to fulfil role and their anti-tumor effect. Thus,
co-delivery of nucleic acid drugs (e.g., siRNA, miRNA) and chemotherapy drugs (e.g.,
DOX, PTX, CDDP) through cationic liposomes to reverse drug resistance is increasingly
sought after [57]. Zhang et al. [58] have developed liposomal complexes (shortened as
DOX +siRNA /ePL) with both pH sensitivity and antibody-mediated targeting, carrying
MDR1-siRNA and the antitumor drug DOX (Figure 3). The DOX +siRNA /ePL had high
serum stability and showed an incremental uptake by MCF-7/ADR cells and enhanced
P-gp downregulation efficacy, demonstrating the excellent potential to overcome the MDR
effect. In another report, the use of paclitaxel (PTX) in combination with anti-survivin
siRNA in redox-sensitive oligopeptide liposomes was shown to be an effective strategy
in treating breast cancer and metastasis. In order to improve the antitumor effect of PTX,
Chen et al. [59] designed this formulation to specifically downregulate the overexpression
of survivin in 4T1 breast cancer cells to overcome PTX resistance. Mice bearing 4T1 tumors
treated with liposomes showed the slowest tumor growth speed to controls, demonstrating
the high anti-tumor efficacy of the combination of anti-survivin siRNA and PTX. How-
ever, an excessive positive charge was able to interact with a negative charge on the cell
surface and destroy the cell membrane, leading to high cytotoxicity in the body [60]. For
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this, these strategies may face some inevitable problems such as safety and stability [61].
Consequently, developing a safe and efficient CL gene vector is urgent due to the huge
demand for biomedicine.
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Figure 3. Schematic Illustration of the approach to overcome MDR by multifunctional DOX + siRNA/ePL lipoplexes.
Reprinted with permission from Zhang et al. [58]. Copyright (2018) American Chemical Society.

Proper packaging of nucleic acids in liposomes through condensation using polymer
materials, such as polyethylene glycol (PEG), can improve the efficiency of drug delivery.
Liposomes modified by polyethylene glycol (PEG) are called invisible liposomes; not only
does it reduce the rapid clearance of the drug from the reticuloendothelial system and
extend the circulation time of the drug in the body, but it can also deliver various drugs
to the tumor area effectively and safely [62]. For example, the formulation of patisiran,
the first RNAi drug approved by FDA, contained four types of lipids: PEGppo-C-DMG,
DLin-MC3-DMA, 1,2-distearoyl-sn-glycero-3-phosphocho-line (DSPC), and cholesterol. It
delivers the anti-TTR siRNA into the liver, the main TTR producer, via systemic administra-
tion. Patisiran enters the liver by binding to ApoE receptors on the surface of hepatic cells.
When patisiran navigates in the circulatory system, it is first opsonized by apolipopro-
tein E (ApoE). The PEGylation provides the optimum circulation time for patisiran and
paves the way for the further uptake of it by hepatic cells contained apolipoprotein E
receptors [6]. Seraj et al. [63] chose the Eg5 gene as an effective target, constructed and
expressed a Eg5 shrna plasmid (pAAV-shEg5), and formed p_shEg5 plasmid/liposome
complexes (p_shEg5@LS) using PEGylated DC-Chol/DOPE cationic liposomes. The tu-
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mor growth suppression experiment in vivo demonstrated that the p_shEg5@LS lipid
complexes showed a longer-lasting anti-cancer effect than the siEg5@LS lipid complexes
without PEG modification. Moreover, the results of their research suggested that this lipid
system can avoid off-target effects by reducing the dosage of RNAi therapeutic drugs in
patients. Lee and Ahn developed a PEGylated liposomal system to deliver siRNA against
kinesin spindle protein (KSP) for gene silencing via systemic injection. In this report,
PEGylated DC-Chol/DOPE-siRNA lipoplexes exhibited enhanced tumor accumulation
compared to non-PEGylated DC—Chol/DOPE-siRNA lipoplexes via less renal excretion
and liver clearance and longer circulation time in vivo [64].

