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Tomasz Ligor 1,3,* and Bogusław Buszewski 1,3

����������
�������

Citation: Monedeiro, F.;

Monedeiro-Milanowski, M.; Ratiu,
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Abstract: Volatile organic compounds (VOCs) have been assessed in breath samples as possible
indicators of diseases. The present study aimed to quantify 29 VOCs (previously reported as potential
biomarkers of lung diseases) in breath samples collected from controls and individuals with lung
cancer, chronic obstructive pulmonary disease and asthma. Besides that, global VOC profiles were
investigated. A needle trap device (NTD) was used as pre-concentration technique, associated to gas
chromatography-mass spectrometry (GC-MS) analysis. Univariate and multivariate approaches were
applied to assess VOC distributions according to the studied diseases. Limits of quantitation ranged
from 0.003 to 6.21 ppbv and calculated relative standard deviations did not exceed 10%. At least 15 of
the quantified targets presented themselves as discriminating features. A random forest (RF) method
was performed in order to classify enrolled conditions according to VOCs’ latent patterns, considering
VOCs responses in global profiles. The developed model was based on 12 discriminating features
and provided overall balanced accuracy of 85.7%. Ultimately, multinomial logistic regression (MLR)
analysis was conducted using the concentration of the nine most discriminative targets (2-propanol,
3-methylpentane, (E)-ocimene, limonene, m-cymene, benzonitrile, undecane, terpineol, phenol) as
input and provided an average overall accuracy of 95.5% for multiclass prediction.

Keywords: VOCs; NTD-GC-MS; breath; lung cancer; COPD; asthma; biomarkers

1. Introduction

Respiratory diseases are conditions which affect the airways and other structures of
the lungs and they are represented by lung cancer, asthma, tuberculosis, chronic obstructive
pulmonary disease (COPD) and pneumonia, being the leading causes of mortality and
morbidity globally. Smoking or exposure to secondhand smoke is the main risk factor
associated to most of respiratory diseases, with current smokers 11 times more likely to
develop lung cancer compared to non-smokers [1]. Globally, respiratory diseases affect
1 billion people and account for 7% of all deaths worldwide. Nevertheless, even considering
that lung cancer is one of the leading causes of death worldwide, COPD and asthma are
predominant lung diseases that represent a burden on society in terms of health care
costs [2]. The diagnosis of asthma or COPD is usually made by non-invasive techniques
based on spirometry, however lung cancer is often diagnosed in late stages, due to the lack
of noticeable clinical manifestations, or because these can be easily associated with other
symptoms. This fact may reduce the chance of applying a timely and effective treatment.
Currently used diagnostic methods for respiratory diseases includes physical examination

Molecules 2021, 26, 1789. https://doi.org/10.3390/molecules26061789 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3713-4099
https://orcid.org/0000-0003-2615-684X
https://orcid.org/0000-0002-5482-7500
https://doi.org/10.3390/molecules26061789
https://doi.org/10.3390/molecules26061789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26061789
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26061789?type=check_update&version=2


Molecules 2021, 26, 1789 2 of 19

followed by a set of chemical, imaging, endoscopic and immunological procedures [3].
Because different lung diseases are characterized by inflammation and other correspondent
symptoms, direct assessment of airways may be applied, by using invasive procedures
such as: computer tomography, bronchoscopy, bronchoalveolar lavage or biopsy. These are
costly, time consuming and/or invasive procedures [2]. Consequently, a simple, reliable,
low-cost and non-invasive test, able to achieve the diagnosis in real time (minutes up to
hours), using a mere sample of exhaled breath in highly desired.

