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Abstract: Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the south-
western Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to
chemically characterize the plant. From the aerial parts, two newly identified guaianolides were
isolated: 3p-hydroxy-4«(acetoxy)-4f (hydroxymethyl)-8x-(4-hydroxy methacrylate)-1aH,5H, 60tH-
gual-10(14),11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2). Seven previously reported
compounds were also isolated: 3§, 4«, 8«x-trihydroxy-4-(hydroxymethyl)-laH, 5aH, 63H, 70cH-
guai-10(14),11(13)-dien-6,12-olide (3), chlorohyssopifolin B (4), cynaropikrin (5), hydroxyjanerin (6),
chlorojanerin (7), isorhamnetin (8), and quercetagetin-3,6-dimethyl ether-4’-O-3-D-pyranoglucoside
(9). Chemical structures were elucidated using spectroscopic techniques, including High Resolution
Fast Atom Bombardment Mass Spectrometry (HR-FAB-MS), 1D NMR; 'H, 13C NMR, Distortionless
Enhancement by Polarization Transfer (DEPT), and 2D NMR (*H-"H COSY, HMQC, HMBC) anal-
yses. In addition, a biosynthetic pathway for compounds 1-9 is proposed. The chemotaxonomic
significance of the reported sesquiterpenoids and flavonoids considering reports from other Centaurea
species is examined.

Keywords: Centaurothamnus maximus; Asteraceae; guaianolides; flavonoids; biosynthesis; chemotax-
onomy

1. Introduction

Centaurothamnus maximus Wagentz and Dittri (Asteraceae) is a branched shrub that
grows to a height of ca. 1.5 m [1]. Stems are densely white-tomentose with alternating
leaves that are lanceolate to elliptic (2-6 cm wide by 8-15 cm long), silvery below and
green above. Thistle-like magenta flowers 3—4 cm long at the end of the branches have a
faint sweet scent [2]. Centaurothamnus is a monotypic genus from Centaurea and endemic
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to the mountains of the southwestern Arabian Peninsula. C. maximus (Forssk.) was first
reported in 1775 from a collection from Yemen [1-3]. The genus is highly restricted in Saudi
Arabia to cliffs and steep hillsides and is represented by ca. 200 species [4]. C. maximus
is a paleoendemic species that presently grows in Yemen without any known traditional
uses. This may be in part due to the plant’s limited distribution to high mountains cliffs
and slopes in Yemen [3].

Previous Centaurothamnus phytochemical studies have led to the isolation of the
sesquiterpene lactones guaianolides, edusamanolides, germacranolides, and elemano-
lides [5-9], as well as several flavonoids [10] and acetylenes [11,12]. Reports concerning
the phytoconstituents of C. maximus include the guaianolide sesquiterpene lactones chloro-
janerin, janerin, and cynaropicrin [13], as well as an oxygenated homoditerpenoid [14] and
an aliphatic ester 8’ a-hydroxy-n-decanyl-n-docosanonate [15].

In the current investigation, we describe the isolation and identification of two
new guaianolide sesquiterpene lactones, 3(3-hydroxy-4a(acetoxy)-4 (3 (hydroxymethyl)-
8-(4-hydroxy methacrylate)-1aH,50H,6 xH-gual-10(14),11(13)-dien-6,12-olide (1) and 15-
descarboxy picrolide A (2), as well as seven known compounds, 3$3,4x,8 «-trihydroxy-
4-(hydroxymethyl)-loaH,5H,6 3 H,7 xH-guai-10(14),11(13)-dien-6,12-olide (3), chlorohys-
sopifolin B (4) [16], cynaropicrin (5) [17], hydroxyjanerin (6) [18], chlorojanerin (7) [19],
isorhamnetin (8) [20], and quercetagetin-3,6-dimethyl ether-4’-O-f3-D-pyranoglucoside
(9) [21] (Figure 1). In addition, biosynthetic pathways for the secondary metabolites (1-9) and
the chemotaxonomic significance of sesquiterpene lactones and flavonoids are discussed.
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Figure 1. Structures of the isolated compounds from Centaurothamnus maximus.
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2. Results
2.1. Structure Elucidation of the Isolated Compounds

A CH;,Cl:MeOH (1:1) of C. maximus aerial parts total extract was chromatography
fractionated and purified, leading to two guaianolide sesquiterpene lactones: 33-hydroxy-
4o(acetoxy)-4p (hydroxymethyl)-8o-(4-hydroxy methacrylate)-1ocH,50H, 6 xH-gual-10(14),
11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2) (Figure 1).