4.1.2. Solid Lipid Nanoparticles

As another widely used lipid-based nanoparticle, solid lipid nanoparticles (SLNs)
also play an important role in drug delivery (Figure 2b). Solid lipid nanoparticles are
sub-particulate drug delivery carriers composed of natural or synthetic high-melting-point
lipids that are solid at room temperature and composed of stable and biodegradable lipids
or spherical particles with a size of 50-1000 nm [65,66]. Solid lipid nanoparticles have many
advantages, such as high bioavailability, the feasibility of large-scale preparation, increasing
drug accumulation in cancer cells, and overcoming tumor resistance [67]. Controlling the
release of drugs in specific tissues is available via SLNs, since it has significant superiority
in targeting specific tissue [66,68,69]. Hence, SLNs show great application potential in
drug delivery, and SLNs were created as an alternative to traditional carrier systems like
liposomal nanoparticles [70].

From the literature, the fatty acids, monoacylglycerols, diacylglycerols, etc., are usu-
ally used as the main lipid components of SLNs. Especially, palmitic acid and stearic
acid are compatible with the lipid composition of animal tissues, so they are generally
used as the first-choice lipid material for preparing lipid nanoparticles [71]. In a recent
study, Erel-Akbaba et al. [72] developed a new type of SLNs using the microemulsion
dilution technique (Figure 4). The siRNAs against both epidermal growth factor receptor
(EGFR) and PD-L1 were jointly delivered to glioblastoma cells. When systemic adminis-
tration of targeted SLN after radiation therapy, the drug delivery system can significantly
inhibit the expression of EGFR in tumor cells; moreover, it prolonged mouse survival.
Solid lipid nanoparticles have excellent delivery effects for low-soluble drugs; therefore,
they have been selected as delivery systems for lipophilic anticancer drugs (such as PTX,
SN38) [73]. From another recent study, Biiytikkoroglu et al. [74] used a solvent emul-
sification/evaporation method to prepare three kinds of SLNs drug delivery systems:
encapsulating Bcl-2 siRNA, paclitaxel, and Bcl-2 siRNA /paclitaxel for the treatment of
cervical cancer. The results showed that the therapeutic effect of the combined drug was
improved obviously. Bae et al. [75] designed dot-incorporating SLNs for the co-delivery
of paclitaxel and Bcl-2-targeted siRNA. The reconstituted low-density lipoprotein (LDL)
with a stable core/shell nanostructure was used as a carrier of paclitaxel, and quantum
dots were introduced to visualize the intracellular translocation of SLNs into cancer cells.
The Bcl-2-targeted siRNA was stably bonded to the outer surface of SLNs by electrostatic
interaction. The experiment result showed that both paclitaxel and Bcl-2 siRNA can be
delivered into human lung carcinoma cells via the developed solid lipid nanoparticles.
However, SLNs also have some inevitable shortcomings, for example, the loading efficiency
is very low due to the fact of its own defect in its crystalline structure. In addition, the
drug may be discharged at any time under storage conditions [76]. The clinical application
of SLN preparation detected is still limited because of the unpredictable security issues;
overall, this is a great challenge on how to further understand the formation process, the
particle structure, and pharmacokinetic properties of SLNs at the molecular level.
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Figure 4. Schematic illustration of the brain tumor therapy. Reprinted with permission from Erel
Akbaba et al. [72]. Copyright (2019) American Chemical Society.

4.2. Micellar Nanoparticles

A micellar nanoparticle (Figure 2c) is a self-assembled aggregate particle formed
by a surfactant or amphiphilic block copolymers when their concentration exceeds a
certain critical value in aqueous solution, and the formed particle is no more than 200 nm
in size, generally [77]. Micellar nanoparticles are the most basic colloidal drug carrier.
The hydrophilic block extends to the water and forms a hydrophilic shell that can be
linked with polyethylene glycol (PEG) to prevent the micelles from non-specific uptake by
reticuloendothelial systems (RES), thereby realizing long circulation of drugs in vivo. The
hydrophobic block can become a hydrophobic core through intermolecular forces such as
hydrogen bonds and van der Waals forces [78,79]. Thus, this unique core-shell structure
of micelles presents a potential delivery system for hydrophobic and poor bioavailable
compounds and enhances the drug internalization and tissue-specific targeting [80].