Therefore, fast detection and characterization of volatile organic compounds (VOCs)
emitted from different biological matrices (breath, sweat, saliva, plasma, tissues, exudates,
urine, etc.) as a tool for diagnosis was approached [4–11]. Breath tests are minimally inva-
sive procedures, which are more easily accepted by the patients. An exhaled breath sample
consists of VOCs and the breath aerosol [12]. Breath consists of almost 3000 compounds
which are present in different combinations and quantities. Consequently, not only specific
biomarkers, but the global VOC profile can be potentially associated to a characteristic
fingerprint for each disease [2]. Exhaled breath is largely composed of nitrogen, oxygen,
carbon dioxide, water, and inert gases. Trace components—volatile substances that are
generated in the body or absorbed from the environment—present in the nmol/L–pmol/L
(ppb volume—ppt volume) range make up the rest of the breath. The endogenous VOCs
are generated by the cellular biochemical processes of the body, hence VOCs existent
in human breath can reflect endogenous metabolic processes which occur in the tissues.
VOCs-patterns in exhaled breath have been associated with various respiratory diseases
such as cancer, asthma, COPD, cystic fibrosis, tuberculosis, etc. [13,14]. Breath samples are
probably the most adequate to reach the rapid diagnosis of respiratory conditions, once
substances from surrounding blood vessels and tissue can be exchanged in the alveoli and
be available in the exhaled air. A large number of VOCs has been reported in scientific
literature as markers of various diseases, as well as bacterial infections. These compounds
can be divided into different chemical groups [15–17]: saturated hydrocarbons (stable
end products of lipid peroxidation) and unsaturated hydrocarbons (e.g., from mevalonic
pathway of cholesterol synthesis) [6,16], alcohols (which can be addressed as oxidized prod-
ucts of hydrocarbons and their precursors) [16], aldehydes (associated with inflammatory
processes, resulting from lipid peroxidation) [5,18], ketones (products of fatty acid decar-
boxylation processes in the liver, associated to a diet rich in proteins and fat) [16], aromatic
VOC–typically related to exogenous sources such as tobacco smoke and pollution [19],
sulfur-containing compounds generated by incomplete metabolism of methionine in the
transamination pathway and also associated with bacterial activity [20,21]), and nitrogen-
containing compounds (such as ammonia, dimethylamine and trimethylamine, derived
e.g., when conversion to urea is limited due to an impairment of liver function) [17].

Nowadays, gas chromatography–mass spectrometry (GC-MS) is considered a gold
standard for VOC analysis [22]. Solid phase microextraction (SPME) or sorption tubes
followed by thermal desorption are the most frequently used pre-concentration techniques
in breath analyses. A prominent sampling tool is the needle trap device (NTD), which
consists of a sorbent material packed inside a needle, working as an extraction trap [23].
This solventless technique provides exhaustive extraction and has potential for laboratory
automation [24,25]. In the present work, NTD was used as extraction technique, followed
by GC-MS analysis. VOCs were analyzed in breath samples belonging to healthy controls
and patients with lung cancer, asthma and COPD, in an attempt to develop a classifi-
cation model able to discriminate between these lung diseases, which have in common
inflammatory processes in the lungs. In this sense, besides the assessment of global VOC
profiles, 29 target compounds previously reported as potential biomarkers of the referred
respiratory diseases were also investigated and quantified in breath samples.

The present study describes the non-invasive assessment of asthma, COPD and lung
cancer, based on breath analysis of VOCs. Once all of these are lung diseases involving
inflammatory mechanisms, the applied design of data analysis intended to find specific
VOC patterns able to provide discrimination between these illnesses. The comparison
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between self-annotated discriminating features and compounds reported by literature as
indicators of lung diseases represents an original approach for the validation of candidate
biomarkers. The outline of the work presents the application of NTD for the determination
of VOCs in breath. The found results aim to support the implementation of breath analysis
to the clinical practice, as an accurate and reliable diagnostic tool.

