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Abstract: A wide range of analytical techniques are reported for the determination of cinnamaldehyde
(CCHO) and eugenol (EOH) in plant extracts and herbal formulations either alone or in combination.
Nevertheless, sustainable/green analytical techniques for the estimation of CCHO and EOH either
alone or in combination are scarce in the literature. Accordingly, the present research was carried out
to establish a rapid, highly sensitive, and sustainable high-performance thin-layer chromatography
(HPTLC) technique for the simultaneous estimation of CCHO and EOH in the traditional and
ultrasound-assisted methanolic extracts of Cinnamomum zeylanicum, C. burmannii, and C. cassia and
their essential oils. The simultaneous estimation of CCHO and EOH was performed through NP-18
silica gel 60 F254S HPTLC plates. The cyclohexane/ethyl acetate (90:10, v v−1) solvent system was
optimized as the mobile phase for the simultaneous estimation of CCHO and EOH. The greenness
score of the HPTLC technique was predicted using AGREE software. The entire analysis was carried
out at a detection wavelength of 296 nm for CCHO and EOH. The sustainable HPTLC technique was
observed as linear in the range 10–2000 ng band−1 for CCHO and EOH. The proposed technique
was found to be highly sensitive, rapid, accurate, precise, and robust for the simultaneous estimation
of CCHO and EOH. The content of CCHO in traditional methanolic extracts of C. zeylanicum, C.
burmannii, and C. cassia was found to be 96.36, 118.49, and 114.18 mg g−1, respectively. However,
the content of CCHO in ultrasound-assisted methanolic extracts of C. zeylanicum, C. burmannii, and
C. cassia was found to be 111.57, 134.39, and 129.07 mg g−1, respectively. The content of CCHO
in essential oils of C. zeylanicum, C. burmannii, and C. cassia was found to be 191.20, 214.24, and
202.09 mg g−1, respectively. The content of EOH in traditional methanolic extracts of C. zeylanicum, C.
burmannii, and C. cassia was found to be 73.38, 165.41, and 109.10 mg g−1, respectively. However, the
content of EOH in ultrasound-assisted methanolic extracts of C. zeylanicum, C. burmannii, and C. cassia
was found to be 87.20, 218.09, and 121.85 mg g−1, respectively. The content of EOH in essential oils of
C. zeylanicum, C. burmannii, and C. cassia was found to be 61.26, 79.21, and 69.02 mg g−1, respectively.
The amounts of CCHO and EOH were found to be significantly higher in ultrasound-assisted
extracts of all species compared to its traditional extraction and hence ultrasound extraction has been
proposed as a superior technique for the extraction of CCHO and EOH. The AGREE analytical score
of the present analytical technique was predicted as 0.75, suggesting excellent greenness profile of the
proposed analytical technique. Based on all these observations and results, the proposed sustainable
HPTLC technique can be successfully used for the simultaneous estimation of CCHO and EOH in
different plant extracts and herbal products.
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1. Introduction

Cinnamon has been used as an old spice for a long time [1]. Cinnamon has also shown
various therapeutic effects and has characteristic flavor and fragrance [1,2]. Cinnamon
is obtained from the dried inner bark of several species of Cinnamomum, which includes
Cinnamomum zeylanicum Nees, Cinnamomum burmannii (Nees & T.Nees) Blume, Cinnamo-
mum cassia (L.) J.Perl, and Cinnamomum loureirii Nees etc. [1]. Cinnamon belongs to the
family Lauraceae [2]. Cinnamon is a rich source of essential oils and phenols [1,2]. The
main phytoconstituents of different species of cinnamon bark and cinnamon oils are cin-
namaldehyde (CCHO) and eugenol (EOH). Cinnamon has antioxidant [3], anti-diabetic [4],
anti-spasmodic [5], carminative [6], antiseptic [7], and anti-microbial [7,8] qualities.

Thorough literature analysis has suggested a wide range of analytical techniques for
the determination of CCHO and EOH either alone or in combination with other phyto-
constituents. An ultra-violet (UV) spectrometry technique was applied for the analysis
of CCHO in its crude drugs and herbal preparations [9]. Different high-performance
liquid chromatography (HPLC) techniques were also used for the analysis of CCHO ei-
ther alone or in combination with other phytoconstituents in plant extracts and herbal
preparations [10–12]. An HPLC technique was also used for the determination of CCHO
in combination with cinnamic acid in rat plasma [13]. Some gas-chromatography mass-
spectrometry (GC-MS) techniques have also been reported for the analysis of CCHO either
alone or in combination with other natural compounds [14,15]. GC-MS technique has
also been reported for the quantification of CCHO and its metabolites in rat tissues [16].
The gas-chromatography flame-ionization detector (GC-FID) technique was also used for
the estimation of CCHO in combination with other natural compounds in commercial
biopesticides [17]. A high-performance thin-layer chromatography (HPTLC) technique has
also been reported for the estimation of CCHO in C. zeylanicum bark powder [18]. A UV
spectrometry technique using liquid–liquid microextraction was applied for the analysis
of EOH in personal care products [19]. Different HPLC methods were also used for the
determination of EOH in different plant extracts and herbal preparations [19–22]. Various
HPTLC techniques have also been reported for the determination of EOH in plant extracts
and herbal preparations [23–25]. Some GC-MS techniques have also been reported for the
determination of EOH in clove extracts [26,27]. Electrochemical and voltammetry tech-
niques have also been reported for the determination of EOH in clove oil [28,29]. GC-FID
technique has also been reported for the simultaneous estimation of CCHO and EOH along
with other natural compounds in traditional Chinese medicinal preparations [30]. An
HPLC method was also used for the simultaneous estimation of CCHO and EOH in the
stem bark of C. zeylanicum [31]. Liquid chromatography mass-spectrometry (LC-MS) and
HPLC techniques were also applied for the simultaneous estimation of CCHO and EOH
in combination with other phytoconstituents in Chinese herbal medicine [32]. HPTLC
technique was also applied for the simultaneous determination of CCHO and EOH in
combination with other phytoconstituents in plant extracts [2,33]. Based on thorough
literature analysis, it has been found that a wide range of analytical techniques was used
for the quantification of CCHO and EOH either alone or in combination with other phy-
toconstituents. Unfortunately, the greenness profile of literature analytical techniques
was not reported and determined. Recently, the analytical techniques related to green
analytical chemistry (GAC) or environmentally benign analytical chemistry are enhancing
day by day for the determination of natural/herbal compounds in their plant extracts and
herbal formulations [34–39]. Various analytical/metric approaches have been used for the
prediction of greenness profiles of the analytical techniques [40–44]. Among them, only
AGREE analytical/metric approach uses all 12 principles of the GAC for the greenness
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assessment [42]. Hence, AGREE metric approach was applied for the greenness evaluation
of the present sustainable HPTLC technique [42].

