Supporting Information

Bis-Cyclometallated Indazole and Benzimidazole Chiral-at-Iridium Complexes: Synthesis and Asymmetric Catalysis

Sebastian Brunen, Yvonne Grell, Philipp S. Steinlandt, Klaus Harms, and Eric Meggers*

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany

*Email: meggers@chemie.uni-marburg.de

Contents

1.	NMR Spectra	S2
2.	HPLC Traces	S14
3.	Single Crystal X-Ray Diffraction	S17

1. NMR Spectra

Figure S1: ¹H- and ¹³-C NMR Spectra of *rac*-IrInd.

Figure S3: ¹H NMR Spectrum of *rac*-IrBim.

10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 f1 (ppm)

Figure S4: ¹³C and ¹⁹F NMR Spectra of *rac*-IrBim.

Figure S5: ¹H- and ¹³-C NMR Spectra of Λ -(*S*)-**3**a.

105.39

Figure S7: ¹H NMR Spectrum of Δ -(*S*)-**3a**.

Figure S8: ¹³C and ¹⁹F NMR Spectra of Δ -(*S*)-**3a**.

Figure S9: ¹H- and ¹³-C NMR Spectra of Λ -(*S*)-**3b**.

10 -15 -20 -25

-30 -35 -40 -45

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -1 fl (ppm) **Figure S10**: ¹⁹F NMR Spectrum of Λ -(*S*)-**3b**. Δ -(S)-3b 1.38
 1.23 $\begin{array}{c} 8.25\\ 8.25\\ 8.25\\ 8.25\\ 8.25\\ 7.86\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.76\\ 7.32\\ 7.32\\ 6.03\\$ 6.58 6.58 6.57 4.21 4.16 4.12 4.07 4.07 --- 3.99 - 4.30 503 56 .53 30 27 27

Figure S11: ¹H NMR Spectrum of Δ -(*S*)-**3b**.

-125 -55 -60 -100 -105 f1 (ppm) -110 -115 -120 -130 -135 -140 -145 -65 -70 -75 -80 -85 -90 -95

Figure S12: ¹³C and ¹⁹F NMR Spectra of Δ -(*S*)-**3b**.

Figure S13: ¹H- and ¹³C NMR Spectra of Λ -IrInd.

Figure S14: ¹⁹F NMR Spectrum of Λ -IrInd.

The spectra of Δ -**IrInd** are identical and will not be shown.

Figure S15: ¹H NMR Spectrum of Λ-**IrBim**.

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 fl (ppm)

Figure S16: ^{13}C and ^{19}F NMR Spectrum of $\Lambda\text{-IrBim}.$

The spectra of Δ -**IrBim** are identical and will not be shown.

2. HPLC Traces

Figure S17: HPLC traces of *rac*-IrInd.

Figure S18: HPLC traces of Λ -**IrInd** (>99% ee).

Figure S19: HPLC traces of Δ -**IrInd** (>99% ee).

Figure S20: HPLC traces of *rac*-IrBim.

Figure S21: HPLC traces of Λ -IrInd (>99% ee).

Figure S22: HPLC traces of Δ -**IrInd** (>99% ee).

3. Single Crystal X-Ray Diffraction

X-ray data were collected either with a STOE STADIVARI diffractometer or with a BRUKER D8 QUEST diffractometer.

Conditions using the STOE STADIVARI diffractometer:

Data was collected with a STOE STADIVARI diffractometer equipped with CuK_a radiation, a graded multilayer mirror monochromator ($\lambda = 1.54178$ Å) and a DECTRIS PILATUS 300K detector using an oil-coated shock-cooled crystal at 100(2) K. Absorption effects were corrected semi-empirical using multiscanned reflexions (STOE LANA, absorption correction by scaling of reflection intensities.). The number of observed reflections of the data collection used for cell constant refinement is pictured in table **S1** (cell determination). The structure was solved by direct methods by using the program XT V2014/1 (Bruker AXS Inc., 2014) and refined by full matrix least squares procedures on F² using SHELXL-2018/3 (Sheldrick, 2018). The non-hydrogen atoms have been refined anisotropically, carbon bonded hydrogen atoms were included at calculated positions and refined using the 'riding model' with isotropic temperature factors at 1.2 times (for CH₃ groups 1.5 times) that of the preceding carbon atom. CH₃ groups were allowed to rotate about the bond to their next atom to fit the electron density.