2. Results and Discussion
2.1. Calibration Method and Quantitation of Analytes

Table S1 presents information regarding calibration method, while Table 1 displays
data concerning the quantitation of analytes in breath samples. Obtained limits of quan-
titation (LOQs) ranged from 0.003 (3-methylpentane, 2-butanone, toluene, isododecane,
1,2,4-trimethylbenzene, (E)-ocimene, limonene, m-cymene and benzonitrile) to 6.21 ppbv
(tridecane). Higher limits were obtained for heavier and more polar analytes, which also
displayed wider linearity ranges. Lower limits were associated to compounds with higher
volatility, a factor that seemed to contribute for their more efficient recovery, besides their
expected greater stability in samples. Relative standard deviation (RSD%) did not exceed
10%, demonstrating that the proposed method provided adequate reproducibility. In gen-
eral, suitability of NTD for preconcentration of analytes in gas mixtures could be inferred.
Among the targets, isoprene and 1-propanol were found in each breath sample. Styrene, de-
cane and phenol were observed in lowest frequency of appearance. Ethanol, isoprene and
acetoin were the targets which occurred in higher concentrations in all sample’s cohorts.
Carry-over effect was not observed, indicating that there is no influence of previously
analyzed samples on the current ones.

Table 1. Data regarding quantitation of the targets in breath samples (H = healthy, CA = lung cancer, COPD = chronic
obstructive pulmonary disease, AS = asthma, SD = standard deviation, nd = not detected, (−) = SD not calculated because
analyte was quantified just in a single sample, nd = not detected).

Analyte
Average Concentration (ppbv) Frequency in Samples (%)

H (SD) CA (SD) COPD (SD) AS (SD) Total H CA COPD AS

2-Methylbutane 1.52 (1.32) 3.73 (6.15) 1.63 (0.50) 1.72 (1.85) 37.5 25.0 50.0 33.3 50.0
Pentane 1.66 (0.67) 2.21 (1.09) 1.87 (0.53) 2.11 (2.26) 51.8 45.0 62.5 41.7 50.0
Ethanol 70.60 (95.14) 179.08 (132.87) 218.64 (216.1) 100.89 (108.96) 98.2 95.0 93.8 100.0 100.0
Isoprene 32.85 (34.01) 34.19 (30.08) 34.61 (20.9) 48.70 (16.95) 100.0 95.0 100.0 100.0 100.0

2-Propanol 10.55 (9.30) 230.66 (190.62) 258.37 (255.01) 123.42 (67.37) 85.7 55.0 100.0 100.0 100.0
2-Methylpentane 1.24 (0.30) 3.44 (2.41) 2.61 (2.07) 4.59 (5.57) 55.4 25.0 75.0 75.0 50.0
3-Methylpentane 0.24 (0.12) 0.93 (0.72) 1.27 (0.49) 1.07 (1.25) 35.7 10.0 68.8 33.3 25.0

1-Propanol 14.59 (14.63) 34.10 (37.73) 28.15 (38.54) 9.94 (5.77) 100.0 95.0 100.0 100.0 100.0
Methylcyclopentane 1.80 (0.53) 2.49 (1.11) 2.20 (0.47) 2.20 (0.27) 87.5 75.0 93.8 83.3 100.0

2-Butanone 1.74 (1.15) 1.93 (1.30) 1.45 (1.00) 1.26 (0.80) 80.4 55.0 100.0 83.3 87.5
Benzene 1.13 (0.83) 0.29 (−) 0.57 (−) 0.60 (0.09) 16.1 25.0 6.3 8.3 25.0
Acetoin 44.02 (19.8) 60.39 (51.63) 55.22 (28.95) 41.72 (17.93) 53.6 45.0 56.3 50.0 75.0
Toluene 6.23 (8.38) 0.98 (1.40) 0.63 (0.42) 0.89 (0.60) 55.4 40.0 75.0 58.3 50.0

Ethylbenzene 0.650 (0.65) 2.73 (2.50) 0.34 (0.36) 1.41 (−) 17.9 5.0 25.0 33.3 12.5
p-Xylene 1.15 (0.92) 1.62 (1.86) 1.40 (1.11) 1.97 (0.95) 41.1 25.0 50.0 58.3 37.5
Styrene 0.27 (0.26) 3.78 (6.26) 1.61 (1.30) 0.73 (0.59) 53.6 5.0 81.3 75.0 87.5
Decane nd (−) nd (−) 0.23 (−) nd (−) 1.8 0.0 0.0 8.3 0.0