Based on all these assumptions and reports, the present study was an attempt to
establish and validate a rapid, highly sensitive and green/sustainable HPTLC technique
for the simultaneous estimation of CCHO and EOH in essential oils and traditional and
ultrasound-assisted methanolic extracts of three different species of cinnamon including C.
zeylanicum, C. burmannii, and C. cassia. The present sustainable HPTLC technique for the
simultaneous estimation of CCHO and EOH was validated in terms of “linearity, system
suitability parameters, accuracy, precision, robustness, sensitivity, and specificity/peak
purity” according to The International Council for Harmonization for the Technical Re-
quirements for Pharmaceuticals for Human Use (ICH) Q2 (R1) guidelines [45].

2. Results and Discussion
2.1. Method Development

For the simultaneous estimation of CCHO and EOH, different proportions of cyclohex-
ane and ethyl acetate such as cyclohexane/ethyl acetate (50:50, v v−1), cyclohexane/ethyl
acetate (60:40, v v−1), cyclohexane/ethyl acetate (70:30, v v−1), cyclohexane/ethyl acetate
(80:20, v v−1), and cyclohexane/ethyl acetate (90:10, v v−1) were evaluated as the solvent
systems for the development of a suitable band. All investigated solvent systems were
developed under chamber saturation conditions (Figure 1).
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Figure 1. A representative pictogram for the developed high-performance thin-layer chromatography (HPTLC) plate for
the simultaneous estimation of cinnamaldehyde (CCHO) and eugenol (EOH).

From the obtained results, it was observed that the solvent systems cyclohexane/ethyl
acetate (50:50, v v−1), cyclohexane/ethyl acetate (60:40, v v−1), cyclohexane/ethyl acetate
(70:30, v v−1), and cyclohexane/ethyl acetate (80:20, v v−1) offered the poor densitometry
peaks of CCHO and EOH with poor asymmetry/tailing factor (As) values for CCHO
(As > 1.30) and EOH (As > 1.35). However, when the solvent system cyclohexane/ethyl
acetate (90:10, v v−1) was studied, it was observed that this solvent system offered a well-
separated and intact chromatographic peak of CCHO at Rf = 0.27 ± 0.01 and of EOH at
Rf = 0.38 ± 0.01 (Figure 2). In addition, the As values of CCHO and EOH were found to
be 1.04 and 1.10, which are highly acceptable. Accordingly, the cyclohexane/ethyl acetate
(90:10, v v−1) solvent system was optimized as the mobile phase for the simultaneous esti-
mation of CCHO and EOH in essential oils and traditional and ultrasound-assisted extracts
of different species of cinnamon. The spectral bands for CCHO and EOH were obtained un-
der densitometry mode and maximum response under reflectance/absorbance mode was
obtained at the wavelength (λmax) = 296 nm for CCHO and EOH (Supplementary Materials
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Table S1). Hence, the entire simultaneous estimation of CCHO and EOH was carried out at
λmax = 296 nm.
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Figure 2. Representative chromatograms of standard CCHO and EOH.

2.2. Method Validation

Different validation parameters for the simultaneous estimation of CCHO and EOH
were determined as per ICH-Q2 (R1) guidelines [45]. The results for the least square
regression analysis of calibration curves (CCs) of CCHO and EOH are included in Table 1.

Table 1. Results for least square regression analysis for the simultaneous estimation of cinnamalde-
hyde (CCHO) and eugenol (EOH) using sustainable/green high-performance thin-layer chromatog-
raphy (HPTLC) technique (mean ± SD; n = 6).