Wen et al. [81] developed a new delivery system of micellar nanoparticles modi-
fied with angiopep-2 (Ap) to co-deliver VEGF siRNA and paclitaxel (PTX), named the
Ap-CSssSA /P /R complex. In vitro and in vivo Ap-CSssSA /P /R complexes showed an
excellent silencing effect of VEGF gene, and complexes via LRP1-mediated targeting de-
livery exerted a higher neovascularization inhibition, compared to naked PTX-loaded
nanoparticles. Joshi et al. [82] prepared hypoxia-sensitive micellar nanoparticles based
on azobenzene groups for the co-delivery of doxorubicin (DOX) and anti-P-gp siRNA,
termed PAPD. Under hypoxic conditions, anti-P-gp siRNA delivered by PAPD showed
up to a 60% P-gp downregulation. Recently, a dual pH-sensitive micellar nanodrug that
can achieve the codelivery of IKKf siRNA and STAT6 inhibitor AS1517499 via the M2-
targeting peptide was reported by Xiao et al. [83]. The M2-targeting peptides were hidden
by the pH-sheddable PEG corona so that the micellar nanodrug could efficiently reduce
the immune side effects because of the acidic tumor microenvironment. Besides, the
IKKf siRNA and AS1517499 could synergistically promote the M1 polarization of tumor-
associated macrophages (TAMs) with different mechanisms to suppresses tumor growth
and metastasis. This year, Norouzi et al. [84] researched another dual-functional polymeric
micelle (PM) to solve the limited therapeutic efficiency of anticancer drugs. The PMs
with multifunctional tri-layer containing 4-(N)-stearoyl gemcitabine (GemC18), NF-«B
siRNA, and tri-block copolymers (PCL-PEI-PEG) were designed to target AsPC-1 (human
pancreatic cancer cell line) and MCF-7 (human breast cancer cell line). From this literature,
the tri-block copolymers (PCL-PEI-PEG) were beneficial for PMs to electrostatically bind
with siRNA and extended blood circulation half-life. As opposed to conventional GemC18
administration, the PMs/Gem(C18/anti-NF-«B siRNA PMs significantly reduced the value
of IC50 after 48 and 72 h of incubation. From these results, there are reasons to believe that
co-delivery of siRNA and chemical drugs via micelle nanocarrier would be a promising
platform to tumor therapy.
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4.3. Polymer-Based Nanoparticles

Polymer-based nanoparticles have a wide range of applications in the field of biologi-
cal preparations, which may be attributed to their versatility in synthesis [85,86]. Especially,
these nanomaterials have a responsive ability to stimulation such as enzymes and pH in
the body [87,88]. In addition, Li et al. [89] considered that some polymers could even be
adjuvants in the carrier structure. There are many types of polymer-based nanoparticles:
natural polymers include chitosan, cyclodextrin (CD), and cyclodextrin and synthetic poly-
mers include polyethyleneimine (PEI), polylactic acid (PLA), and dendrimer [90]. Among
the materials mentioned above, synthetic cationic materials are preferred in nano-drug
delivery. One advantage is that they can be made into controllable sizes and shapes and
another point is the nature of their cations; these materials could condense and load an-
ionic siRNA molecules through electrostatic interactions, forming complexes and targeting
siRNA to specific disease areas smartly [91].

4.3.1. PEI-Based Nanoparticles

Polyethyleneimine (PEI) is one of the most extensively developed cationic polymers
and a typical polymer carrier for the delivery of siRNA (Figure 2d). Polyethyleneimine
does not only has a good affinity with siRNA [92], more importantly, PEI has the unique
proton sponge effect [93], so that PEI is protonated in the body easily and can destroy
lysosomes to release siRNA in cells [94]. Many studies have reported that exosomes or
ECVs (ECVs can be divided into exosomes) can deliver siRNA [95,96]. Zhupanyn et al. [97]
firstly transferred small RNAs by combining PEI-based nanoparticles with ECVs produced
by different cell lines. In this experiment, Western blot results showed that the expression
of survivin protein decreased by 50% in the group of ECV-modified PEI/siRNA complexes.
However, Saw et al. [98] stressed that the abundant charge interactions of PEI also hindered
the release of intracellular siRNA and induced cell toxicity. Thus, Yu et al. [99] investigated
a system that utilizes the DNA product of rolling circle amplification (RCA) and PEI to
co-deliver siRNA. The RCA product could neutralize the strong positive charge of PEI and
formed a stable polyplex (PEI/RCA siRNA). Furthermore, Zhou et al. [100] also developed
a new PEI derivative to overcome the side effect of the positive charge, which are presented
in Figure 5. In this study, the PEI was modified with cycloam, and this system could
transfer anti-VEGF siRNA and inhibit CXCR4 at the same time.
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HN s ~HN A~ A NH, * \
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siRNA PEI-C

