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Abstract: Two new homologues series, based on two rings of the azomethine central group bear-
ing the terminal alkoxy group of various chain lengths, were prepared. The alkoxy chain length
varied between 6 and 16 carbons. The other terminal wing in the first series was the F atom, and
the compound is named N-4-florobenzylidene-4-(alkoxy)benzenamine (In). The second group of
compounds included a lateral NO2 substituent in addition to the terminal F atom, named N-(4-fluoro-
3-nitrobenzylidene)-4-(alkyloxy)aniline (IIn). Mesomorphic and optical properties were carried out
via differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Elemental
analyses, FT-IR, and NMR spectroscopy were carried out to elucidate the molecular structures of
the synthesized groups. Mesomorphic investigations indicated that all the synthesized homologues
(In) were monomorphic, possessing the smectic A (SmA) phase monotropically, while the second
group (IIn) members were non-mesomorphic. The experimental data indicated that the formation
of the mesophase is affected by the protrusion of the lateral nitro group. The disruption of the
mesophase in the second group was attributed to the increase of its molecular width, which affects
its lateral intermolecular interactions. The computational simulations were in agreement with the
experimental data. On the other hand, the location of NO2 group within the molecular geometry
increased the melting temperature of the molecule, and thus, affected their thermal and physical
properties. By discussing the estimated parameters, it was found that the molecular architecture,
the dipole moment, and the polarizability of the investigated compounds are highly affected by the
electronic nature and position of the terminal and lateral substituents as well as their volumes.

Keywords: lateral nitro-substituent; azomethine liquid crystals; mesophase stability; geometrical
structure; DFT

1. Introduction

Today, liquid crystalline (LC) materials prove to have wide area of technological
applications as optical displays, emitting-diodes, and photoconductors based on organic
compounds [1–3]. Geometric characteristic relationships are important tools to synthesize
a suitable structural shape to achieve the desired properties for specific industrial applica-
tions [4–7]. Molecular shape enables some considerable modifications in the mesomorphic
properties and plays an important role in the formation, kind, and thermal stability of
the produced mesophase [8–15]. In addition, the choices of the laterally attached groups,
terminal wings, as well as the mesogenic linkages are important criteria in the formation of
thermotropic LC for proper characteristic applications.

The NO2 group is one of the most important substituents of organic derivatives [16–18].
The incorporation of a nitro substituent into a molecular structure significantly increases
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the electronegativity of the molecule [17–24]. The strong mesomeric property of the NO2
moiety induces a positive charge on the N atom, and thus, increases the electronegativity
of the group [17,18]. The resonance approach has been supported by dipole moment
investigations [25], NMR, and the chemical electron-withdrawing character of the nitro
group, which affects the measurements [26–28]. For the development of the mesomor-
phic range and mesophase stabilities of the prepared materials, an effective strategy for
modification of the architectures of compounds is necessary. Therefore, the insertion of a
compact lateral and terminal group into the calamitic thermotropic liquid crystals [29] is
important. Generally, adjusting the type and size of terminal substituents can offer good
changes in mesophase behavior [30,31]. In addition, a small change of the terminal lengths
or electronic nature of groups can alter the terminal and parallel interactions [13,15].

Schiff base linkages have been broadly employed in the preparation of numerous
LC derivatives [32–36]. Most reports have been focused on Schiff bases since the dis-
covery of nematogenic 4-methoxybenzylidene-4′- butylaniline at room temperature [37].
Recently, several thermotropic Schiff base liquid crystals based on two rings were docu-
mented [32,38–47].

Simulations of the theoretical calculations for predicting the molecular geometry are
more interesting for the estimation of the thermal properties, and we correlated them with
the experimental findings data [8,9,48–52].

The aim of the present investigation is to synthesize new di- and tri-substituted
azomethine liquid crystals based on two benzene rings (Scheme 1). Moreover, we also
aimed to investigate the effect of the introduction of lateral nitro-substituents to the linear
structure of a terminally substituted fluorine molecule, the effect on the mesomorphic, and
the optical behavior of the synthesized architectures. Furthermore, geometrical parameters
estimated from density functional theory (DFT) calculations of different sizes of attached
substituents were correlated to explain the outcome of the experimental results.
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Scheme 1. Synthesized groups In and IIn.