Parameters CCHO EOH

Linearity range (ng band−1) 10–2000 10–2000
R2 0.9986 0.9991

Slope ± SD 35.00 ± 1.58 16.11 ± 1.05
Intercept ± SD 1586.60 ± 16.32 446.61 ± 4.67

Standard error of slope 0.64 0.42
Standard error of intercept 6.66 1.90

95% confidence interval of slope 32.22–37.77 14.27–17.96
95% confidence interval of intercept 1557.52–1615.27 438.40–454.81

LOD ± SD (ng band−1) 3.56 ± 0.08 3.62 ± 0.09
LOQ ± SD (ng band−1) 10.68 ± 0.24 10.86 ± 0.27

The calibration curve (CC) for CCHO and EOH was observed as linear in the range
of 10–2000 ng band−1. The results showed a good linear relationship between the con-
centration and spot area of CCHO and EOH. The determination coefficient (R2) value
for CCHO and EOH was obtained as 0.9986 and 0.9991, respectively, which were highly
significant (p < 0.05). All these observations and results suggested that the sustainable
HPTLC technique was linear and acceptable for the simultaneous estimation of CCHO and
EOH.

The system suitability parameters for the sustainable HPTLC technique were deter-
mined and results tabulated in Table 2. The retention factor (Rf) value, As value and several
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theoretical plates per meter (N m−1) for the sustainable HPTLC technique were found to
be acceptable for the simultaneous estimation of CCHO and EOH.

Table 2. System suitability parameters in terms of retention factor (Rf), asymmetry/tailing factor (As)
and several theoretical plates per meter (N m−1) of CCHO and EOH for sustainable HPTLC technique.

Parameters CCHO EOH

Rf 0.27 0.38
As 1.04 1.10

N m−1 5248 4146

The accuracy of the sustainable HPTLC technique for the simultaneous estimation of
CCHO and EOH was estimated as % recovery and results are included in Table 3.

Table 3. Measurement of the accuracy of CCHO and EOH for sustainable HPTLC technique
(mean ± SD; n = 6).

Conc. (ng band−1) Conc. Found (ng band−1) ± SD Recovery (%) CV (%)

CCHO

50 50.58 ± 0.42 101.16 0.80
500 492.26 ± 2.67 98.45 0.54
1000 989.34 ± 5.08 98.93 0.51

EOH

50 49.68 ± 0.35 99.36 0.70
500 504.21 ± 2.85 100.84 0.56
1000 993.24 ± 5.53 99.32 0.55

The % recoveries of CCHO and EOH at three different quality control (QC) levels
were estimated as 98.45–101.16 and 99.32–100.84%, respectively using the sustainable
HPTLC technique. The estimated % recoveries within the limit of 100 ± 2% for CCHO and
EOH showed that the sustainable HPTLC technique was accurate for the simultaneous
estimation of CCHO and EOH.

The precision of the sustainable HPTLC technique for the simultaneous estimation
of CCHO and EOH was determined in terms of instrumental and intra/inter-assay pre-
cision and expressed as the percent of the coefficient of variation (% CV). The results for
instrumental precision are included in Table S2. The % CVs for CCHO and EOH were
estimated as 0.63 and 0.75%, respectively. The results of intra/inter-assay precisions for the
simultaneous estimation of CCHO and EOH using the sustainable HPTLC technique are
included in Table 4.

The % CVs of CCHO and EOH for the intra-assay precision were predicted as 0.52–0.73
and 0.48–0.65 %, respectively. The % CVs of CCHO and EOH for inter-assay precision
were predicted as 0.55–0.88 and 0.55–0.75%, respectively. The predicted values of % CV of
CCHO and EOH for instrumental and intra/inter-assay precisions within ± 2% magnitude
indicated that the sustainable HPTLC technique was precise enough for the simultaneous
estimation of CCHO and EOH.

The robustness of the sustainable HPTLC technique for the simultaneous estimation of
CCHO and EOH was evaluated by introducing small deliberate changes in the composition
of mobile phase components, total run length, saturation time, and detection wavelength.
The results of robustness analysis after changing mobile phase components are included in
Table 5. The % CVs for CCHO and EOH after this change were determined as 0.60–0.68
and 0.75–0.85%, respectively. In addition, the Rf values for CCHO and EOH were recorded
as 0.26–0.28 and 0.37–0.39, respectively.
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Table 4. Measurement of intra/interday precision of CCHO and EOH for sustainable HPTLC technique (mean ± SD; n = 6).

Conc.
(ng band−1)

Intraday Precision Interday Precision

Conc.
(ng band−1) ± SD Standard Error CV (%) Conc.

(ng band−1) ± SD Standard Error CV (%)

CCHO

50 50.49 ± 0.37 0.15 0.73 49.23 ± 0.43 0.17 0.88
500 494.19 ± 2.89 1.18 0.58 504.32 ± 3.12 1.27 0.61
1000 992.56 ± 5.22 2.13 0.52 986.51 ± 5.44 2.22 0.55

EOH

50 49.43 ± 0.32 0.32 0.65 49.28 ± 0.37 0.15 0.75
500 504.87 ± 2.90 2.90 0.57 495.89 ± 3.23 1.31 0.65
1000 995.51 ± 4.87 4.87 0.48 985.87 ± 5.50 2.42 0.55

Table 5. Results of robustness analysis of CCHO and EOH by changing mobile phase compositions
for sustainable HPTLC technique (mean ± SD; n = 6).

