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Abstract: The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated
genome editing system has recently been used for haploid production in plants. Haploid induction
using the CRISPR/Cas system represents an attractive approach in cannabis, an economically
important industrial, recreational, and medicinal plant. However, the CRISPR system requires the
design of precise (on-target) single-guide RNA (sgRNA). Therefore, it is essential to predict off-target
activity of the designed sgRNAs to avoid unexpected outcomes. The current study is aimed to assess
the predictive ability of three machine learning (ML) algorithms (radial basis function (RBF), support
vector machine (SVM), and random forest (RF)) alongside the ensemble-bagging (E-B) strategy by
synergizing MIT and cutting frequency determination (CFD) scores to predict sgRNA off-target
activity through in silico targeting a histone H3-like centromeric protein, HTR12, in cannabis. The RF
algorithm exhibited the highest precision, recall, and F-measure compared to all the tested individual
algorithms with values of 0.61, 0.64, and 0.62, respectively. We then used the RF algorithm as a
meta-classifier for the E-B method, which led to an increased precision with an F-measure of 0.62
and 0.66, respectively. The E-B algorithm had the highest area under the precision recall curves
(AUC-PRC; 0.74) and area under the receiver operating characteristic (ROC) curves (AUC-ROC; 0.71),
displaying the success of using E-B as one of the common ensemble strategies. This study constitutes
a foundational resource of utilizing ML models to predict gRNA off-target activities in cannabis.

Keywords: hemp; marijuana; machine learning algorithm; ensemble model; CENH3; sgRNA;
genome editing; MIT score; CFD score

1. Introduction

Cannabis sativa L. has a long history of human use for various applications including
fibers, food, medicine, and for its psychoactive properties [1]. The crop is generally divided
and regulated as two main groups based on the level of produced tetrahydrocannabinol
(THC), with anything below 0.3% THC considered hemp and plants that produce 0.3%
THC or more classified as marijuana [2].

Marijuana and some hemp genotypes are dioecious crops meaning the male and
female reproductive systems occur on separate plants [3]. For cannabinoid production,
seedless and unfertilized female cannabis flowers are the most economical product [4].
Due to these challenges, breeding strategies in cannabis are complicated, and the existing
cultivars are not genetically or phenotypically uniform and plants are most often propa-
gated using clonal methods. While developing a true F1 hybrid seed would overcome this
challenge and offer a more efficient propagation strategy, producing inbred lines for F1
hybrid seed production through self-pollination is difficult due to the dioecious nature [4].
This can be overcome by inducing hermaphroditic plants to facilitate self-pollination, but
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this takes time and is thought to lead to increased hermaphroditism in the offspring. There-
fore, there is a need for new breeding strategies to overcome these bottlenecks and rapidly
produce homozygous breeding lines.

While hemp can also be used for the production and isolation of non-psychoactive
cannabinoids (e.g., cannabidiol (CBD), cannabigerol (CBG), etc.), the existing cultivars
are ill-suited for this application [2]. Since there was previously no commercial use for
non-psychoactive cannabinoids and it is critical that THC levels remain below the thresh-
old (below 0.3% in most countries), breeders have tended to select plants that produce
relatively low levels of cannabinoids in general, typically between 1–3% [5], compared to
an average THC content of 17.1% in modern medical/recreational genetics [4]. Further,
for cannabinoid production, growers prefer using dioecious cultivars (separate male and
female plants) to produce unfertilized female plants to avoid formation of the seed and
maximize cannabinoid content [4]. Currently, many of the existing hemp cultivars are
monoecious (male and female flowers produced on the same plant) and are generally
not suitable for cannabinoid production [6]. As such, there is a significant need for new
hemp varieties that are suited for outdoor production (i.e., dioecious), contain high levels
of non-psychoactive cannabinoids (e.g., CBD), and reliably remain under the 0.3% THC
threshold [2].

One of the challenges in developing new hemp varieties to produce high levels of non-
psychoactive cannabinoids is that as the cannabinoid pathway is promoted, the likelihood
of exceeding the 0.3% THC limit increases [4]. Screening of the existing industrial hemp
lines [7] showed that 43% of the 167 cultivars exceeded the 0.3% limit for THC [8]. This
challenge becomes more acute when developing cultivars for high cannabinoid content
since even with high CBD:THC ratios, this limit can easily be exceeded. In a more recent
field trial of hemp specifically developed for cannabinoid production, only seven of the
30 tested cultivars remained equal to or below 0.3% THC, and they generally produced less
CBD than the rest (below 8%) [8]. Further, due to the open pollination breeding platforms
typically used for hemp, there remains significant genetic and chemical variability among
plants within a cultivar, making it more difficult to consistently remain below 0.3% THC [4].
In order to develop new varieties with high levels of non-psychoactive cannabinoids while
ensuring THC is reliably below 0.3%, breeding strategies that provide a higher degree of
genetic and phenotypic uniformity are required [2].