2. Results and Discussion
2.1. Mesomorphic and Optical Behavior

The transition temperatures of the synthesized groups N-4-florobenzylidene-4-
(alkoxy)benzenamine (In) and N-(4-fluoro-3-nitrobenzylidene)-4-(alkyloxy)aniline (IIn),
as well as their associated enthalpies, were derived from differential scanning calorimetry
(DSC) measurements, and are summarized in Table 1. The mesophases were identified via
polarized optical microscopy (POM). DSC thermograms are illustrated in Figure 1 upon
the heating/cooling for the I8 and II16 derivatives, taken as examples. The POM images
showed a focal-conic fan texture for the smectic A (SmA) phase for group In upon cooling
(Figure 2). In order to ensure the thermal stabilities of the investigated derivatives, DSC
measurements were performed for second heating scans. In addition, DSC evaluations
were confirmed by the POM image observations. In order to investigate the effect of the
terminal alkoxy chain groups on the mesomorphic properties of synthesized groups, the
relationship of the graphical transition temperatures DSC data was illustrated and is shown
in Figure 3. Members of the nitro-free, terminal fluoro-substituted homologues (group In)
exhibited only one transition peak upon heating and two transition peaks on the cooling cy-
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cles, as indicated by their DSC thermograms, which were assigned to Cr-to-isotropic liquid
phase (during heating) in addition to the SmA-to-Cr phase (upon cooling). On the other
hand, all compounds of di-substituted F and NO2 moieties exhibited only one transition
peak upon the heating and cooling scans, which was assigned to the Cr-to-isotropic liquid
mesophase. These data were consistent with the POM investigations. Table 1 and Figure
3 reveal that the laterally neat NO2 homologues, In, only possessed the smectic A phase
monotropically. Moreover, there was, as usual, no regular change of melting temperatures
with the increase of the terminal alkoxy chain length (n). It was previously reported that
the position of the lateral NO2 group within the molecular structure also increases the
melting transition temperature [28]. Their SmA stability and range also increases gradually
with n. The homologue with the shortest alkoxy chain (I6) exhibited the lowest thermal
smectic stability at 66.9 ◦C with a smectogenic temperature range of 5.4 ◦C [32,53]. The
higher homologue I16 possessed smectogenic stability at 76.3 ◦C and temperature range of
more than 56.3 ◦C (see Supplementary Materials). The small size of the F atom enables its
introduction into mesomorphic structures without any steric disruption, and consequently,
LCs mesophases can still be observed. The high polarity also serves to enhance the optical
morphology, transition phenomena, and other physical parameters. Additionally, the
polar terminal F changes the polarizability and the dipole moment of the whole molecular
structure to an extent, depending on its location and orientation in the molecule. This
was reflected on the mesophase and optical behaviors of the investigated molecule. The
insertion of lateral nitro group near the F atom in the molecule is associated with a little
change in the molecular shape, but changes do exist in the polarity and orientation of the
dipole moments. The mesomorphic measurements revealed that, all the homologues of
group IIn that were laterally NO2-substituted proved to be non-mesomorphic. This may
be attributed to the large volume of the nitro group and the high-molecular packing that
not only disrupts the SmA mesophase, but also prevents the formation of any mesophase.
It was documented [54] that the type of phase and its stability are mainly dependent on
the dipole moment of the mesogenic part of the molecule, which varies according to the
incorporated polar groups and its steric effect, which changes with the volume and location
of the substituent.

Table 1. Phase transition temperatures (◦C), enthalpy of transition ∆H, kJ/mole, and mesophase
temperature range, ∆T, for groups N-4-florobenzylidene-4-(alkoxy)benzenamine (In) and N-(4-fluoro-
3-nitrobenzylidene)-4-(alkyloxy)aniline (IIn).

Cycle Upon Heating Upon Cooling

Comp. TCr-I ∆HCr-I TI-SmA ∆HI-SmA TSmA-Cr ∆HSmA-Cr ∆T

I6 84.2 35.64 66.9 2.15 61.5 27.6 5.4
I8 88.2 39.35 71.0 2.05 54.7 32.4 16.3

I16 79.1 36.72 76.3 1.98 <20.0 - >56.3
II6 98.2 40.74 - - - - -
II8 88.7 38.27 - - - - -

II16 74.8 50.61 - - - - -
Cr-to-isotropic liquid phase (Cr-I) denotes transition from solid to the isotropic mesophase; I-smectic A (I-SmA)
denotes transition from isotropic mesophase to the SmA mesophase; SmA-Cr denotes transition from SmA to the
solid phase.
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2.2. DFT Calculations
2.2.1. Geometrical Simulations and Thermal Parameters