Compound 1, a white amorphous powder, showed a molecular ion peak [M + H]*
at m/z 423.1655 (calcd. for Cpy1Hy;09, 423.1662), confirmed by high-resolution FAB-MS
analysis, and an optical rotation of [«]D 25 = +17.0 (c, 0.001, MeOH). Twenty-one carbons
were detected through the '*C NMR spectrum (Table 1), which was incompatible with
its molecular formula. The classification of these carbons was inferred from the DEPT
analyses as; one methyl, seven methylenes (three olefinic), six methines (three oxygenated
at d¢c 76.1,77.1, and 74.2), and seven quaternary carbons (three olefinic and three keto at 6¢
169.5,171.9, and 156.2 (Table 1). 'H NMR analysis (Table 1) showed a characteristic large
coupling pattern of oxymethine proton at 55 4.84 (1H, t, J56 = 12.9), assigned to a lactone
proton at C-6 that specified to a trans-diaxial character of the protons for C-5 (55 2.36, t,
J=9.9) and C-7 (by 3.22, brt, | = 9.3), strongly suggesting a guaiane-type sesquiterpene
lactone skeleton [22]. With the exception of acetoxy group at C-4 (8¢ 83.4) and chlorine
atom with up-field chemical shift of C-15 (5¢ 63.4), both 'H and 3C NMR spectra for 1
were quite similar to those for compound 5: (3§3,4x-dihydroxy-4{3-(hydroxymethyl)-8x-(4-
hydroxy-methacrylate) laH,50¢H,6 BH,70 H-guai-10(14),11(14)-dien-6,12-olide), which has
been previously isolated from Amberboa ramosa [16].

Table 1. 'H and 3C NMR data of compounds 1-7 in CDCl;3 (500 and 125 MHz ¢ in ppm, | in Hz).

N 1 2 3 4 5 6 7
o- Su Sc Su Sc Sc Sc Sc Sc Sc
1 352m* 46.4 3.60m * 463 434 471 448 445 46.1
2 1.60m*, 383 1.60 m * 39.8 433 386 386 376 386

2.35m*
3 405 Sd;l) 75, 76.1 416m* 76.1 77.5 75.6 72.8 77.0 75.6
4 - 83.4 - 83.8 83.1 84.4 152.6 83.9 84.5
2.45dd
5 2361 (9.9) 57.1 (172,65) 573 55.1 58.4 50.7 55.6 583
6 4.84 t (12.9) 771 4.90 (21.5) 772 77.8 77.5 78.9 77.4 77.1
7 3'(292;“ 482 3.35m* 473 51.2 492 482 474 478
5.15 ddd
8 (105,42, 742 516 m 74.2 71.9 71.1 74.3 74.4 74.1
2.0)
275 dd 2'67 69)‘102‘ (3795
9 (13.5,5.9), 35.0 oy 38.4 365 38.6 363 37.0 34.4
242m (12.9,10.7)
10 : 143.0 - 1435 142.8 143.8 142.6 142.1 143.6
1 - 138.0 - 140.6 137.3 139.0 138.3 136.8 138.0
12 - 169.5 - 165.2 170.2 170.2 169.9 169.9 169.5
6.10d (3.8),
13 560 d 120.8 5.66d (4.1), 1215 124.1 121.2 121.1 123.3 120.8
6.12d (4.1)
(3.24)
14 5.14 brs, 116.5 5.1brs, 4.75 117.0 116.1 115.5 116.8 117.4 116.1
4.82 brs brs
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Table 1. Cont.