The shift from highly variable open breeding platforms to more controlled production
of the genetically uniform F1 hybrid seed has happened in many other species through
repeated inbreeding or double-haploid induction [9]. Among the first examples, prior
to the 1930s, corn (Zea mays) was an open pollinated crop that displayed a high degree
of variation but has since transitioned to the F1 hybrid seed that is over 99% genetically
uniform [10]. In addition to greater uniformity, this transition has resulted in increased
yields, stress tolerance, and overall productivity [11]. In the case of cannabis, transitioning
to F1 hybrid seed production might lead to similar achievements as well as help to ensure
a consistently low level of THC to meet regulatory requirements.

The prerequisite to developing a genetically uniform F1 hybrid seed is the production
of inbred lines through repeated self-pollination to obtain nearly homozygous parental
lines [12]. This process is challenging in cannabis as it is a dioecious plant meaning
the male and female reproductive systems occur on separate plants. Researchers have
developed methods to overcome this challenge by applying various chemical compounds,
such as gibberellic acid, silver nitrate, or silver thiosulphate, to induce male flowers on
female plants [11]. This method facilitates the production of inbred lines as well as of
feminized seeds (genetically female seeds). Feminized seeds are ideal for hemp cultivation
to produce cannabinoids. While this approach provides an interesting solution to overcome
the dioecy in cannabis plants, it is time-consuming and there is a belief that repeated
artificial induction of male flowers results in an increased rate of hermaphroditism in the
offspring [11,12]. Although the increased prevalence of hermaphroditism has yet to be
evaluated, it is theoretically plausible through epigenetic mechanisms [9].
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Another approach to producing inbred lines is through androgenesis, using either mi-
crospore or anther culture techniques [12]. In this process, the development of microspores
is redirected from pollen toward somatic embryogenesis to produce a haploid plant. Once
a haploid plant is produced, it is treated with an antimitotic agent (e.g., colchicine and
oryzalin) to produce a completely homozygous diploid plant [11]. However, this process is
technically challenging, is often highly genotype-specific, and has not yet been developed
for cannabis.

To overcome some of the challenges associated with androgenesis, directed engi-
neering of centromeric histone H3 (CENH3) genes has been used to interfere with cen-
tromere activity and induce haploid seed production [13]. Recently, direct modification of
CENH3 through the clustered regularly interspaced short palindromic repeats with Cas9
(CRISPR/Cas9) system has been used to produce haploid plants in recalcitrant crops such
as maize [14,15] and wheat [13]. The merit of this approach over conventional in vitro
culture-based methods is that once an inducer line is generated, it can be employed to
induce haploidy in other genetic backgrounds, simplifying the process and negating the de-
velopment of in vitro culture protocols for each genotype [14,15]. While this approach has
not yet been developed for cannabis, it is particularly attractive as cannabis is a relatively
recalcitrant species and organogenesis protocols have not yet been successful.

The CRISPR/Cas system is a reliable and efficient method for accurate genome edit-
ing [13,16]. Within the CRISPR/Cas-mediated genome editing system, the endonuclease-
mediated Cas is guided to the targeted gene by the single guide RNA (sgRNA) [17]. If the
sgRNA matches with the targeted gene correctly, the Cas9 endonuclease can precisely edit
the gene [18]. However, unexpected mutations can be caused by the predesigned sgRNA
and a protospacer adjacent motif (PAM). Recent studies report that off-target mutations
can be tackled by precise sgRNA design [17]. Several studies [18–20] also document that
off-target mutations can be universal and should be considered in CRISPR/Cas studies.
In most cases, the off-target sites are homologous with one or more mismatches to the
on-target sites [18]. Generally, there are four mismatch categories to classify on-target
and off-target sites based on sequence characteristics: (i) while genomic sequences have
the same length and are correctly matched, the PAM is mismatched; (ii) although there
are nucleotide mismatches, genomic sequences have the same length; (iii) genomic se-
quences have various lengths and there are some additional nucleotide bases; (iv) genomic
sequences have various lengths and there are some missing nucleotide bases [21,22]. There-
fore, it is necessary to assess the off-target activity to increase the reliability and accuracy of
the CRISPR/Cas9 systems.