Conc.
(ng band−1)

Mobile Phase Composition
(Cyclohexane/Ethyl Acetate) Results

Original Used (ng band−1) ± SD % CV Rf

CCHO

92:8 +2.0 511.23 ± 3.10 0.60 0.26
500 90:10 90:10 0.0 514.62 ± 3.35 0.65 0.27

88:12 −2.0 516.41 ± 3.52 0.68 0.28
EOH

92:8 +2.0 489.22 ± 3.70 0.75 0.37
500 90:10 90:10 0.0 491.80 ± 3.90 0.79 0.38

88:12 −2.0 498.28 ± 4.28 0.85 0.39

The results of robustness analysis after changing total run length are included in Table
S3. The % CVs for CCHO and EOH after this change were determined as 0.59–0.68 and
0.67–0.90%, respectively. In addition, the Rf values for CCHO and EOH were recorded
as 0.25–0.29 and 0.36–0.40, respectively. The results of robustness analysis after changing
saturation time are included in Table S4. The % CVs for CCHO and EOH after this change
were determined as 0.66–0.71 and 0.58–0.85%, respectively. In addition, the Rf values for
CCHO and EOH were recorded as 0.26–0.27 and 0.37–0.38, respectively. The results of
robustness analysis after changing detection wavelength are included in Table S5. The %
CVs for CCHO and EOH after this change were determined as 0.59–0.71 and 0.61–0.69%,
respectively. In addition, the Rf values for CCHO and EOH were recorded as 0.27 and 0.38,
respectively. The small variations in Rf values and lower % CVs after changing different
chromatographic conditions showed that the sustainable HPTLC technique was robust for
the simultaneous estimation of CCHO and EOH.

The sensitivity of the sustainable HPTLC technique for the simultaneous estimation
of CCHO and EOH was determined in terms of detection (LOD) and quantification (LOQ)
limits and results are presented in Table 1. The LOD and LOQ values for CCHO were
determined as 3.56 ± 0.08 and 10.68 ± 0.24 ng band−1, respectively. However, the LOD
and LOQ values for EOH were determined as 3.62 ± 0.09 and 10.86 ± 0.27 ng band−1,
respectively. The recorded values of LOD and LOQ suggested that the sustainable HPTLC
technique was highly sensitive for the simultaneous detection and quantification of CCHO
and EOH.

The specificity/peak purity of the sustainable HPTLC technique for the simultaneous
estimation of CCHO and EOH was determined by comparing the Rf values and overlaid
UV-absorption spectra of CCHO and EOH in essential oils and traditional and ultrasound-
assisted methanolic extract of different species of cinnamon (C. zeylanicum, C. burmannii,
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and C. cassia) with that of standards CCHO and EOH. The overlaid UV spectra of standards
CCHO and EOH and CCHO and EOH in essential oils and traditional and ultrasound-
assisted methanolic extract of different species of cinnamon (C. zeylanicum, C. burmannii,
and C. cassia) are summarized in Figure 3.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 3. Overlaid ultra-violet (UV) absorption spectra of (A) standard CCHO and EOH, (B) CCHO and EOH in essential 
oil of Cinnamomum zeylanicum, (C) CCHO and EOH in essential oil of C. burmannii, (D) CCHO and EOH in essential oil of 
C. cassia, (E) CCHO and EOH in methanolic extract of C. zeylanicum, (F) CCHO and EOH in methanolic extract of C. bur-
mannii and (G) CCHO and EOH in methanolic extract of C. cassia. 

The maximum chromatographic response of CCHO and EOH in standards and es-
sential oils and traditional and ultrasound-assisted methanolic extract of different species 
of cinnamon (C. zeylanicum, C. burmannii, and C. cassia) were recorded at λmax = 296 nm 
under reflectance/absorbance mode. The similar UV-absorption spectra, Rf values and λmax 
of CCHO and EOH in standards and essential oils and traditional and ultrasound-assisted 
methanolic extract of different species of cinnamon (C. zeylanicum, C. burmannii, and C. 
cassia) indicated that the sustainable HPTLC technique was specific for the simultaneous 
estimation of CCHO and EOH. 

2.3. Application of Sustainable HPTLC Technique in the Simultaneous Estimation of CCHO and 
EOH in Essential Oils, Traditional and Ultrasound-Assisted Extracts of Different Species of 
Cinnamon  

The sustainable HPTLC technique could be an alternative approach to conventional 
analytical techniques for the simultaneous estimation of CCHO and EOH in essential oils 
and traditional and ultrasound-assisted methanolic extract of different species of cinna-
mon (C. zeylanicum, C. burmannii, and C. cassia). The chromatograms of CCHO and EOH 
from essential oils and traditional and ultrasound-assisted methanolic extract of different 
species of cinnamon (C. zeylanicum, C. burmannii, and C. cassia) were verified by compar-
ing their TLC spot at Rf = 0.27 ± 0.01 for CCHO and Rf = 0.38 ± 0.01 for EOH with that of 
standards CCHO and EOH. The representative chromatograms of CCHO and EOH in 
essential oils of different species of cinnamon are presented in Figure 4, which presented 
similar peaks of CCHO and EOH to that of standards CCHO and EOH in all three species 
of cinnamon. In addition, 2 additional peaks were also found in essential oils of all three 
different species of cinnamon. The representative chromatograms of CCHO and EOH in 
traditional methanolic extracts of different species of cinnamon are presented in Figure 5 
which also presented similar peaks of CCHO and EOH to that of standards CCHO and 
EOH in all three species of cinnamon. In addition, 3, 4, and 3 additional peaks were also 
recorded in C. zeylanicum, C. burmannii, and C. cassia, respectively. 