N 2 3 4 5 6 7
0. Su Sc Su Sc Sc Sc Sc Sc Sc
450d 459d
15 (2.0 66.5 (39) 66.2 63.6 487 1115 63.4 487
16 ; 165.2 34 b;ié 241 169.5 165.17 165.5 165.2
5.99d (3.6),
17 ; 1406 S oo 138.1 ; ; 1405 139.7 1406
18 433 brs 602 433s 602 ; ; 603 614 602
6.32 brs,
19 o 1245 ; 1245 ; ; 124.6 1263 1245
v - - 138.1 - - - - -
, ] 6.85d ] ] ] ] ]
2 (0.5 1146
) 8.00 d
3 ; 0.5 1317 ; ] ] ) )
¥ ; ; 1245 i _ } ) -
, ] 8.00d ] ] ] ] ]
5 105 1317
, ] 6.85d ] ] ] ] ]
6 o) 1146
C=0, OAc ; 1719 ; ; } ) ; ) )
CH3, OAc 211s 195 ; ] } ) ; ) )

* Overlapping signals. - Not detecetd.

The appearance of a sharp singlet signal at oy 2.11 (3H, s, H-1) together with new
ester carbonyl at ¢ 171.9 in 1, along with an absence of these signals in 5, indicates the
presence of an acetoxy group instead of hydroxyl group at C-4. While it is possible that
such an acetate functionality is a chemical artifact (e.g., drying and/or extraction), the
fact that such derivatizations have been phytochemically studied in the same manner
from the same genus and other genera suggests that these natural products are in fact
plant-derived metabolites.

Two-dimensional NMR data (‘H-'H COSY, HMQC and HMBC) clearly indicate that
the acetoxy of 1is comparable to that of 5 [16]. HMBC correlations (Figure 2) were observed
between H-8/C-16 and H-18/C-16, C-17, and C-19, supporting the sequence and position
of the side chain at C-8. In addition to two- and three-bond correlations between H-1/C-3,
C-6,C-7, C-10; H-2/C-3, C-4, C-5, C-6, C-10, C-14; H-5/C-1, C-2; H-6/C-1, C-8; H-7/C-1;
H-14/C-1, C-8, C-9; and H-8/C-6, C-14 were further confirmation of the structure of 1
(Figure 2).

"o OH

Figure 2. Observed TH-TH-COSY (bold blue line) and HMBC (red arrow) correlations for 1 and 2.
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The relative stereochemistry of 1 was determined by comparison of the coupling
constants and the biogenetic correlation with the corresponding guaianolides isolated
from other Asteraceae species [23,24]. NOESY correlations (Figure 3) between H-1, H-3,
H-5, and H-9 are in an « orientation, and NOESY correlations between H-6, H-8, and
H-15 are in a 3 orientation. From the spectral data reported here, 1 was identified as 3f3-
hydroxy-4o(acetyloxy)-4p (hydroxymethyl)-8x-(4-hydroxy methacrylate)-1ocH,50cH,6 xH-
gual-10(14),11(13)-dien-6,12-olide, a newly reported natural product.

y

0
g
/'l H
f
‘15
..
A
Fal

!
bR

Figure 3. Significant NOESY correlations of 1 and 2.