To minimize off-target mutations, several studies investigated genome-wide DNA
damage induced by CRISPR/Cas9 through genomic profiling methods [23–25]. Such
studies provide experimental findings to develop computational methodologies such as
Cas-OFFinder [26], CasOT [27], CRISPRseek [28], and CRISPRdirect [29] for studying and
forecasting potential off-target sites. Recent studies [18–20] have approved the reliability of
using machine learning algorithms to predict the sgRNA cleavage efficiency in non-plant
species. The current study compares multiple machine learning algorithms to maximize
off-target prediction for eventual use in producing a cannabis haploid inducer line for rapid
and efficient production of double haploids. While cannabis is relatively recalcitrant, there
are some regeneration systems developed [30–32], so producing the inducer line should
be possible.

2. Results

We used Cannabis sativa histone H3-like centromeric protein HTR12 as a candidate for
the CRISPR/Cas9 system. To predict the sgRNA cleavage efficiency, an initial dataset of
1900 putative off-target sequences including 950 true positive off-targets identified with
a mismatch count of up to four recognized by CRISPR [33] was used. We implemented
three algorithms including random forest (RF), radial basis function (RBF), and support
vector machine (SVM). Then, MIT and CFD scores were used as input variables for a
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comparative analysis of individual algorithms. We also performed combined prediction
using the ensemble-bagging (E-B) algorithm with the predictions for all the three models.

As can be seen in Figure 1, the RF, RBF, and SVM had the highest to lowest precision
(i.e., 0.61, 0.60, and 0.57, respectively) to predict off-target activity. The ensemble model
through the bagging method (E-B) consistently outperformed all the individual algorithms
with a precision value of 0.62 indicating a better and persistent prediction performance.
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Figure 1. Precision of the radial Basis function (RBF), support vector machine (SVM), random forest
(RF), and ensemble-bagging (E-B) algorithms for off-target activity prediction using MIT and CDF
scores. × indicates the mean performance of precision.

We then classified different models based on a recall value. In this scenario, the SVM
demonstrated the highest average recall value (0.67) over all the tested individual and
ensemble algorithms. The RBF and RF were placed second and third with an average recall
value of 0.65 and 0.64, respectively (Figure 2).

The E-B model exhibited the lowest average recall value (0.63) among all the tested
algorithms. To capture both properties of precision and recall into a single measure, an
F-measure was estimated for all the tested algorithms [19]. Our result indicated the highest
value of F-measure for the E-B model (0.66). However, the F-measures of SVM, RF, and
RBF amounted to 0.65, 0.62, and 0.58, respectively (Figure 3).
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In terms of the comparative analysis values for all the tested machine learning algo-
rithms, the E-B model outperformed all the individual algorithms both in the area under the
precision recall curve (AUC-PRC) and the area under receiver operating characteristic curve
(AUC-ROC) with the values of 0.74 and 0.71, respectively (Figures 4 and 5). RF and RBF
were placed the second and third with the AUC-PRC of 0.70 and 0.64 and the AUC-ROC of
0.73 and 0.68, respectively (Figures 4 and 5). The lowest prediction performance based on
the AUC-PRC and AUC-ROC value was found for the SVM algorithm (Figures 4 and 5).
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3. Discussion

To date, multiple methods such as direct in vitro culture (e.g., androgenesis and
gynogenesis), selective hybridization through intraspecific and interspecific crosses, and
genome editing (i.e., CIRSPR-Cas9) using CENH3 genes have been used to produce hap-
loid plants [11]. Haploid production is a powerful method in plant breeding and genetic
engineering when chromosome doubling is used to produce completely homozygous
double haploid lines much quicker than traditional production of inbred lines through
repeated self-pollination [34,35]. Recently, haploid plants have been produced by di-
rect modification of CENH3 via the CRISPR/Cas9 system in recalcitrant crops such as
maize [14,15] and wheat [13]. Although there is no report on using the CRISPR/Cas9
system to produce haploid plants in cannabis, it represents a potentially reliable and pow-
erful method to produce haploid plants in cannabis. The advantage of this approach over
traditional culture-based methods is that once an inducer line is produced, it can be used
to induce haploidy in other genetic backgrounds, negating the optimization of culture
conditions for each genotype [14,15]. However, the first step of using the CRISPR/Cas9
system is to design a precise sgRNA with minimal off-target activities [36].