In order to study the effect of mono- and di-substituted compact polar groups on
the mesomorphic properties of two-ring azomethine liquid crystals homologues, compu-
tational calculations for each of the investigated groups were studied. The estimations
were established between the quantum chemical parameters, calculated by DFT theoretical
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calculations, and the experimental findings for the synthesized groups In and IIn. Calcula-
tions were estimated in the gas phase at the B3LYP level using 6-311G** as the basis set of
predicted the optimum and stable molecular geometries. All computational calculations
are performed by Gaussian 09W package [55]. The results revealed that all homologues
exhibited a linear structural shape with planar geometry. In addition, the length of the ter-
minal alkoxy chain (n) and the introduction of the polar NO2 substituent into the molecular
skeleton highly affected the structural geometry of the molecule (Figure 4).
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The thermal energy, enthalpy, Gibb’s free energy, and entropy, as well as the total
energy of the synthesized groups at room temperature, were calculated at the B3LYP/6-
311G (d, p) level and collected, as shown in Table 2. Moreover, other predicted geometrical
parameter values are summarized in Table 3. The data in Tables 2 and 3 show that the
thermal and geometrical parameters, which were predicted from DFT calculations, were
highly affected by the electronic nature of the lateral substituent (NO2). The aspect ratio,
polarity, polarizability, rigidity of the cores, and the architecture shape of the individual
molecules, as well as the attached polar groups, were essential parameters to affect the
type and thermal stability of the observed mesophase [12], in addition to the competition
between the intermolecular lateral and terminal interactions, all impacted the mesomorphic
characteristics of the resulting molecules. The dipole moment of the whole molecules was
highly affected by the electronic nature and position of the polar substituents (F and NO2).
The laterally NO2-substituted group (IIn) exhibited the highest dipole moment compared
to the laterally neat first group (In). Their dipole moment values changed because of the
inclusion of the lateral NO2 group, from 3.4343 to 8.3129 Debye for I6 and II6, respectively,
from 3.2523 to 7.2100 Debye for I8 and II8, respectively, and from 3.5361 to 8.3918 Debye
for I16 and II16, respectively. The data of the estimated dipole moment illustrate the non-
mesomorphic properties of group IIn. The high dipole moment resulted from the highest
lateral electron-withdrawing NO2 group, which could make a high lateral interference that
opposed the arrangement of molecules, thus preventing mesophase formation. Further, the
high electronegativity of the terminal F substituent enhanced the SmA-phase formation in
group In. Moreover, the large volume of the NO2 group leads to steric hindrance, and thus,
disrupts the molecular packing of molecules. In Table 3, the ionization energy and electron
affinity, calculated as I.E = −EHOMO and E.A = −ELUMO, respectively, are included [56].
Their calculated values almost were not affected by the increment of the alkoxy chain
length (n) in either group.

Table 2. DFT calculated thermal parameters using B3LYP/6-311G** method.

Compound ZPE
(Kcal/Mol)

Thermal
Energy

(Kcal/Mol)

Enthalpy
(Kcal/Mol)

Gibbs Free
Energy

(Kcal/Mol)

Entropy
(Cal mol.k)

Total Energy
(Hartree)

I6 232.110 245.514 246.107 198.082 161.077 −966.673
II6 233.080 248.147 248.739 196.560 175.010 −1171.136
I8 268.005 283.060 283.652 231.671 174.347 −1045.237
II8 268.850 285.632 286.224 229.633 189.806 −1249.700
I16 411.206 433.130 433.723 364.161 233.314 −1359.495
II16 412.130 435.744 436.336 362.232 248.547 −1563.957

Table 3. EHOMO, ELUMO, ∆E, the dipole moment, and the polarizability calculated using B3LYP/6-311G** method for the
present groups In and IIn.