Compound 2, a yellowish amorphous powder, had an optical rotation of [«]D 25 =
+7.0 (c, 0.005, MeOH). A base peak at m/z 472.1758 [M] corresponded to a molecular
formula of Cp5H309 (calcd. for CpsHpg0g, 472.2042) in the HR-FAB-MS spectrum. 13¢C
NMR and DEPT spectral analyses (Table 1) revealed 25 carbons that were classified as
seven methylenes (three olefinic), 10 methines (three oxygenated at 8¢ 76.1, 77.2, and 74.2),
and eight quaternary carbons (three olefinic as well as two keto at 6c 165.5 (C-12) and
169.5 (C-16), (Table 1). 'H NMR spectral data (Table 1) show characteristic resonances
for ap-disubstituted benzene moiety at &y (2H, | = 10.5, H-2',6’) and 6.85 (2H, | = 2.4,
H-3',5'). Aromatic carbons were observed at 5c 138.1, 114.6, 131.7, and 124.5, confirming
p-disubstituted aromatic moiety. Proton signals were similar to a previously reported
picrolide A isolated from Acroptilon repens [25]. Signal alternations included an ester
carbonyl carbon for picrolide A reported at 6c 167.1, which was missing in 2, suggesting
that the aromatic ring attached at C-15 and present as p-dihydroxy benzene moiety in 2 was
modified to ap-hydroxy benzoate moiety in picrolide A. The HMBC connections (Figure 2)
from H-15 to C-1'/C-3/C-4; H-2/,6' to C-3' /C-4' /C-5'; and H-3' 4’ to C-1’/2 /6’ further
confirmed the structure and location of the aromatic moiety at C-15. Three correlations
were also observed from H-8 to C-16, H-18 to C-16/C-17, and H-19 to C-16/C-17/C-18,
supporting the sequence and position of the side chain at C-8. In addition, two- and three-
bond correlations from H-1 to C-3/C-6/C-7/C-10, H-2 to C-3/C-4/C-5/C-6/C-10/C-14,
H-5 to C-1/C-2, H-6 to C-1/C-8, H-7 to C-1, H-14 to C-1/C-8/C-9, and H-8 to C-6/C-14
were further confirmation of the structure of 2 (Figure 2).

The relative configurations of both 1 and 2 were the same when compared with
the corresponding guaianolides isolated from Asteraceae [23,24]. NOESY correlations
(Figure 3) between H-1, H-3, H-5, and H-9 are in an « orientation, and NOESY correlations
between H-6, H-8, and H-15 are in a (3 orientation. Accordingly, the structure of 2 was
established as a new derivative of picrolide A and named 15-descarboxy picrolide A.

2.2. Proposed Biosynthetic Pathway of the Isolated Compounds

Generally, the terpenoids biosynthesis in plants can arise in dissimilar subcellular
compartments, the cytosol, mitochondria, and/or plastids [26,27]. Biosynthetically, farnesyl
diphosphate (FPP) is considered the main precursor for biosynthesis of a vast array of
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sesquiterpene. Cyclization of FPP into (+) germacrene A is catalyzed by (+) germacrene A
synthase (GAS) [28]. The latter is converted to the corresponding acid, germacrene A acid,
through hydroxylation and oxidation reactions catalyzed by cytochrome P45y germacrene
A oxidase (GAO). Germacrene A acid is then hydroxylated at C-6 to produce 6-hydroxy-
germacrene A acid as an unstable intermediate by the action of another cytochrome Pys50(+)
costunolide synthase (COS). Costunolide is obtained from this intermediate that undergoes
spontaneous non-enzymatic lactonization of the hydroxyl group at C-6 with the carboxylic
group at C-12 (Figure 4) [29-31]. Costunolide is considered a branching point precursor
for producing germacranolides, eudesmanolides, and guaianolides as the three major
sesquiterpene lactones groups. Thus, 4,5 epoxidation of costunoilde is hypothesized to be
the first committed step in guaianolide biosynthesis through the conversion of costunolide
to parthenolidecatalyzed by parthenolide synthase (TpPTS) [31]. The opening of the
epoxide through an intramolecular attack of the double bond generates the three-cyclic
skeleton as a guaianolide-type intermediate that is responsible for generating a large
variety of guaianolides (Figure 4) [29,32,33]. The guaianolides in Asteraceae have a specific
biosynthetic pathway with unique conformations that differ from guaianolides in the
family Apiaceae. The lactone ring in Apiaceae is either 63, 8x or 63, 83, whereas in
Asteraceae, it has only been seen as 6, 8f3 [23,24]. The hydroxylase enzymes activate
an enzymatic hydroxylation of the guaianolide-type intermediate at C-3, C-8, and C-
15, thereby producing compound 3. Compound 4 was biosynthetically proposed by
incorporation of chloride atoms at C-15 of compound 3, which catalyzed by Flavin adenine
dinucleotide (FADH;)-dependent halogenases as the type of halogenating enzymes of
compounds activated for electrophilic attack (Figure 4). On the other hand, the C-8 position
is easily hydroxylated by the enzyme CYP71BL1 and acts as an active site to accept acyloxy
moiety via the P45 acetyltransferase enzyme [34]. The generation of the side chain at C-8
is proposed via esterification of the hydroxyl group at C-8 with acrylic moiety, followed
by methylation and hydroxylation of the side chain to generate compound 6. The latter is
considered the main precursor of compounds 1, 2, 5, and 4 through specific biochemical
pathways (Figure 4). Compound 7 is similar to 4 in chlorination of 6 at C-15, which is
activated by FADH2-dependent halogenases. The acetylation of 6 at C-4 is believed to
be mediated by an acetyl transferase, which catalyzes the transfer of an acetyl group
from acetyl-CoA as a donor molecule to produce an acetylated analogue 1. Compound 2,
however, may be obtained via condensation reaction of compound 6 at C-15 with a simple
aromatic moiety, such as hydroquinone, which may be produced from shikimic acid as
precursor. The dehydrogenase enzyme may be converting the primary alcoholic group at
C-15 in compound 6 into a formyl group that also converted into a methyl one by reductase
enzyme, and a double bond between C-4 and C-15 is formed by losing one molecule of
water to produce compound 5 (Figure 4).