The selection of optimal sgRNAs with low, ideally no off-target and high on-target
activity is an important prerequisite to perform CRISPR-mediated genome editing [36]. The
development of web-based tools for in silico sgRNA designing, such as CRISPOR [33] and
algorithms for forecasting sgRNA activity, has considerably facilitated the improvement of
a CRISPR-mediated genome editing system [18]. Compared to the prediction of CRISPR
efficiency, a precise and accurate forecasting of off-target activity is the most challenging
step in conducting a CRISPR-mediated genome editing experiment [18]. Consequently,
uninvertible and potential off-target activity is the most critical issue that limits the practical
application of CRISPR [37]. Indeed, tolerating the minimum mismatches between the off-
target site and the sgRNA spacer can be considered as one of the main reasons of off-targets
in the CRISPR system [22]. Additionally, previous studies [38,39] documented that the
off-target sites of CRISPR are not random.

To date, two main steps are usually used to study and quantify the off-target activities:
(i) in silico detection of off-target sites through various webtools such as CRISPOR [33] and
(ii) scoring based on selection and ranking such as MIT [40] and CFD [39]. For instance, the
off-target score assessed by MIT is based on the nucleotide numbers of mismatches and
their distances. This can be then applied to classify whether the off-target score surpasses
the threshold (i.e., cut-off value) of 66 [41]. The CRISPOR recommends the MIT score as an
off-target reference. MIT can summarize all important off-target sequences and achieve
high accuracy through applying an aggregation score of a single gRNA [33]. Consequently,
the off-target score is predicted through a CFD (cutting frequency determination) method
by multiplying the base frequency in each gRNA spacer sequence position [39]. Therefore,
the performance of sgRNA specificity in CFD depends on the number, position, and
composition of mismatches between the target DNA and sgRNA sequences [39].

Recently, the application of machine learning algorithms has been successfully inves-
tigated in different areas such as genome editing [18–20,42], prediction of transcription
factor target genes [43,44], phenomics [45–47], and plant tissue culture [46,48–51]. Conven-
tional statistical methods such as ANOVA and simple regression methods are typically
recommended for small datasets with limited dimensions [48]. One of the major impedi-
ments of using conventional statistical methods is high probability of overfitting [38]. To
overcome this obstacle, ML algorithms can be employed [19]. To the best of our knowledge,
machine learning algorithms have never been used to predict the sgRNA off-target activity
in cannabis and in general in plants. In this study, we found that the RF algorithm shows
the highest precision, recall, and F-measure, indicating the highest prediction performance
among all the tested individual algorithms. In the RF algorithm, trees are trained based on
multiple random subsamples of the original dataset [48]. This enables the RF algorithm
to generate stable and better prediction for new data lines not necessary existing in the
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training dataset [52]. The successful use of RF has been reported in different areas of plant
science [43,48,52].

In general, three types of prediction error including bias, variance, and irreducible
error (noise) are reported in application of individual ML algorithms. [53]. Therefore,
ensemble algorithms were built to improve robustness over a single model with combining
the predictions of several models [54,55]. In this study, the predictions derived from the RF,
RBF, and SVM algorithms were used to build an ensemble model based on the bagging
method. For selecting the classifier for the bagging method, RF was selected owing to
its highest prediction accuracy. This resulted in achieving the highest precision recall
and F-measure using the E-B model. Although the number of off-target sequences in
each chromosome had a similar distribution, using individual ML algorithms might be
subject to some levels of bias and overfitting. Therefore, ensemble algorithms can be
considered as a reliable strategy to overcome this problem. In this study, the E-B algorithm
outperformed all individual ML algorithms with the highest level of F-measure. F-measure
is known as a reliable parameter that can be used to evaluate efficiency and accuracy of
ML algorithms [19]. Recent studies have reported the success of using stochastic gradient
boosting and E-B modeling in plant science [19,55], but not in the computational component
of the plant genome editing. The E-B model exhibited the highest off-target prediction
performance (AUC-ROC of 0.74 and AUC-PRC of 0.71) based on MIT and CFD scores.
These high AUC-ROC and AUC-PRC scores using the E-B model provided a promising
prediction ability in non-determined circumstances which non-existent instances added to
the original dataset [18,19].

Cannabis is generally recalcitrant and in vitro culture response is very genotype-
dependent [3], making the development of double haploids very challenging in general.
The developed method in this study offers an alternative, but still requires the production
of an inducer line through plant regeneration. However, once a single inducer line is
produced, it can then be used across a wide range of genetic backgrounds and eliminate
the need for developing microspore culture techniques for each genotype. Given that there
are reports of plant regeneration in cannabis [30–32], developing the inducer line should
be possible and provide a significant advantage over other approaches.