6-Methyl-2-heptanone 1.65 (−) 4.42 (2.85) 1.72 (−) 6.46 (−) 12.5 5.0 25.0 8.3 12.5
Isododecane 0.69 (0.49) 1.59 (1.57) 0.98 (0.48) 0.52 (0.35) 76.8 45.0 93.8 83.3 100.0

1,2,4-Trimethylbenzene 0.83 (0.61) 2.55 (1.94) 2.60 (2.46) 1.42 (0.76) 82.1 50.0 93.8 100.0 100.0
(E)-Ocimene 1.16 (0.80) 4.64 (4.03) 2.95 (1.99) 2.98 (1.54) 82.1 50.0 100.0 91.7 100.0

Limonene 1.57 (1.20) 1.87 (1.80) 1.71 (1.75) 5.05 (2.15) 89.3 75.0 93.8 91.7 100.0
m-Cymene 0.61 (0.21) 0.41 (0.35) 0.38 (0.23) 0.32 (0.21) 46.4 10.0 62.5 50.0 87.5

Benzonitrile 1.44 (1.23) 3.57 (3.95) 4.57 (2.64) 2.12 (1.67) 78.6 50.0 93.8 91.7 87.5
Phenol nd (−) 52.78 (47.13) 75.02 (72.16) nd (−) 16.1 0.0 37.5 25.0 0.0

Undecane 0.80 (0.11) 3.83 (3.09) 2.44 (1.38) 1.78 (0.30) 41.1 20.0 75.0 41.7 25.0
Dodecane 5.18 (0.72) 10.58 (8.66) 9.51 (7.18) 6.27 (3.19) 73.2 45.0 87.5 91.7 87.5
Terpineol 3.57 (0.30) 17.36 (21.72) 26.53 (36.34) 6.87 (6.38) 71.4 15.0 100.0 100.0 100.0
Tridecane 3.43 (1.69) 42.16 (38.89) 28.36 (21.59) 8.59 (7.87) 51.8 10.0 75.0 75.0 75.0
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2.2. VOCs Detected in Breath

Regarding the obtained VOC global profiles, a total number of 112 different VOCs
were detected. The VOCs most frequently observed in the samples were hydrocarbons,
alcohols, aldehydes and ketones. A graph displaying the distribution of VOCs according to
the functional groups in profiles belonging to the different studied groups is presented in
Figure 1a. In general, the number of compounds belonging to each of the chemical classes
seems to be proportional when evaluating the different studied conditions, however, some
particularities of the qualitative composition of each group of profiles can be evidenced.
Lung cancer and COPD profiles appear to be associated to a greater variety of compounds
(103 and 95 detected VOCs, respectively), while asthma profiles are composed by smaller
number of compounds (84 detected VOCs). An increased number of hydrocarbons is
observed in the VOC composition in breath of lung cancer patients. Moreover, samples
from patients with lung cancer and COPD appear related to a greater variety of aldehydes
(12 and 11, respectively, against 9 found in healthy). This observation can be due to the
fact that hydrocarbons and aldehydes are frequently reported as the most characteristic
products of oxidative stress induced by inflammatory process [26–28].

A matrix displaying number and percentage of overlapping VOCs in the acquired
profiles is presented in Figure 1b. By the content of coincident compounds, the level of
similarity regarding the qualitative composition of breath samples can be inferred. In this
sense, lung cancer and COPD profiles, display the greater similarity between each other,
followed by the VOC profile of lung cancer and healthy individuals, while asthma breath
samples present to be the most distinct in terms of composition.