Flavonoids are products of a shikimic acid and the acetate pathway by condensation
of 4-hydroxy cinnamoyl-coenzyme A, referred to as 4-coumaroyl coenzyme A, with unit
9 of malonyl coenzyme A. The plant utilizes a shikimic acid pathway for deriving a
polyketide intermediate that forms a chalcone skeleton. The chalcone skeleton serves as a
key intermediate in the biosynthesis of several classes of flavonoids [35-37]. The proposed
biosynthetic pathway of compounds 8 and 9 is shown in Figure 5.

2.3. Chemosystematic Significance

Centaurothamnus is a monotypic genus that is a cross-taxon basionym with the genus
Centaurea. The genus Centaurea is considered an attractive source for sesquiterpene lactones
and flavonoids [38,39]. The Centaurea species are rich in various types of sesquiterpene
lactones, including guaianolides, germacranolide, eudesmanolides, and elemanolides.
The guaianolides are the most abundant and more distributed in genus Centaurea [40,41].
Based on bibliographic research, about 54 guaianolide sesquiterpene compounds have
been isolated from 80 Centaurea species, as well as 20 germacronolides from 46 species,
7 elemanolides from 10 species and 4 eudesmanolides from 3 species [42]. There are
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also review articles that describe sesquiterpene lactones isolated from specific Centaurea
species, including 20 guaianolides isolated from C. acaulis, C. omphalotricha, and C. musimo-
mum; 11 germacranolides and 12 elemanolides from C. acaulis, C. melitensis, C. calictrapa,
C. foucauldiana, C. lippii, C. parviflora, C. tougourensis, C. sulphurea, C. papposa, C. sicula,
and C.pullata; and 8 eudesmanolides from C. acaulis, C. papposa, C. granata, C. pullata and
C. maroccana [43]. In addition, guaianolides and elemanolides have been isolated from
Centaurea, including four guaianolides and cynaratriol from C. musimomum [44]; centau-
rpensin and 13-acetyl solstitian A from C. solstitialis [45]; cebellin M from C. bella [46];
the elemanolideshierapolitanins A, B, C, and D isolated from C. hierapolitana [22]; and
13-N-proline melitensin and 13-N-proline-6«x, 8«, 15-trihydroxy elema-1,3-diene-oic acid
from C. polyclada [47].