 

Figure 3. Overlaid ultra-violet (UV) absorption spectra of (A) standard CCHO and EOH, (B) CCHO and EOH in essential
oil of Cinnamomum zeylanicum, (C) CCHO and EOH in essential oil of C. burmannii, (D) CCHO and EOH in essential oil of C.
cassia, (E) CCHO and EOH in methanolic extract of C. zeylanicum, (F) CCHO and EOH in methanolic extract of C. burmannii
and (G) CCHO and EOH in methanolic extract of C. cassia.

The maximum chromatographic response of CCHO and EOH in standards and essen-
tial oils and traditional and ultrasound-assisted methanolic extract of different species of
cinnamon (C. zeylanicum, C. burmannii, and C. cassia) were recorded at λmax = 296 nm under
reflectance/absorbance mode. The similar UV-absorption spectra, Rf values and λmax of
CCHO and EOH in standards and essential oils and traditional and ultrasound-assisted
methanolic extract of different species of cinnamon (C. zeylanicum, C. burmannii, and C. cas-
sia) indicated that the sustainable HPTLC technique was specific for the simultaneous
estimation of CCHO and EOH.

2.3. Application of Sustainable HPTLC Technique in the Simultaneous Estimation of CCHO
and EOH in Essential Oils, Traditional and Ultrasound-Assisted Extracts of Different Species
of Cinnamon

The sustainable HPTLC technique could be an alternative approach to conventional
analytical techniques for the simultaneous estimation of CCHO and EOH in essential oils
and traditional and ultrasound-assisted methanolic extract of different species of cinnamon
(C. zeylanicum, C. burmannii, and C. cassia). The chromatograms of CCHO and EOH from
essential oils and traditional and ultrasound-assisted methanolic extract of different species
of cinnamon (C. zeylanicum, C. burmannii, and C. cassia) were verified by comparing their
TLC spot at Rf = 0.27 ± 0.01 for CCHO and Rf = 0.38 ± 0.01 for EOH with that of standards
CCHO and EOH. The representative chromatograms of CCHO and EOH in essential oils of
different species of cinnamon are presented in Figure 4, which presented similar peaks of
CCHO and EOH to that of standards CCHO and EOH in all three species of cinnamon. In
addition, 2 additional peaks were also found in essential oils of all three different species of
cinnamon. The representative chromatograms of CCHO and EOH in traditional methanolic
extracts of different species of cinnamon are presented in Figure 5 which also presented
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similar peaks of CCHO and EOH to that of standards CCHO and EOH in all three species
of cinnamon. In addition, 3, 4, and 3 additional peaks were also recorded in C. zeylanicum,
C. burmannii, and C. cassia, respectively.
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Figure 5. Representative chromatograms of CCHO and EOH in (A) methanolic extract of C. zeylanicum, (B) methanolic
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The 3D track spectra of CCHO and EOH in standards and all studied samples of
cinnamon species are presented in Figure 6. The presence of additional peaks in all
studied samples of cinnamon suggested that the sustainable HPTLC technique can be
successfully applied for the simultaneous estimation of CCHO and EOH in the presence of
other phytoconstituents/impurities. The contents of CCHO and EOH in essential oils and
traditional and ultrasound-assisted methanolic extract of different species of cinnamon (C.
zeylanicum, C. burmannii, and C. cassia) were determined from the CCs of CCHO and EOH
and results are included in Table 6.
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Table 6. Application of sustainable HPTLC method in simultaneous estimation of CCHO and EOH in
methanolic extracts of C. zeylanicum, C. burmannii and C. cassia and essential oils of C. zeylanicum,
C. burmannii and C. cassia produced by traditional and ultrasonication methods (mean ± SD; n = 3).

Samples Traditional Extraction Ultrasonication-Based
Extraction

Amount of CCHO (mg g−1)

C. zeylanicum oil 191.20 ± 3.95 -
C. burmannii oil 214.24 ± 4.34 -

C. cassia oil 202.09 ± 4.17 -
C. zeylanicum extract 96.36 ± 2.79 111.57 ± 3.11
C. burmannii extract 118.49 ± 2.97 134.39 ± 3.28

C. cassia extract 114.18 ± 2.84 129.07 ± 3.04
Amount of EOH (mg g−1)

C. zeylanicum oil 61.26 ± 1.78 -
C. burmannii oil 79.21 ± 1.89 -

C. cassia oil 69.02 ± 1.91 -
C. zeylanicum extract 73.38 ± 1.95 87.20 ± 2.04
C. burmannii extract 165.41 ± 2.41 218.09 ± 2.88