Figure 1. (a) VOCs distribution according to main chemical classes, in profiles belonging to the
different studied groups, the contoured box displays the total number of compounds found in
each group; (b) Similarity matrix displaying number and percentage of overlapping VOCs in the
acquired profiles.
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2.3. Differential Distribution of VOCs

Principal component analysis (PCA) was performed intending to identify relationships
and existing patterns within datasets. Peak area data regarding the global VOC profiles
was used as input for generation of the score plot depicted in Figure 2a, in which 78.04%
of variance was represented by the two first principal components. When using as input
the calculated concentration values of the 29 preselected analytes in samples, the plot
presented in Figure 2b is produced. In this case, 79.72% of total variance was described
by the components 1 and 2. In both cases, around 80% of the total variance can be
assigned to the observed distribution. Although both score plots indicate a discrimination
between control cases and remaining samples, a clearer grouping can be observed when
considering the global profile, once in Figure 1b control samples appear confined to an
isolated cluster. Still, in both situations, the lack of a distinct grouping according to each
of the investigated conditions demonstrates that other factors play a relevant role in the
observed pattern of distribution of VOCs. This can be mainly related to the variability
in the nature and extension of the involved pathophysiological mechanisms, inherent to
the different lung diseases. Therefore, the usage of supervised approaches is essential to
achieve the classification of samples in agreement with the related diagnosis.

Figure 2. PCA plots using as input (a) VOCs’ responses in global profile analysis, (b) responses of
the targets quantified in the samples (triangles = control samples; squares = positive samples).
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A volcano plot was built in order to present found discriminating features when
considering obtained global VOCs profiles. In Figure 3a the overall trend of the detected
VOCs (variables) is graphically represented. The variables located above the dashed line
refer to the compounds which displayed greater statistically relevant changes in their
responses when compared to the control group. The variables located along the y-axis
correspond to VOCs absent in the healthy group and detected solely in positive samples. In
the left part of the plot are displayed compounds with decreased responses in the positive
samples, while in the right side of the plot are displayed VOCs presenting an increased
response in samples of diseased. The VOCs located towards the top of the graph expressed
the greatest statistical significance. The names of the most discriminative components are
exhibited in the plot.

Figure 3b presents a bar graph showing the distribution of all compounds classified
as discriminant features, considering as criteria p ≤ 0.05. Most of the compounds which
displayed significant alteration in their responses when compared to those presented in the
healthy group belong to the class of hydrocarbons, followed by alcohols and aldehydes. In
lung cancer profiles, a greater number of discriminating VOCs was verified (41 compounds).
For asthma and COPD samples, 26 and 24 altered VOCs were indicated, respectively. As
presented in Figure 1b, around 92, 88 and 74% of the compounds observed in lung cancer,
COPD and asthma samples, respectively, were shown to be conserved in the healthy group
profiles. This indicates that the differential abundance of VOCs in samples is determinant to
discriminate between samples’ group, once the similarity between the qualitative profiles
belonging to the four studied groups is not so divergent. Such observation highlights
the importance of validated quantitative assays’ application regarding breath samples for
diagnosis purposes.

Few compounds presented a more expressive incidence within the group of ac-
tive smokers’ individuals, thus possibly being ascribed as products of cigarette smoke.
1,3-Cyclopentadiene was identified solely in this group, in 40% of the samples; 2,5-
Dimethylfuran was detected in 80% of samples from active smokers, which represented
around 73% of its total incidence across samples. Other substances commonly related to
tobacco smoke composition, such as benzene and toluene [29], did not present a specific
distribution within samples of smokers, probably because these can be originated from
other various sources.

With respect to the VOCs found altered, acetonitrile is typically present in cigarette
smoke, although also present in automobile exhaust and other anthropogenic emissions [30].
Considering that most of the enrolled subjects were not smokers, differentiated levels of this
substance would not be expected. However, together with the decreasing trend observed
for p-xylene, the reduction in the abundances of such compounds in positive group can be
an indicative of diminished ability of elimination of exogenous through exhaled air, or a
consequence of the augmented activity of cytochrome P450 isoforms documented in lung
cancer [31], which could be responsible for the rapid metabolization of inhaled compounds
in the lungs.