Chlorinated guaianolides with noted medical value have been isolated from species
of Centaurea [48]. The chlorinated guaianolide derivatives were reported as chlorohys-
sopifolins A and C, which were isolated from C. bella, C. carthelinica, C. aegyptiaca, C.
colchica, C. dealbata, C. exsurgens, C. hyssopifolia, C. janeri, C. karabaghensis, C. somchetica, C.
taochia, and C. zangezuri [49]; chlorohyssopifolin B reported from C. aegyptiaca, C. Hyssopi-
folia [49], and C. linifolia [50]; chlorohyssopifolins D and E from C. hyssopifolia [51] and
C. linifolia [50]; chlorojanerinfrom C. aegyptica [52], C. hyssopifolia [53] and C. sinaica [54];
chlororepdiolide from C. repens; 19-desoxychlorojanerin from C. aegyptiaca [48]; elegin from
C. repens [55] and C. solistitialis [56]; epi-centaurepensin, episolistiolide, and linichlorin A
from C. linifolia [49]; solistitiolide from C. repens and C. solistitialis [56]; 14-chloro-10-f3-
hydroxy-10(14)-dihydrozaluzanin D from C. acaulis [57]; and cebellin C and centaurepensin
from C. bella [58].

4,5-epoxid ation

—_—
Parthenolid e synth ase
(TpPTS)

(+) Costunolide Q Parthenolide O o

Guaianolide-type intermediate
Unstable Guaianolide mtermediate
2 HADIK
C3,C8 and C-15
hydroxylation
Hydroxlase enzymes H,0 Nape*
Addition of

OH  aaylic acid moiety  HO
at C-8

B0’ HO

Compound 3 O
FADH
z 0, I, '
Chlorination
at C-15
H,;0
Reduction and FaD :

Condensation reactions
at C4 and C-15

o}
Compound 2 Compound 5

OH

Figure 4. Biosynthesis proposed pathway scheme for the isolated guaianolides.
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3,3 Hydroxylatlon
OH O
3-Hydroxy flavanone

FLS|, 363
Hydroxylation
OH [ OH
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e
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H;CO ocH; as3on HO OH at 3' OH

OH O

lO-glycosylation at 3' OH

OH

HO OH '
Hoh_O OCH;
HO
1) 498

H3CO OCH;
OH O

Compound 3 Compound 9
Figure 5. Proposed biosynthesis pathway scheme for the isolated methoxyled flavones.

On the other hand, flavonoids are also distributed in different species of Centaurea.
Different reports showed that 119 flavonoids of various types, primarily belonging to the
flavone class, have been isolated from 53 Centaurea species. Apigenin and luteolin, as
well as their glycosides, were the most common flavones in the Centaurea species. The
glycosylation of flavones was commonly found at position 7 as 6-methoxykaempferol
7-O-glucoside, kaempferol 7-O-glucoside, along with hispidulin-7-O-glucoside from C.
macrocarpa [59], apigenin 4'-(6'-methylglucuronide) from C. nicaeensis [60], and apigetrin
from C. resupinate [61]. The flavonol glycosides derivatives were rare; only patuletin-7-O-
glucoside was isolated from C. macrocarpa [59] and nicotiflorin as a flavonol-3-O-glucoside
from C. resupinate [61].

The methoxylated flavone derivatives were commonly detected in genus Cenfau-
rea as 6-mono-methoxyflavones, which are represented as 6-methoxykaempferol and 6-
methoxyluteoin from C. macrocarpa [59], 5,7-dihydroxy-6-methoxyflavone (oroxylin A),
and 5,7 4'-trihydroxy-6-methoxyflavone (hispidulin) from C. ragusina [62]. Other rare
methoxylated flavone derivatives include 3’-mono-methoxyflavones, such as chrysoeriol
from C. resupinate [61] and 6,5'-dimethoxyflavones such as jaceosidin from C. nicaeen-
sis [60]. 6,7,3'-Trimethoxyflavone was found as cirsilineol from C. nicaeensis [60]. The
5,7-dihydroxyflavone derivative chrysin was reported from both C. ragusina [62] and C.
resupinata [61], and the 5,7, 4'-trihydroxyflavone derivative apigenin was isolated from C.
resupinate [61]. Prunasin, a cynogenic glycoside, was observed in C. nicaeensis [60].