C. cassia extract 109.10 ± 1.38 121.85 ± 1.57

The contents of CCHO in essential oils of C. zeylanicum, C. burmannii, and C. cassia
were determined as 191.20 ± 3.95, 214.24 ± 4.34, and 202.09 ± 4.17 mg g−1, respectively.
The contents of CCHO in traditional methanolic extracts of C. zeylanicum, C. burmannii,
and C. cassia were determined as 96.36 ± 2.79, 118.49 ± 2.97, and 114.18 ± 2.84 mg g−1,
respectively. However, the contents of CCHO in ultrasound-assisted methanolic extracts of
C. zeylanicum, C. burmannii, and C. cassia were determined as 111.57 ± 3.11, 134.39 ± 3.28,
and 129.07 ± 3.04 mg g−1, respectively. The contents of EOH in essential oils of C. zey-
lanicum, C. burmannii, and C. cassia were determined as 61.26 ± 1.78, 79.21 ± 1.89, and
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69.02 ± 1.91 mg g−1, respectively. The contents of EOH in traditional methanolic extracts
of C. zeylanicum, C. burmannii, and C. cassia were determined as 73.38 ± 1.95, 165.41 ± 2.41,
and 109.10 ± 1.38 mg g−1, respectively. However, the contents of EOH in ultrasound-
assisted methanolic extracts of C. zeylanicum, C. burmannii, and C. cassia were determined
as 87.20 ± 2.04, 218.09 ± 2.88, and 121.85 ± 1.57 mg g−1, respectively. The contents of
CCHO were found to be significantly higher in essential oils of all three different species
of cinnamon compared to their traditional and ultrasound-assisted methanolic extracts
(p < 0.05). However, the contents of EOH were significantly higher in traditional and
ultrasound-assisted methanolic extracts of all three different species of cinnamon compared
to their essential oils (p < 0.05). These observations indicated that the CCHO is present in
higher amounts in essential oils of different cinnamon species, while the EOH is present in
higher amounts in methanolic extracts of different species of cinnamon. The contents of
CCHO and EOH in ultrasound-assisted methanolic extracts of C. zeylanicum, C. burmannii,
and C. cassia were significantly higher compared to their traditional methanolic extracts
(p < 0.05). Based on all these observations and results, the ultrasound method for the
extraction of CCHO and EOH has been considered superior to its traditional method of
extraction. Overall, these results indicated that the sustainable HPTLC technique can be
successfully applied in the simultaneous estimation of CCHO and EOH in the wide variety
of plants and herbal products containing CCHO and EOH as the main phytoconstituents.

2.4. Greenness Evaluation Using AGREE

Different analytical/metric approaches have been applied for the evaluation of green-
ness profiles of analytical techniques [40–44]. Among them, only AGREE uses all 12 prin-
ciples GAC for this purpose [42]. Hence, the greenness profile of the sustainable HPTLC
technique was obtained using AGREE: The Analytical Greenness Calculator (version 0.5,
Gdansk University of Technology, Gdansk, Poland, 2020) in this work. The representa-
tive pictogram for the AGREE score of the sustainable HPTLC technique is presented in
Figure 7. The AGREE score of the sustainable HPTLC technique was estimated as 0.75,
suggested the excellent greenness of the present HPTLC technique for the simultaneous
estimation of CCHO and EOH in essential oils and traditional and ultrasound-assisted
methanolic extracts of different species of cinnamon.Molecules 2021, 26, x FOR PEER REVIEW 12 of 18 
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2.5. Literature Comparison

The sustainable HPTLC technique for the simultaneous estimation of CCHO and
EOH was compared with different analytical techniques reported for the simultaneous
estimation of CCHO and EOH. The results of different validation parameters of present
HPTLC technique compared to literature analytical techniques are included in Table 7.
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Table 7. Comparison of present sustainable/green HPTLC technique with literature analytical techniques for the simultane-
ous determination of CCHO and EOH.

Analytical
Method

Compound

Ref.CCHO EOH

Linearity Range Accuracy
(% Recovery)

Precision
(% CV) Linearity Range Accuracy

(% Recovery)
Precision
(% CV)

GC-FID 0.45–452 (µg mL−1) 84–111 4.9–5.4 0.31–625 (µg mL−1) 88–96 4.5–8.7 [30]
HPLC 1–200 (µg mL−1) 99.09 1.35–1.63 0.3–12 (µg mL−1) 99.20 1.43–1.61 [31]
HPLC 0.04–6.55 (µg mL−1) 95.95–99.86 0.35–2.89 0.45–36.00 (µg mL−1) 99.47–101.85 0.51–1.53 [32]

HPTLC 52.54–735.56
(ng band−1) 98.44–99.35 0.66–0.64 533.2–8531.2

(ng band−1) 98.25–99.32 0.34–1.09 [33]

HPTLC 10–2000 (ng band−1) 98.45–101.16 0.52–0.88 10–2000 (ng band−1) 99.32–100.84 0.48–0.75 Present
work

Three different validation parameters such as linearity range, accuracy, and precision
of the sustainable HPTLC technique were compared with reported analytical techniques.
The linearity range, accuracy, and precision (as % CV) of the literature GC-FID technique
for the simultaneous estimation of CCHO and EOH were recorded as 0.45–452 µg mL−1,
84–111%, and 4.9–5.4%, respectively for CHO and 0.31–625 µg mL−1, 88–96%, and 4.5–8.7%,
respectively for EOH [30]. These validation parameters of the literature GC-FID technique
were much inferior to the sustainable HPTLC technique. Similarly, the linearity range,
accuracy, and precision of one of the reported HPLC techniques for the simultaneous
estimation of CCHO and EOH were inferior to the sustainable HPTLC technique [31].
The linearity range of another HPLC technique for the simultaneous estimation of CCHO
and EOH was also inferior to the sustainable HPTLC technique, while the accuracy and
precision of this technique were within the limit of ICH guidelines [32]. The accuracy and
precisions of literature HPTLC technique for the simultaneous estimation of CCHO and
EOH were also found to be acceptable and within the limit of ICH guidelines. However, its
linearity range was much inferior to the sustainable HPTLC technique [33]. Based on all
these observations and comparisons, the present sustainable HPTLC technique was found
to be suitable and highly sensitive for the simultaneous estimation of CCHO and EOH.