i o Cellinvasion

Figure 5. The mechanism of action of PEI-C/siVEGF polyplexes. Reprinted with permission from
Zhou et al. [100]. Copyright (2018) American Chemical Society.
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While PEI with a molecular weight of 25 kDa was regarded as the “gold standard” for
transfection [92], some studies found that a higher molecular weight (HMW-PEI) means
higher transfection efficiency, meanwhile, it induces more serious cytotoxicity in the biolog-
ical process. On the contrary, low molecular weight (LMW-PEI) has low cytotoxicity but
poor transfection activity [101]. Meneksedag-Erol et al. [102] modified LMW-PEI (1.2KDa)
with different molecular PrA (a short propionic acid), and it was found that an optimal
hydrophobicity /hydrophilicity balance was crucial for siRNA transmission effectively.
Therefore, many researchers are committed to modifying the structure of low molecular
weight PEI (LMW-PEI) to improve its safety and transfection efficiency and decrease the
unnecessary cytotoxicity in vivo. For instance, the surface of PEI can be modified by co-
valent bonds with PEG [103], polysaccharides [104], and hydrophobic groups [105]. The
PEI-polymers based on polysaccharides can improve the half-life of blood circulation and
avoid the clearance of reticuloendothelial cells [106]. Park et al. [104] studied low molecular
weight PEI grafted hyaluronic acid (HA) to deliver TGF-f3 siRNA (HA is a glycosaminogly-
can abundant in the body [106]). The complex of siRNA /(PEI-SS)-g-HA showed excellent
gene silencing efficiency in vitro. In another design, Fan et al. [107] fabricated an intelligent
delivery system that consisted of low molecular weight PEI (1.8 kDa) modified by Triton
X-100 and 4-carboxyphenylboronic acid (PBA) coupled with dopamine-grafted vitamin
E (VEDA). The system could deliver two therapeutic siRNA (siEg5 and siEGFR) to in-
duce RNAI in nude mice. In this thesis, compared with the negative control groups, the
gene silencing efficiency of TXPPBA-PEI/VEDA /siRNA complex was notably increased.
Ewe et al. [108] and Wei et al. [109] creatively established a new type of lipid—polymer
nanoparticle, respectively. In research by Wei et al. [109] (Figure 6), they synthesized
LMW-PEI nanoparticles with the aid of microfluidic technology (lipid /PCL-PEI/siRNA)
to protect the siRNAs completely by cationic materials. As might be expected, the hy-
brid nano-assemblies successfully offered a way for siRNA delivery and had an obvious
inhibitory effect on tumor growth and no obvious systemic toxicity.

Figure 6. Schematic illustration of the preparation of LPS NPs with the aid of three-stage microfluidic
technology. Reprinted with permission from Wei et al. [109]. Copyright (2020) American Chemi-
cal Society.
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4.3.2. PAMAM-Based Nanoparticles

At present, polyamide-amine (PAMAM) is one of the most frequently studied den-
drimers [110]. Polyamide-amine has the basic characteristics of a dendrimer such as precise
molecular structure, hydrophobic cavities in the molecules [111], and relative molecular
controllability. With these characteristics, PAMAM can effectively encapsulate nucleic
acids and other therapeutic drugs [112] and is an ideal carrier for targeted therapy and
diagnostic drugs [113]. Apart from that, PAMAM is generally covered with a large num-
ber of cationic primary amine groups; this feature can convert a complex as a whole
into nano-scale polymers to increase the absorption of nucleic acid drugs into cells at a
physiological pH [114,115]. However, there also exposes a serious problem, the PAMAM-
mediated polymer delivery systems are very sensitive to serum in the internal environment,
leading to low transfection efficiency and rapid blood clearance. Of all these, it may be
ascribed to the strong positive charge from the primary amine group of PAMAM [116].
To mitigate the toxicity of the positive charge, Zhang et al. [117] innovatively prepared
mixed dendrimer micelles (MDMs). They synthesized generation 4 polyamidoamine (G4
PAMAM) with PEG2k-DOPE first, then connected it with mPEG2k-DOPE and coated it
with hyaluronic acid (HA) to co-deliver MDR-1 siRNA and DOX. Hyaluronic acid can
help the micelle shielding the excess positive charge, protect siRNA against enzymolysis
from RNase-mediation, and generate stable complexes to encapsulate siRNA. In 2017,
Liu et al. [118] prepared a nano-complex with PAMAM dendrimer generation 5.0 (G5) for
targeting the MDR-1 gene. The dendriplexes (PAMAM-siRNA) modified by phospholipid
(PL) successfully reversed multi-drug resistance (MDR) and impaired over-expression
of the p-gp protein. In the another report, Tambe et al. [119] developed a triblock com-
pound (PAMAM-histidine-PEG) to package siRNA. The histidine was considered a proton
sponge to increase the transfection efficiency of PAMAM according to Chen et al. [120]. The
experimental results suggest that the triblock complex will be a promising treatment for
all cancer cells overexpressing LHRH. The process is illustrated in Figure 7. Additionally,
PAMAM was also used to modify other inorganic nanoparticles [121,122]. Long et al. [123]
synthesized halloysite nanotubes (HNTs) and grafted PAMAM in order to deliver siVEGF
for the breast cancer model. The complex could effectively inhibit the growth of tumor
cells and reduce the expression level of the VEGF gene in tumor cells.
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Figure 7. The schematic of cellular uptake mechanisms of PAMAM-His-PEG/siRNA. Reprinted
with permission from Tambe et al. [119]. Copyright (2017) American Chemical Society.
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4.3.3. Noncationic Polymer Nanoparticles