Compound EHOMO
(ev)

EluMO
(ev)

∆E
(ev)

IE
(ev)

EA
(ev)

Dipole Moment
(Debye)

Polarizability
(Bohr3)

I6 −5.820 −1.871 3.949 5.820 1.871 3.4343 253.23
II6 −6.185 −3.207 2.978 6.185 3.207 8.3129 277.41
I8 −5.826 −1.878 3.948 5.826 1.878 3.2523 275.53
II8 −6.178 −3.224 2.954 6.178 3.224 7.2100 299.49
I16 −5.822 −1.872 3.950 5.822 1.872 3.5361 372.25
II16 −6.177 −3.207 2.970 6.177 3.207 8.3918 396.18

The polarizability is another factor [54,57,58] that affects the phase transitions. Table 3
shows that the calculated polarizability increased as the length of terminal alkoxy chain
increased for both investigated groups In and IIn. On the other hand, the introduction
of polarizable group affects the dipole moment and the polarizability of the molecule,
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and accordingly enhances the intermolecular attraction between molecules and the bulk
terminal group, facilitating molecular space-filling between the terminal moieties [5].

2.2.2. Frontier Molecular Orbitals (FMOs)

Optical studies of non-linear optical (NLO) materials are highly affected by the energy
difference between the FMOs, highest occupied molecular orbital (HOMO), and lowest
unoccupied molecular orbital (LUMO) [56,59,60]. Figure 5 represents the estimated ground-
state density surface plots for the FMOs of the investigated groups In and IIn. Table 3
shows the collected results of the FMO energy gaps. As shown in Table 3 and Figure 5,
the electron densities of the sites that contributed to the formation of the HOMOs and the
LUMOs were localized on each of the azomethine linkage and polar substituent F and
NO2 groups. Moreover, the energy gap of FMOs is slightly dependent on the length of
alkoxy chain (n). Furthermore, the mesomorphic properties of the calamitic mesogens
develop the molecular–molecular interactions that essentially depend on the geometry of
the compounds, the polarizability of the terminal and lateral polar substituents, as well as
the stereo electronic properties of the whole molecule.
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2.2.3. Molecular Electrostatic Potential (MEP)

Charge distribution maps for the present investigated series, In and IIn, were esti-
mated under the same basis sets according to the molecular electrostatic potential (MEP,
Figure 6). For group In, the negatively charged atomic sites (red regions) were localized
on the oxygen atoms and the terminal F, as well as the nitrogen atom of the azomethine
linkage. In the second group (lateral NO2 series), the red regions of negatively charged
atomic sites were highly localized on the two oxygen of the lateral NO2 group, on terminal
F, and on the nitrogen atom of the azomethine moiety. The alkyl chains in both groups
showed the least negatively charged atomic sites (blue regions). As shown in Figure 6, the
electronic nature of the terminal and lateral polar substituents, their size, as well as the
conformation of the attached group, were more effective on the orientation of the charge
distribution map; this could effect the type and thermal stability of the mesophase by
altering the competitive interaction between end-to-end and side-to-side interaction. The
correlation between the estimated theoretical charge distribution and the mesomorphic
properties measurements was recently documented [8,12,61]. The alteration of the charge
distribution on the whole molecules, because of the mesomeric interactions, enhanced the
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terminal aggregation to induce the N mesophase, while the parallel interaction induced
the smectic A mesophase. Furthermore, the wide separation of the charges, as in case of
the steric hindrance in the lateral NO2 group in the homologues of series IIn, prevented
the mesophase formation, i.e., the insertion of the lateral nitro moiety disrupted the SmA
phase and resulted in non-mesomorphic analogues. This can be explained in terms of
the increased conjugation between the nitro group and azomethine linking moiety, which
might increase the molecular non-planarity and non-linearity or attribute to the reduction
of intermolecular interactions due to the broadening of the molecules.
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3. Experimental
3.1. Materials

4-hexyloxyaniline, 4-(octyloxy)aniline, 4-(hexadecyloxy)aniline, 4-fluorobenzaldehyde,
nitric acid, sulfuric acid and ethanol were purchased from Sigma Aldrich (Germany).

3.2. Synthesis

The investigated compounds In and IIn were synthesized according to the following
scheme (Scheme 2) and see Supplementary Materials:
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N-4-fluorobenzylidene-4-(hexyloxy)benzenamine, I6
Yield: 97.0%; mp 84.0 ◦C, FT-IR (ύ, cm−1): 2930, 2850 (CH2 stretching), 1630 (C=N),

1560 (NO2), 1365 (NO2). 1H NMR (500 MHz, CDCl3) δ 10.01 (s, 1H), 8.47 (s, 1H), 7.92
(d, J = 8.0 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.45 (dd, JH-F = 12.8,
JH-H= 8.4 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.25–7.13 (m, 1H), 7.03–6.83 (m, 1H), 4.00
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(t, J = 6.5 Hz, 2H), 3.95 (t, J = 6.3 Hz, 2H), 1.80–1.71 (m, 2H), 1.41–1.36 (m, 4H), 0.93 (t,
J = 6.2 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 190.93, 159.21, 157.17, 151.60, 141.14, 134.21,
130.95, 129.49, 129.17, 125.17, 124.18, 122.32, 115.61, 115.08, 68.33, 31.61, 29.25, 25.65, 22.60,
14.06. Elemental analyses: Found (calculated): C, 76.21 (76.22); H, 7.40 (7.41); N, 4.65 (4.68).