In the present study, seven guaianolide sesquiterpene, including two chlorinated
guaianolides, namely chlorohyssopifolin B (4) [16] and chlorojanerin (7) [19], together with
two flavonoid compounds, 5,7,4’-trihydroxy-3,6-dimethoxyflavone-4'-O-glucoside (9) and
isorhamnetin (8) (Litvinenko and Bubenchikova, 1988), were isolated from C. maximus.
Compound 3 was firstly isolated from genus Centaurea and previously characterized from
Amberboaramosa [16]. Chlorohyssopifolin B (4) was also previously reported from Amber-
boaramosa [16], C. aegyptiaca [48], C. maximus, C. hyssopifolia, and C. linifolia [49]; 5 was previ-
ously isolated from C. amberboa, C. dealbata, C. exarate [49], C. linifolia, and C. maximus [63];
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6 was firstly isolated from Centaurea and previously isolated from Amberboaramosa [16] and
Cousiniaaitchisonii [18]; and 7 (chlorojanerin) was previously reported from C. adjarica [64],
C. Janeri [53], C. sinaica [54], and C. Aegyptiaca [48]. Compounds 1 and 2 were isolated and
characterized as new guaianolides from C. maximus. The 3’ methoxyflavonol derivative 8
was first characterized from C. maximus and previously isolated from C. kotschyi [65], C.
cynaus [20], and C. aegyptiaca [66], whereas 5,7 4'-trihydroxy-3,6-dimethoxyflavone-3'-O-
glucoside (9) was isolated as a new natural compound from C. maximus [21].

Based on the above studies, it appears that guaianolide sesquiterpene lactones isolated
from C. maximus are similar to those reported from C. aegyptiaca, and C. linifolia, which have
overlapping biosynthetic pathways and are characterized by their potential to produce
chlorinated guaianolides as well as methoxylated flavonoid derivatives.

3. Materials and Methods
3.1. General Procedures

Optical rotations were recorded on a JASCO P-2300 polarimeter (Jasco Corporation,
Tokyo, Japan). NMR and HR-MS spectra were recorded on a Bruker 500 NMR (Bruker,
Billerica, MA, USA) and JEOL JMS-700 (JEOL, Ltd., Tokyo, Japan) instrument, respectively.
A JASCO 810 spectropolarimeter was used for circular dichroism.

Chromatographic separation was applied using semi-preparative Agilent 1200 High
performance liquid chromatography (HPLC) with a refractive index (RI) detector (Santa
Clara, CA, USA) and reversed-phase column chromatography (YMC-Pack™ octadecylsilyl
(ODS) column (250 x 10 mm, 5 pm), Marcon Boulevard, Allentown, PA, USA). Silica gel
60 (Merck, 230400 mesh; Merck, Darmstadt, Germany) and precoated RP-18 Fys4 plates
(Merck, Darmstadt, Germany) were used for column chromatography and Thin Layer
Chromatography (TLC) analysis, respectively.

3.2. Plant Material

The wild aerial parts of C. maximus were collected in March 2015 from Al Udayn, Ibb,
Yemen. The plant was kindly identified by Prof. Dr. Abdulnaser Al Gifri of the Biology
Department at Education College, Aden University, Yemen. A voucher specimen (P 610)
was deposited in the Pharmacy Department at the University of Sciences and Technology,
Ibb, Yemen.