Generally, siRNA is negatively charged, so cationic nanoparticles are usually selected
to compress it with to form the delivery systems that can contribute to the uptake of
nanocomposites by cells [124]. Nevertheless, the high charge of cationic nanoparticles
may result in more toxicity to normal cells, although they have the high siRNA loading
efficiency [125]. In this case, noncationic materials (Figure 2f) may be a better choice. A
new type of spherical nucleic acid (SNA) nanocarrier that can be taken up by cells effi-
ciently without significant cytotoxicity and immunogenicity has been reported in spite of
its negative charge [126]. Inspired by this, Ding et al. [127] employed cross-linked nanogels
with a negative charge as the carrier of siRNA. In detail, a DNA-grafted polycaprolac-
tone (DNA-gPCL) was designed to form spherical and nanosized hydrogels with SNA
architecture using siRNAs as the cross-linkers. The siRNA was completely embedded and
protected. Besides, the crosslinked nanogels exhibited remarkable physiological stability
and thermostability and exhibited significant gene silencing efficiency as well as excel-
lent inhibition of tumor growth in vivo and in vitro. In 2018, Jiang et al. [124] provided
a supramolecular strategy for RNA delivery with low cytotoxicity. In this research, a
methacrylate random copolymer P1 was used to bind RNA via electrostatic interaction.
Then, the complex self-crosslinked subsequently to trap dsRNA inside the nano-assembly
by adding dithiothreitol (DTT), and most of the cationic moieties were eliminated at the
same time. Compared to classical cationic delivery vehicles, this non-cationic RNA deliver
strategy can reduce cytotoxicity substantially.

4.4. Gold Nanoparticles

Gold nanoparticles (AuNP) (Figure 2g) are a material with a size of less than 100 nm
at least one dimension [128]. It can be made into different shapes and sizes, for instance,
nanospheres, nanowires, nanorods, nanoshells, and nanocages [129]. Almost all types of
gold nanoparticles have low cytotoxicity and a preeminent ability to resist the degrada-
tion of enzymes in vivo [130,131]. Even though a recent paper found that the different
shapes and sizes represented the different distribution of AuNPs in the body [132]. Yue
designed different formulations of siRNA-gold nanoparticles including 13 nm spheres,
50 nm spheres, and 40 nm stars. The experimental results of confocal fluorescence images
(Figure 8a), cell viability (Figure 8b), and cell uptake (Figure 8c) are represented in Figure 8.
It can be seen from the figures that the larger particles (50 nm spheres and 40 nm stars) re-
vealed higher transfer efficiency for siRNA. Moreover, in the study from Morgan et al. [133]
there were three different shapes, yet they were the same three ~45 nm diameter gold
nanoparticles. By side-by-side comparison of siRNA loading and gene knockout, the
nanoshells and nanocases displayed the higher downregulation of GFP expression than
nanorods. It confirmed that different shapes of nanoparticles have a significant impact on
the delivery of gene-related drugs even if they are of the same size.