3. Materials and Methods
3.1. Materials

The working standards of CCHO and EOH were procured from Sigma Aldrich
(St. Louis, MO, USA). HPLC grades cyclohexane, ethyl acetate and methanol were ob-
tained from E-Merck (Darmstadt, Germany). The barks of different species of cinnamon
(C. zeylanicum, C. burmannii, and C. cassia) were obtained randomly from the hypermarket
in Al-Kharj, Saudi Arabia. The essential oils and extracts of different species of cinna-
mon (C. zeylanicum, C. burmannii, and C. cassia) were obtained in the laboratory. All the
reagent/solvents were of analytical/pharmaceutical grades.

3.2. Instrumentation and Analytical Conditions

The simultaneous estimation of CCHO and EOH was performed using the instrumen-
tations and analytical conditions summarized in Table S1.

3.3. CC of CCHO and EOH

The standard solution (SS) of CCHO and EOH was obtained separately by dissolving
the required amounts of both compounds in the required quantity of methanol in such a
way that the final SS of 100 µg mL−1 for both compounds was achieved. Serial dilutions
of SS of CCHO and EOH were then prepared by taking variable volumes of CCHO SS or
EOH SS and diluting using methanol to obtain the concentrations in the range 10–2000 ng
band−1 for CCHO and EOH. Around 200 µL of each concentration of CCHO and EOH
was applied on TLC plates and the spot area of each concentration was noted. The CC for
CCHO and EOH was prepared by plotting the concentrations on the x-axis and spot area
on the y-axis in six replicates (n = 6).
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3.4. Extraction Procedure for Different Species of Cinnamon

Accurately weighed 10 g of the dried cinnamon barks of different species (C. zeylan-
icum, C. burmannii, and C. cassia) were refluxed with methanol (100 mL) for 1 h in a water
bath and filtered through Whatman filter paper (No. 41). The marc left out was refluxed
again three times with 70 mL of methanol for 1 h and filtered again. The methanol was
evaporated using a rotary vacuum evaporator, and the residue was dissolved in 250 mL
of methanol in a volumetric flask. The procedure was repeated for three times (n = 3).
These solutions were used as the test solutions for the simultaneous estimation of CCHO
and EOH in the traditional methanolic extracts of three different species of cinnamon bark
using the sustainable HPTLC technique.

3.5. Ultrasound-Assisted Extraction Procedure for Different Species of Cinnamon

The ultrasound-assisted extraction of the dried cinnamon barks of different species (C.
zeylanicum, C. burmannii, and C. cassia) was performed using ultrasonic vibrations using
the Bransonic series (Model CPX5800H-E; Princeton, NJ, USA). A total of 10 g of dried
cinnamon bark of different species was taken and extracted with 100 mL of methanol. The
methanol was evaporated using a rotary vacuum evaporator and the residue was dissolved
in 50 mL of methanol in a volumetric flask. It was ultrasonicated at 50 ◦C for 1 h. This
procedure was repeated three times (n = 3). These solutions were used as the test solutions
for the simultaneous estimation of CCHO and EOH in the ultrasound-assisted methanolic
extracts of cinnamon bark using the sustainable HPTLC technique.

3.6. Isolation of Essential Oils from Different Species of Cinnamon

The essential oils of different species of cinnamon barks (C. zeylanicum, C. burmannii,
and C. cassia) were obtained by a hydro-distillation method according to the standard
method of Egyptian Pharmacopoeia. Around 150 g of dried cinnamon barks of different
species of cinnamon (C. zeylanicum, C. burmannii, and C. cassia) were used for essential
oil extraction under a Clevenger trap apparatus. The specified amount of cinnamon
bark was mixed with 1000 mL of water for 8 h distillations. The oil layer and water
separation were trapped with ethyl acetate (3 × 50 mL). Furthermore, the organic layer
was concentrated under a rotary vacuum evaporator to obtain the pure essential oil for
each species of cinnamon.

3.7. Method Validation

The present sustainable HPTLC technique for the simultaneous estimation of CCHO
and EOH was validated in terms of “linearity, system suitability parameters, precision,
accuracy, robustness, sensitivity, and peak purity/specificity” as per ICH-Q2 (R1) guide-
lines [45]. The linearity range of CCHO and EOH was evaluated by plotting the concen-
trations of CCHO and EOH against their spot area. The linearity for CCHO and EOH
was evaluated in the range of 10–2000 ng band−1 (n = 6). The accuracy of the sustainable
HPTLC technique for CCHO and EOH was evaluated as % recovery. The accuracy was
determined at three different QC samples including lower quality control (LQC; 50 ng
band−1), middle quality control (MQC; 500 ng band−1), and high-quality control (HQC;
1000 ng band−1) samples for CCHO and EOH. The % recovery was estimated at each QC
level of CCHO and EOH (n = 6).

The system suitability parameters for the sustainable HPTLC technique for the simul-
taneous estimation of CCHO and EOH were obtained by the determination of Rf, As, and
N m−1. The values of Rf, As, and N m−1 were obtained using their standard formulae,
reported in our latest publication [43].

The precision of sustainable HPTLC technique for CCHO and EOH was evaluated
in terms of instrumental and intra/inter-assay precision. The instrumental precision was
evaluated by the repeatable injections of same spectral band many times for the same
solution of fixed concentration (n = 6). The instrumental precision was determined at
MQC (500 ng band−1) for CCHO and EOH. Intra-assay precision for CCHO and EOH was
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determined by the analysis of freshly prepared CCHO and EOH solutions at LQC, MQC,
and HQC on the same day for the sustainable HPTLC technique (n = 6). The inter-assay
precision for CCHO and EOH was determined by the analysis of freshly prepared solutions
at LQC, MQC, and HQC on three different days for the sustainable HPTLC technique
(n = 6).