3.3. Extraction and Isolation

The air-dried powder of C. maximus (1 kg) was extracted using methylene chloride-
methanol (1:1; v/v, 4 L) at room temperature. A gummy residue (90.5 g) extract was
produced via in vacuo concentration, followed by fractionation on silica gel flash column
chromatography using n-hexane (3 L, 100%) and then by gradient of n-hexane/ethyl acetate
up to 100% ethyl acetate and ethyl acetate-methanol up to 15% MeOH (2 L of each solvent
mixture). Twelve major fractions were collected together based on the TLC profile. Vanillin—-
sulfuric acid reagent was used for the detection of compound spots to yield the following
six fractions: A (10.0 g), B(6.0g), C (11.5g), D (15.0 g), E (13.0 g), and F (7.5 g). Fraction C
was subjected to further fractionation on the ODS column (3 x 60 cm); the eluted gradient
with Elution started with 100% water, and the polarity was decreased with 10% increments
of methanol until reaching 100%. The subfractions were obtained and subjected to isolation
and purification by RP-18 HPLC (20 x 250 cm) using 80:20% MeOH:H,O, (8:1,2.5L) to
produce compound 5 (20.0 mg) and 6 (15.0 mg). Fraction D was also subjected to further
fractionation on the ODS column (3 x 60 cm) using 80:20% (MeOH:H,0O) and finally eluted
with 100% MeOH. The obtained fractions were further purified by RP-18 HPLC using
MeOH:H,O (7:2, 2.5 L) with a flow rate of 5 mL/min to obtain 1 (11.5 mg), 2 (13.5 mg), and
9 (10 mg). Fraction E was purified by RP-18 HPLC using MeOH (6:3, 2.5 L) with a flowrate
of 6 mL/min to produce 3 (7.5 mg) and 4 (12 mg). Fraction F was purified by RP-18 HPLC
using MeOH:H,O (50:50%, 2.5 L) with a flowrate of 5 mL/min to afford 7 (9.5 mg) and 8
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(15.0 mg). NMR assignments for isolated secondary metabolites (1-9) were included in the
Supplementary Materials: S1-528.

3B-Hydroxy-4a(acetoxy)-4(hydroxymethyl)-8a-(4-hydroxymethacrylate)-1aH, 5a H, 60 H-
gqual-10(14), 11(13)-dien-6,12-olide (1). Amorphous powder; [«]D 25 =+17.0 (c, 0.001, MeOH);
H (CDCl3, 500 MHz) and '3C (CDCl3, 125 MHz) NMR; see Table 1. FAB-MS m/z = 423.1655
[M + H]*; HR-FAB-MS m/z = 423.1655 (calcd. for Cp1Hp7O9, 423.2222).

15-Descarboxy picrolide A (2). Amorphous powder; [o]D 25 = +7.0 (c, 0.005, MeOH); 'H
(CDCl3, 500 MHz) and '3C (CDCl3, 125 MHz) NMR; see Table 1. FAB-MS m/z = 472.1758
[M]*; HR-FAB-MS m/z = 472.1758 (calcd. for Cy5HpgO9, 472.2042).

4. Conclusions

Two new guaianolide sesquiterpene lactones (1-2) were characterized from C. max-
imus, as well as five known guaianolide sesquiterpene (3-7), including two chlorinated
guaianolides (4 and 7), together with two known flavonoids (8-9). Compounds 3, 6 and
9 were firstly isolated from genus Centaurothamnus, while, 4 and 8 were isolated for the
first time from C. maximus. Biosynthetically, costunolide is considered the branching point
precursor for producing germacranolides, eudesmanolides, and guaianolides, however, 4,5
epoxidation of costunoilde is hypothesized to be the first committed step in the Asteraceae
family for guaianolide biosynthesis through the conversion of costunolide to parthenolide.
By opening of the epoxide through an intramolecular attack of the double bond, the three-
cyclic skeleton is generated as a guaianolide type intermediate and can go on to generate a
variety of enzymatically mediated guaianolides. Guaianolide biosynthesized in the family
Asteraceae have a specific biosynthetic pathway with the lactone ring having a 6, 83
conformation. Based on chemosystematic analysis, guaianolide sesquiterpenes from C.
maximus exhibit chemical overlap with Centaurea aegyptiaca, and C. linifolia, confirming their
placement in one section. Additional data on guaianolide sesquiterpenes and flavonoids
from other Centaurea species will be required to further elucidate intergeneric relationships.

Supplementary Materials: The following are available online, Figures S1-528: NMR spectra for
compounds 1-9.
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