Furthermore, AuNPs exhibit prominent optical properties, which are derived from
surface plasmon resonance (SPR). At present, the characterization of medical applica-
tions and biological activity for AuNPs are mostly relying on the SPR [134]. For example,
Liu et al. [135] constructed a nanoplatform for lung cancer model based on SPR characteris-
tics, and they adopted gold-based nanoprisms (GNPs) loaded with human hPD-L1 siRNA,
coated by negatively-charged PSS, and positively-charged PDADMAC to improve bio-
compatibility and stability (formed GNPs-hPD-L1 siRNA). Hitherto, PD-1 (programmed
cell death protein 1) has been found as a receptor protein on the surface of T cells, able to
interact with PD-L1 (PD-1 ligand) expressed on the surface of tumor cells and causes the
immune escape of cancer cells [136,137]. In this anti-tumor study, the viability of HCC827
cells treated by GNPs-hPD-L1 siRNA nanoprisms with laser irradiation was significantly
less than the group of GNPs-hPD-L1 siRNA without laser irradiation. Of course, in addi-
tion to gold, metals, such as silver, platinum, and copper, are also used to develop metallic
nanocarriers [138].
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Figure 8. The anti-tumor activity of three NPs in vitro and cell morphology changes induced by larger constructs. (a) Con-
focal microscopic images of U87 cells treated with PBS (control) or three NPs (0.2 nM). (b) The inhibitory effect of three
NPs (0.2 nM) on U87 cells. (c) Effect of CytoD on the uptake of three NPs by U87 cells. Reprinted with permission from
Yue et al. [132]. Copyright (2017) American Chemical Society.

4.5. Mesoporous Silica Nanoparticles

Currently, researchers see silicon as more promising than other nanomaterials in
biomedical applications including bioimaging and disease treatment [139]. Compared with

“soft” materials, such as liposomes or polymers, it has been demonstrated that silicon-based

materials have higher loading capacity [140]. Mesoporous silica nanoparticles (MSNPs)
(Figure 2h) stand out among all-silicon materials with excellent physical and chemical prop-
erties, which reveal the formidable advantages as new inorganic materials for biomedical
applications [141]. For instance, Cao et al. [142] proved that MSN is a promising photother-
motherapy carrier for inhibiting the proliferation of tumors. On one side, the adjustable
pore size is beneficial for increasing drug loading and controlling the rate of drug re-
lease [143]. Similarly, the particle size of MSNis affects drug release. Bouchoucha et al. [144]
synthesized MSNs with different particle sizes from 45 nm to 500 nm. They found that the
smallest nanoparticles (45 nm) had a much higher cellular uptake efficiency and enhanced
the release of DOX in the tumor. Drugs, on the other side, can be integrated into both
channels and surfaces of MSNs by electrostatic adsorption or covalent bonding [145,146].
In addition, MSNs have been proved to be safe and biodegradable in vivo in a large number
of animal experiments [147]. The MSNss, a versatile and ideal nanocarrier, can load small
molecule chemotherapy and gene drugs for cancer therapy including DOX hydrochlo-
ride [148], cisplatin [149], DNA [150], and siRNA [151]. Wang et al. [152], reported a meso-
porous silica nanoparticle (iMSNP) co-delivery dual-type therapeutic RNAs (siPlk1l and
miR-200c). Moreover, they utilized both photosensitizer indocyanine green (ICG) and pen-
etrating peptide iRGD to modify and encapsulate the MSNPs (Figure 9). The result of the
experiment showed that the iMSN /PIk1 + 200c + ICG (+light) group revealed higher inhibi-
tion ratio than other groups (iMSN/PIk1 + 200c + ICG (—light), MSN/P1k1 + 200c + ICG,
iMSN/NC + ICG, iMSN/PIk1 + NC + ICG, iMSN/200c + NC + ICG) in tumor cell pro-
liferation of orthotopic breast cancer model. The MSNPs, with photodynamic therapy
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developed above, have substantial achievements for siRNA-miRNA combination to cure
cancer and provide a novel idea to deliver gene drugs.
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Figure 9. Schematic Illustration of light-triggered RNA delivery by tumor-penetrating iMSNs for
siPlk1/miR-200c combination therapy. (i) Deep intratumoral penetration. (ii) Light-triggered en-
dosomal escape. Reprinted with permission from Wang et al. [152]. Copyright (2019) American
Chemical Society.