Conditions using the BRUKER D8 QUEST diffractometer:

Data was collected with a Bruker D8 QUEST area detector diffractometer equipped with MoK_{α} radiation, a graded multilayer mirror monochromator ($\lambda = 0.71073$ Å) and a PHOTON-100 CMOS detector using an oil-coated shock-cooled crystal at 100(2) K. Absorption effects were corrected semiempirical using multiscanned reflexions (SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction). The number of observed reflections of the data collection used for cell constant refinement is pictured in table **S1** (cell determination). The structure was solved by direct methods by using the program XT V2014/1 (Bruker AXS Inc., 2014) and refined by full matrix least squares procedures on F² using SHELXL-2018/3 (Sheldrick, 2018). The non-hydrogen atoms have been refined anisotropically, carbon bonded hydrogen atoms were included at calculated positions and refined using the 'riding model' with isotropic temperature factors at 1.2 times (for CH₃ groups 1.5 times) that of the preceding carbon atom. CH₃ groups were allowed to rotate around the bond to their next atom to fit the electron density.

Single crystals suitable for X-ray diffraction were prepared from a concentrated solution of the respective iridium(III)-complex (about 1.5 mg) in MeCN, which was transferred to a regular NMR tube. THF (about 0.1 mL) was added and the mixture obtained was carefully layerd with Et₂O (about 3.0 mL), the tube was sealed and the biphasic mixture was left standing at room temperature over night to allow the diffusion of layers. If no formation of suitable crystals was observed after that time, the NMR-tube

was laid down horizontally for another 12 h. Crystal structures, data and details of the structure determination are presented in figure **S27** and in table **S1**.

Figure S23: Crystal structures of Λ -IrInd, *rac*-IrBim and Λ -(*S*)-3b (from left to right). Solvent molecules, hydrogen atoms and PF₆-counterions are omitted for clarity. ORTEP drawing with 30% probability of thermal ellipsoids.

	A-IrInd	rac-IrBim	Λ-(S)- 3b
Idenfication code,	Idenfication code,SBMM97C4DiffractometerBRUKER D8 QUEST	SBMM92C2	SBMM94FA
Diffractometer		STOE STADIVARI	QUEST
Habitus, colour	nugget, green	nugget, yellow	prism, green
Empiric formula	C38.50H41.50ClF6IrN6O0.25P	C45H51.50F6IrN8.50P	C51H53Cl4FIrN7O2
Call datarmination	9803 peaks with Theta	63070 peaks with	1573 peaks with
Cen determination	2.3 to 27.5°	Theta 3.0 to 75.9°	Theta 1.7 to 19.7°
Formula weight	964.89	1048.61	1149.00

Table S1: Crystal data and details for structure determination.

Crystal system, space group	Monoclinic P21	Triclinic P-1	Tetragonal P41
<i>a, b, c</i> (Å)	a = 12.3670(7) b = 25.9412(14) c = 12.8263(8)	a = 13.2935(3) b = 13.3338(3) c = 16.0770(3)	a = 11.9791(8) b = 11.9791(8) c = 36.924(2)
α, β, γ (°)	$\alpha = 90$ $\beta = 104.9146(18)$ $\gamma = 90$	$\alpha = 73.180(2)$ $\beta = 65.551(2)$ $\gamma = 65.046(2)$	$\alpha = 90$ $\beta = 90$ $\gamma = 90$
$V(\text{\AA}^3)$	3975.4(4)	2329.15(10)	5298.5(8)
Ζ	4	2	4
μ (mm ⁻¹)	3.531	6.424	2.769
Crystal size (mm)	0.50 x 0.20 x 0.11	0.24 x 0.12 x 0.11	0.52 x 0.15 x 0.14
No. of measured, independent and observed [<i>I</i> >2σ(<i>I</i>)] reflections	304147 26035 25196	64659 9374 8228	48166 9822 8641
R(int)	0.0345	0.0410	0.0592
Goodness-of-fit on F ²	1.104	1.021	1.131
R index (all data)	wR2 = 0.0402	wR2 = 0.0840	wR2 = 0.1548
R index conventional [<i>I</i> >2σ(<i>I</i>)]	R1 = 0.0201	R1 = 0.0320	R1 = 0.0648

No. of reflections	26035	9374	9822
No. of parameters	1120	828	784
No. of restraints	157	966	1460
$T_{ m max},T_{ m min}$	0.2154, 0.1332	0.1054, 0.0236	0.700, 0.320
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^3)$	0.685, -1.258	1.367, -0.795	1.481, -2.042
Temperature (K)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71073	1.54178	0.71073
Flack parameter (absolute structure)	-0.0077(9)	-	0.067(19)