N-4-fluorobenzylidene-4-(octyloxy)benzenamine, I8
Yield: 93.0%; mp 88.0 ◦C, FT-IR (ύ, cm−1): 2935, 2862 (CH2 stretching), 1632 (C=N),

1550 (NO2), 1362 (NO2). 1H NMR (500 MHz, CDCl3) δ 8.66 (s, 1H, CH=N), 7.89 (d, 1H),
7.86 (d, 1H), 7.52 (d, 1H), 7.43 (dd, 1H), 7.27 (d, 1H), 7.25–7.22 (m, 1H), 7.03–6.99 (m, 2H),
4.05 (t, 2H, OCH2), 1.78–1.71 (m, 2H, CH2), 1.43–1.30 (m, 10H, 5 CH2), 0.89 (t, 3H, CH3).
Elemental analyses: Found (calculated): C, 77.03 (76.89); H, 8.00 (7.92); N, 4.28 (4.18).

N-4-fluorobenzylidene-4-(hexadecyloxy)benzenamine, I16
Yield: 95.0%; mp 79.0 ◦C, FT-IR (ύ, cm−1): 2932, 2854 (CH2 stretching), 1625 (C=N),

1555 (NO2), 1365 (NO2). 1H NMR (500 MHz, CDCl3) δ 8.65 (s, 1H, CH=N), 7.90 (d, 1H),
7.83 (d, 1H), 7.55 (d, 1H), 7.45 (m, 1H), 7.29 (d, 1H), 7.20–7.15 (m, 1H), 7.03–6.80 (m, 2H),
4.06 (t, 2H, OCH2),1.77–1.70 (m, 2H, CH2), 1.43–1.31 (m, 26H, 13 CH2), 0.91 (t, 3H, CH3).
Elemental analyses: Found (calculated): C, 79.22 (79.21); H, 9.63 (9.47); N, 3.19 (3.25).

N-(4-fluoro-3-nitrobenzylidene)-4-(hexyloxy)aniline, II6
Yield: 95.1%; mp 98.0 ◦C, FT-IR (ύ, cm−1): 2928, 2845 (CH2 stretching), 1610 (C=N),

1555 (NO2), 1360 (NO2). 1H NMR (500 MHz, CDCl3) δ 8.55 (t, J = 7.1 Hz, 1H, Ar-H),
8.49 (m, 1H, Ar-H), 8.19 (s, 1H, CH=N), 7.38 (m, 1H, Ar-H), 7.26 (m, 1H, Ar-H), 6.93 (t,
J = 8.3 Hz, 1H, Ar-H), 4.04–3.91 (m, 2H, OCH2), 1.79 (d, J = 5.8 Hz, 2H, CH2), 1.47 (s, 2H,
CH2), 1.38–1.29 (m, 4H, 2CH2), 0.94–0.88 (m, 3H, CH3). 13C NMR (126 MHz, CDCl3) δ
188.87 (C), 158.81 (C), 156.68 (d, 1JC,F = 269.2 Hz, CF), 153.20 (CH) 134.50 (d, 2JC,F = 24.1
Hz, CH), 127.38 (d, 2JC,F = 29.5 Hz, C), 119.05 (d, 3JC,F = 21.6 Hz, CH), 126.07 (CH), 122.56
(CH), 122.28 (C), 115.18 (CH), 68.11 (OCH2), 31.51 (CH2), 29.18 (CH2), 25.83 (CH2), 22.51
(CH2), 14.01 (CH3). Elemental analyses: Found (calculated): C, 66.24 (66.26); H, 6.14 (6.15);
N, 8.10 (8.13).