In general, the versatility of MSNs can be improved by surface functionalization
via various types of polymeric materials such as PEG, PEI, and PAMAM [153]. The
silica polymer core/shell nanohybrids will enhance transfer efficiency and have a huge
improvement particularly in controlled drug delivery [154]. Lietal. [155] described a siRNA
delivery system (M-MSN_VEGF siRNA@PEI-KALA), the magnetic MSNs (M-MSNs) were
functionalized by PEI and peptide (KALA). With fusogenic peptide Kala, nanoparticles
can pass through the cell membrane into the tumor cells, then efficiently escape from the
endolysosomes to release the loaded siRNA molecules through the proton sponge effect
of PEI The next year, their group created another M-MSNSs [156], the new nanoparticles
(M-MSN_VEGF siRNA@PEI-PEG-KALA) modified with PEI, PEG, and peptide (KALA)
simultaneously allowed siRNA to enter the mesopore of M-MSNs. The platform further
prolonged the half-life of drugs in the blood stream and improved survival. Thus, this
nanosystem is considered a promising platform for gene delivery. In 2019, Xie et al. [157]
first reported a hybrid nano-complex with N9 peptide and DOX against Bcl-2-positive
cancer cells in vitro and in animals; the MSNs connected highly branched polyamidoamine
(PAMAM) showed a strong synergistic anticancer effect. These organic-inorganic hybrid
MSNs have a significant impact on the development of cancer therapy.

Some researchers have also coupled some aptamers to MSNs for improving drug tar-
geting. Yang et al. [158], designed MSNs with targeting molecules (Sgc8), this nanoparticle-
loaded DOX can selectively enter the desired tissue and kill the tumor cells continuously.
In another recent study, Han et al. [159] prepared MSNs modified by TAT peptide and can
layer-by-layer self-assembly to co-deliver DOX and siVEGE. The multi-layered nanocom-
plexes successfully delivered siRNA and DOX to the cytosol and nucleus, respectively.
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4.6. Iron Oxide Nanoparticles

Iron oxide nanoparticles (IONPs) (Figure 2i) are inorganic nanomaterials with great
targeting ability, superparamagnetism, and suitable size [160]. The IONPs have been ap-
proved by the FDA as use as a contrast agent and then spawned a new research field called
magnetic resonance imaging (MRI) [161,162]. Fluorescent dyes, tumor targeting molecules
and chemotherapeutic drugs can bind to IOPNs to achieve the integration of tumor target-
ing diagnosis and treatment [163]. Recently, Zhang et al. [164] constructed a gene therapy
approach by using IONPs for the postoperative treatment of glioblastoma patients. The
results showed that the IONPs as the efficient ferroptosis and apoptosis inducers are safe
for the treatment of glioblastoma. In another study, the tumor therapy ability of super-
paramagnetic iron oxide (SPIO) nanoparticles and poly (propyleneimine) generation five
dendrimers (PPI G5) siRNA co-delivery system was evaluated by Taratula et al. [165]. The
great targeting capability and anti-tumor activity of the co-delivery system were showed
in vitro experiment. In this research, SPIO as the contrast agent and delivery vector pro-
vided a new paradigm for the development of targeted multifunctional siRNA vector and
real-time monitoring of RNA interference therapeutic responses.

4.7. Upconversion Nanoparticles

Upconversion nanoparticles (UCNPs) (Figure 2j) are known for their excellent op-
tical properties and have developed the field of biophotonics in combination with op-
tical bioimaging technology [166]. The UCNPs doped with rare earth elements can
radiate the high-frequency photon nanometer particles when excited by two or more
low-frequency photons. This process violates Stokes law, so it is also called “anti-Stokes
luminescence” [167]. The luminescence mechanism of UCNPS is mainly divided into
three categories: excited state absorption (ESA), energy transfer upconversion (ETU), and
cooperative sensitization upconversion (CSU) [168]. Unfortunately, UCNPS-based sensors
have been found to have poor sensitivity after signal amplification and low quenching
efficiency in many studies [169]. These issues may be addressed by a novel NIR-activated
nanoprobe (Figure 10). Zhao et al. [170] proposed a nanoprobe as NIR-to-UV converter
that can be used for controllable imaging of miRNA in vivo. It integrated the advantages
of UCNPs and UV-responsive beacon probes to improve the efficiency of optical imaging
remarkably. We are convinced that this NIR-activated UCNP strategy will be effectively
used in biophotonics, especially in cancer treatment.
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Figure 10. The principle of controllable miRNA imaging nanoprobe. (a) The structure of the PH1 probe in this experiment.
(b) The principle of nanoprobes working in cells [170]. Copyright (2020) American Chemical Society.
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Great progress has been made in the research of nanoparticles for the delivery of RNAi
molecules showing the promising future of this field. The advantages and disadvantages of
these nanomaterials are briefly described in Table 3 below. For the delivery of siRNAs, we
found fewer inorganic nanoparticles in clinical studies compared to organic nanoparticles.
Actually, there is no unified conclusion on the biodegradability and biocompatibility of
inorganic nanoparticles and the results of different studies are always contradictory. Re-
cently, a gold nanoparticle-based RNAi drug (NU-0129) for the treatment of glioblastoma
(GBM) is in early phase 1 experiment. The results of the study in non-human primates
and human phase 0 clinical trials showed the safety of NU-0129 with systemic administra-
tion [171,172]. We expect that this delivery system can break the inherent shortcomings
of inorganic nanoparticles and send the drug from bench to bedside. Human biological
system is extremely complex so the interaction between nanoparticles and proteins or other
biological components may lead to unique biological distribution, immune response and
metabolism. Therefore, it may be necessary to carefully evaluate the long-term toxicity and
biodegradability of nanoparticles-based RNAi therapeutic before clinical trials.