4. Materials and Methods
4.1. Datasets

Cannabis sativa histone H3-like centromeric protein HTR12 was used for predicting
off-target activities in cannabis. To identify this gene in cannabis, CENH3 (GenBank ID
GU166737.1) in Brassica rapa was used to blast. In the current study, the CRISPOR [33]
online tool was used to recognize off-target sequences with a mismatched number of up to
four. The dataset contained 950 off-target (positive) sequences which were labeled 1, and
others were negative (non-off-targets). Two scoring approaches (MIT [40] and CFD [21])
were applied to score each putative off-target sequence according to the locations, identi-
ties, and mismatched number between sgRNA and DNA. The CFD score established by
Doench et al. [21] that determines the cutting frequency and calculates the potential off-
target of DNA–sgRNA intersections was used. In the CFD approach, the number, identity,
and position of mismatches between the target DNA and sgRNA play pivotal roles in
discovering activity [21]. The MIT score [40] evaluates and calculates the potential off-target
sequences by considering a weight per position of mismatch between the target DNA and
sgRNA. These scores were used as the features of classifiers. Examples of sgRNAs, putative
off-target DNA sequences, their genomic coordinates, CFD and MIT scores are presented
in Table 1.
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Table 1. Examples of sgRNA, DNA, the coordinates of DNA, MIT and CFD scores.

sgRNA Putative Off-Target
DNA Sequences Chromosome Start End MIT CFD

TTAGCAGTGTCCAAGTCTTCTGG TCAGCAGCGTCTAAATCTTCAGG 7 638 660 0.199 0.434
TTAGCAGTGTCCAAGTCTTCTGG CTAGAGGTGTCCATGTCTTCAGG 5 21,767 21,789 0.135 0.187
AGCTTTAGTTGCACTTCAGGAGG AGCTTTAATTGAATTTCATGGGG 8 2079 2101 0.033 0.349
CACGTCGACTTGGAGGGAAAGGG CAGGTCGACGTCGAGGAAAAAGG 3 3689 3711 0.259 0.123
AGCCTGGAACAAAGGCTCTCCGG AGACTGCAACAAAGCATCTCCGG 5 1624 1646 0.047 0.162

The target variable (output) of models is a value between 0 and 1, demonstrating the
off-target effect probability. The score of 1 demonstrates a perfect match for the off-target
effect, while the score of 0 shows the opposite.

4.2. Classification Models

In this study, four machine learning algorithms including random forest (RF) [48],
radial basis function (RBF) [56], support vector machine (SVM) [57], and the ensemble
model using the bagging method (E-B) [54] were used to study and predict off-target
activity. The results of each algorithm were individually evaluated and then an algorithm
with the highest prediction performance was selected as a meta-classifier for the E-B
algorithm. The Weka software version 3.9.4 [58] was used to analyze all the machine
learning algorithms.

4.3. Evaluation Criteria

The abovementioned machine learning algorithms were implemented using the initial
dataset based on a five-fold cross-validation procedure [59] with ten repetitions since the
target classes were completely balanced (Figure 6).

In order to evaluate the prediction performance of each algorithm, the values of recall
(Equation (1)), precision (Equation (2)), and F-Measure (Equation (3)) for the validation
dataset were estimated via the following formulas:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F − Measure = 2 × Precision × Recall
Precision + Recall

(3)

where TP is the number of true positives, FP is the number of false positives, and FN stands
for the number of false negatives.

For a better interpretation of results, the area under the precision recall curves (PRC;
AUC-PRC [19]) was estimated based on the precision and recall values. Furthermore,
the area under the receiver operating characteristic (ROC) curves (AUC-ROC) was eval-
uated based on the true positive rate and false positive rate values. PRC and ROC are
complementary components [19].
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5. Conclusions

One of the objectives of this study was to determine the best machine learning al-
gorithm for predicting the off-target activity in cannabis. By using MIT and CFD scores
as inputs, the RF overperformed all the individual algorithms. Therefore, this algorithm
was chosen as a meta-classifier for constructing the E-B model. E-B, one of the ensemble
strategies, showed the highest precision, F-measure, AUC-PRC, and AUC-ROC accuracy
compared to the individual machine learning algorithms. Therefore, E-B was recommended
as an appropriate and reliable model for predicting the off-target activity in cannabis. It is
expected that in the near future, consistent, comprehensive, and sequencing-based datasets
with high quality and efficiency will be generated. Therefore, continuous efforts are needed
to enhance the precision of sgRNA design with low off-target and high on-target activities.
With the expansion of the data volume from the CRISPR usage and a deeper understanding
of the CRISPR system to be discovered, learning-based sgRNA methods would increase
the prediction of off-target activities to meet the requirements for application of CRISPR-
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mediated genome editing. However, this study was an in silico work and needs to be
validated. Before using the CRISPR system in cannabis, it is necessary to develop a reliable
regeneration protocol. We are currently developing regeneration methods to validate the
approach and establish such an inducer line.
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