N-(4-fluoro-3-nitrobenzylidene)-4-(octyloxy)aniline, II8
Yield: 93.7%; mp 89.0 ◦C, FT-IR (ύ, cm−1): 2930, 2846 (CH2 stretching), 1612 (C=N),

1552 (NO2), 1360 (NO2). 1H NMR (500 MHz, CDCl3) δ 8.70 (s, 1H, CH=N), 8.49 (m, 1H,
Ar-H), 8.20 (m, 1H, Ar-H), 7.68 (m, 1H, Ar-H), 7.23 (m, 2H, Ar-H), 6.98 (m, 2H, Ar-H),
4.04–3.92 (m, 2H, OCH2), 1.75 (m, 2H, CH2), 1.44–1.30 (m, 10H, 5CH2), 0.96–0.88 (m, 3H,
CH3). Elemental analyses: Found (calculated): C, 67.72 (67.56); H, 6.77 (6.65); N, 7.52 (7.43).

N-(4-fluoro-3-nitrobenzylidene)-4-(hexadecyloxy)aniline, II16
Yield: 95.8%; mp 75.0 ◦C, FT-IR (ύ, cm−1): 2925, 2848 (CH2 stretching), 1615 (C=N),

1550 (NO2), 1362 (NO2). 1H NMR (500 MHz, CDCl3) δ 9.85 (s, 1H, CH=N), 8.50 (s, 1H,
Ar-H), 8.23–8.15 (m, 1H, Ar-H), 7.39 (t, J = 9.4 Hz, 1H, Ar-H), 7.30–7.16 (m, 2H, Ar-H
associated with the solvent peak), 6.96 (m, 2H, Ar-H). 4.01–3.95 (m, J = 7.3, 5.4 Hz, 2H,
OCH2), 1.85–1.75 (m, J = 16.7, 9.9 Hz, 2H, CH2), 1.51–1.42 (m, J = 5.2 Hz, 2H, CH2), 1.39–1.20
(m, J = 47.2 Hz, 24H, 12 CH2), 0.88 (t, J = 6.5 Hz, 3H, CH3). 13C NMR (126 MHz, CDCl3) δ
188.87, 158.81, 153.18, 134.62, 133.82, 132.04, 127.49, 127.25, 126.07, 122.56, 122.25, 119.13,
116.54, 115.86, 115.74, 115.18, 68.42 (OCH2), 32.04 (CH2), 29.81 (CH2), 29.77 (CH2), 29.71
(CH2), 29.68 (CH2), 29.52 (CH2), 29.48 (CH2), 29.37 (CH2), 29.31 (CH2), 26.15 (CH2), 22.81
(CH2), 14.25 (CH3). Elemental analyses: Found (calculated): C, 71.86 (71.87); H, 8.50 (8.53);
N, 5.75 (5.78).

4. Conclusions

The new two-rings azomethine series, N-4-florobenzylidene-4-(alkoxy)benzenamine (In)
and N-(4-fluoro-3-nitrobenzylidene)-4-(alkyloxy)aniline (IIn) were synthesized and character-
ized by experimental and theoretical approaches. The molecular structures were elucidated
via elemental analyses, FT-IR, and NMR spectroscopy. Experimental characterizations of
their mesomorphic behaviors were conducted by DSC and POM. The theoretical simulation
of geometrical structure investigations were carried out by the DFT calculation method.

The study revealed that:
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1. All compounds of the synthesized laterally neat group (In) were mesomorphic, ex-
hibiting liquid crystalline mesophases monotropically.

2. The observed smectic A phase in group In covered all lengths of terminal alkoxy chains.
3. The compounds in group IIn were non-mesomorphic, which attributed to the steric

hindrance of the large size of the nitro group, which disrupted the SmA phase.
4. The molecular geometries of the investigated compounds were highly impacted by

the electronic nature, location, and size of the attached NO2 substituent.
5. The high dipole moment and steric hindrance of the NO2 moiety explain their non-

mesomorphic properties.
6. The electronic and geometric structures of the nitro group through intermolecular

interactions have an essential role that affects the thermal and physical properties of
the present investigated compounds.

Supplementary Materials: The following are available online. Figure S1: DSC thermograms of I6
derivative upon second heating/cooling scan with a rate of 10 ◦C/min. Figure S2: DSC thermograms
of I16 derivative upon second heating/cooling scan with a rate of 10 ◦C/min. Figure S3: DSC
thermograms of II6 derivative upon second heating/cooling scan with a rate of 10 ◦C/min. Figure
S4: DSC thermograms of II8 derivative upon second heating/cooling scan with a rate of 10 ◦C/min.
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