Table 3. A summary of the advantages and disadvantages of different nanoparticles.

Nanoparticles Advantages Disadvantages Reference
(a) Offer wide options of o )
polymer materials (a) Insufficient drug loading
Lipid-Based (b) Cationic lipids enhance (b)  Faster drug release
P i stabilization by electrostatic (c)  RES clearance [90,173,174]
Nanoparticles interactions (d) Short half-life in serum
() Easy scale up and (e) Dose-dependent toxicity
manufacturing
(@) Less toxicity.
(b) Promoteblood circulation
Micellar () Hydrophobic cores are (]i) imm;gcure iiruczl‘g_ release »
Nanoparticles favorable for encapsulation (b) ow r‘i‘g oading capacities, [173,175,176]
Organic of hydrophobic drugs. (c)  Burstrelease
(d) Biocompatible and
biodegradable materials
(@) Water-solubility
(b) Biocompatible and
biodegradable (a) Cationic polymers cause
_ ittlei ; cytotoxicity
Poymerfased (9 Noorfileimmunclogical (YUK, ey 76177
(d) Unique proton sponge (©)  Low efficacy
effect (PEI)
(e) Easily fine-tuned for any size
(a) Photosensitive (a) High cost
Gold (b) Customizable size (b)  (RES clearance
Nanoparticles () Thermal ablation of (c) Certain sizes show lethal [134,151,178-181]
cancer cell toxicity
(d) SPR phenomenon (d) Poor targeting ability
(@) Adjustable aperture size
Inorganic (b) Large specific surface area
offer high drug loading (a) Drug 'leakag'e
Mesoporous Silica (c)  Excellent mechanical (b) T.OXI_Clty to hver. ) 173.187-184
Nanoparticles stability (c) Limited blood circulation [173,182-184]
half-lives

(d) Easily functionalized
(e)  Excellent biocompatibility
(f)  Photothermotherapy
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Table 3. Cont.

Nanoparticles

Advantages Disadvantages Reference

Iron oxide
Nanoparticles

(a) Superparamagnetism
(b) Magnetic targeting =
(c) Tunable surface (@)  Poor solubility
modifications (b) Lack long-term biosafety [7,185-189]
(d) MR imaging
(e) Low cost

Upconversion
Nanoparticles

(@)  Excellent optical properties ga; {:rlr:lrg;ggéﬁ%lecal toxicity

(b) Capfability of being quenching effect

lummesc.ent probes . ()  Low reproducibility [13,190-192]
(c)  Deeper tissue penetration (d) Potential long-term toxicity
(d) Negligible autofluorescence and unclear

systematic clearance
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5. Conclusions

Present treatment strategies for cancer, malignant diseases that plague the world,
still have many limitations. There have been a large number of reports demonstrating
that RNAi-mediated gene silencing has a significant inhibitory effect on tumor cells. As
a consequence of targeting specific genes and having extremely high silencing efficiency,
siRNA has few side effects. Nanoparticles have many distinct features, such as suitable
size, and can be modified by active targeting molecules. Over the last decades, the research
on nanoparticles has been revolutionized. Thus, nanoparticles as the protective carrier for
the systemic delivery of siRNA can contribute to the development of RNAi therapy, due
to the instability and low targeting of naked siRNA in blood circulation. Despite current
successes, there are still challenges that hinder the clinical application of RNAi-based
cancer treatment so that the development of it is still in the preclinical trial. Degrading in
circulation, the low uptake efficiency of siRNA by tumor cells, and the off-target effects
are the obstacles that scientists are trying to eliminate in the systemic administration of
RNAi-based cancer therapeutics. In the near future, RNAi-based therapy will become an
important means in the clinical practice of cancer treatment.
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