The robustness for CCHO and EOH was evaluated by introducing small deliberate
changes in the chromatographic conditions which includes minor modifications in mo-
bile phase composition, total run length, saturation time, and detection wavelength for
the sustainable HPTLC technique. The original mobile phase system cyclohexane/ethyl
acetate (90:10, v v−1) was modified into cyclohexane/ethyl acetate (92:8, v v−1) and cyclo-
hexane/ethyl acetate (88:12, v v−1) for CCHO and EOH and the chromatographic response
was noted (n = 6). The total run length of CCHO and EOH was changed from 80 mm to
82 mm and 78 mm for the sustainable HPTLC technique and the chromatographic response
was recorded. The saturation time of CCHO and EOH was changed from 30 min to 32 min
and 28 min and the chromatographic response was recorded for the sustainable HPTLC
technique [25]. The detection wavelength for CCHO and EOH was changed from 296 nm
to 298 nm and 294 nm and the chromatographic response was recorded for the sustainable
HPTLC technique [43].

The sensitivity of the sustainable HPTLC technique for CCHO and EOH was deter-
mined in terms of LOD and LOQ using standard deviation method. The LOD and LOQ
values for CCHO and EOH were determined using their standard formulae, reported
previously (n = 6) [45].

The specificity/peak purity of the sustainable HPTLC technique for CCHO and EOH
was determined by comparing the Rf values and UV-absorption spectra of CCHO and EOH
in the traditional and ultrasound-assisted methanolic extract of C. zeylanicum, C. burmannii
and C. cassia and essential oils of C. zeylanicum, C. burmannii and C. cassia with that of
standard CCHO and EOH.

3.8. Application of Sustainable HPTLC Technique in the Simultaneous Estimation of CCHO
and EOH in Essential Oils, Traditional and Ultrasound-Assisted Extracts of Different Species
of Cinnamon

The prepared samples of essential oils, traditional, and ultrasound-assisted extracts of
C. zeylanicum, C. burmannii and C. cassia were spotted on TLC plates and their chromato-
graphic responses were recorded under the same experimental conditions and procedures
used for the simultaneous estimation of standard CCHO and EOH (n = 3). The contents of
CCHO and EOH in all studied samples were calculated using the CC of CCHO and EOH.

3.9. Greenness Evaluation Using AGREE

The greenness score for the sustainable HPTLC technique for the simultaneous esti-
mation of CCHO and EOH was assessed using all 12 principles of GAC, described in the
literature [42]. The AGREE scores (0.0–1.0) for the sustainable HPTLC technique was pre-
dicted using AGREE: The Analytical Greenness Calculator (version 0.5, Gdansk University
of Technology, Gdansk, Poland, 2020) for the sustainable HPTLC technique.

3.10. Statistical Evaluation

All the values are presented as mean ± SD of three or six replicates. The statistical
evaluation was performed by applying Dunnett’s test using GraphPad Prism software
(version 6, GraphPad, San Diego, CA, USA). The p-value of less than 0.05 was considered
to be statistically significant value.

4. Conclusions

The sustainable/green analytical techniques for the simultaneous estimation of CCHO
and EOH are scarce in the literature. Hence, the present work was an attempt to estab-
lish and validate the rapid, highly sensitive, and sustainable HPTLC technique for the
simultaneous estimation of CCHO and EOH in essential oils and traditional and ultrasound-
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assisted methanolic extracts of three different species of cinnamon. The sustainable HPTLC
technique is simple, rapid, accurate, precise, robust, highly sensitive, sustainable, and
specific for the simultaneous estimation of CCHO and EOH. The contents of CCHO and
EOH were found to be higher in ultrasound-assisted methanolic extracts of all three dif-
ferent species of cinnamon compared to its traditional methanolic extracts. Hence, the
ultrasound-based extraction of CCHO and EOH from different species of cinnamon has
been considered superior to the traditional method of extraction. The AGREE score in-
dicated the excellent greenness profile of the sustainable HPTLC technique. The present
sustainable technique has been found to be superior to literature analytical techniques
for the simultaneous estimation of CCHO and EOH. Based on all these observations and
results, the proposed sustainable HPTLC technique can be successfully applied in the
simultaneous estimation of CCHO and EOH in the wide variety of plant extracts and
herbal products containing CCHO and EOH as the active phytoconstituents.

Supplementary Materials: The following are available online, Table S1: Chromatographic conditions
and instrumentations used for the simultaneous estimation of CCHO and EOH for the sustainable
HPTLC techniques, Table S2: Results of instrumental precision for the simultaneous estimation
of CCHO and EOH for sustainable HPTLC technique (mean ± SD; n = 6), Table S3: Results of
robustness analysis by changing total run length for the simultaneous estimation of CCHO and
EOH using the sustainable HPTLC technique (mean ± SD; n = 6), Table S4: Results of robustness
analysis by changing the saturation time for the simultaneous estimation of CCHO and EOH using
the sustainable HPTLC technique (mean ± SD; n = 6), Table S5: Results of robustness analysis
by changing the detection wavelength for simultaneous estimation of CCHO and EOH using the
sustainable HPTLC technique (mean ± SD; n = 6).
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