The two main lung cancer types are small-cell lung carcinoma (SCLC) and non-small-
cell lung carcinoma (NSCLC). Two hypothesis involve SCLC histogenesis: the first assumes
that SCLC derives from cells of the diffuse endocrine system, i.e., the amine precursor
uptake decarboxylation (APUD)-system, the second suggests this type of lung cancer
originates from the endodermbronchial lining [32,33]. Adenocarcinoma (NSCLC subtype)
arises from glandular cells of bronchial mucosa, whereas squamous lung cancer origins
from the modified bronchial epithelial cells and adenosquamous carcinoma contains two
types of cells: squamous cells (thin, flat cells that line certain organs) and gland-like
cells. Finally, large cell (undifferentiated) carcinoma originates from epithelial cells of the
lung [32]. The origin and nature of the malignant cells is crucial for different treatment
strategies. Tumor tissue releases different protein biomarkers according to subtype of
cancer. The same concerns different types or amounts of certain VOCs secreted by various
malignant part of cell. The oxidation of fatty acids present in the cell membranes is pointed
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out as the source of VOCs associated to oxidative stress condition. The mentioned process
is initiated by the reactive oxygen species (ROS) which are found in increased levels in
inflamed tissues [17,28].
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Due to the ROS activity, mechanism chain reactions occur, with radicals tending to be
stabilized through alpha and beta scissions [34], leading to the formation of a variety of
shorter chain fatty acids, alkanes, alkenes, alcohols and aldehydes. In addition, formed
compounds can be subjected to other reactions, aiming their transformation into smaller
and more polar molecules [35]. Cancer cells are characterized by their enhanced metabolism
and altered functions in several biochemical pathways [36]. Therefore, metabolite profile
consisting of a greater variety of compounds may be expected. Hexane can be possibly
formed during the oxidation of oleic acid [34], while can be addressed as an exogenous
substance as well. Hexane showed decreased abundance in cancer and COPD samples.
This fact can be explained by three hypotheses: impaired excretion through exhalation [37],
enhanced conversion of the specie into oxidized forms [38] and favoring of alternative
mechanism, which gives rise to different products, during lipid oxidation associated to
oxidative stress particular to the referred conditions.

1-Pentanol can be interpreted as a pentane oxidation product, caused by cytochrome
P450, and recognized as a metabolite of reactive oxygen species reactions with omega-6 fatty
acids [26]. Methyl ketones such as 2-dodecanone can be formed by the decarboxylation
of β-keto acids during the metabolism of fatty acids [39]. Nonanal can be also formed by
different mechanisms during ROS attack on oleic acid from cell membranes [34]. Medium-
chain branched alkanes, such as 2-methyldecane and 4-methyloctane, were pointed out by
previous works as oxidative stress indicators [40,41]. However, their generation by human
organism due to the oxidation of lipids is questionable, as cell membranes contain only
linear chain lipids [26].

Branched alkanes can be originated from microbial lipids, mostly produced in the fatty
acid pathway of bacteria, by using amino acids as precursor molecules which are submitted
to elongation in this biochemical path [42,43]. Considering this, the occurrence of methy-
lated branched alkanes in breath could be connected with bacterial activity. Alternatively,
these could be products of transformation/degradation of prenyl molecules in organism, a
mechanism that also remains undescribed. Aromatic species, such as p-xylene (decreased
in COPD) and 1,2,4-trimethylbenzene (increased in COPD), are frequently addressed as
pollutants, although also possibly formed by bacterial shikimate and related pathways [44].

Regarding the 29 compounds belonging the set of selected targets, 15 of them pre-
sented themselves as discriminating features (p < 0.05) when assessing solely controls
against positive samples, all of them displaying increased concentration in the positive
group. They were 2-propanol, 2-methylpentane, 3-methylpentane, 1-propanol, 2-butanone,
styrene, isododecane, 1,2,4-trimethylbenzene, (E)-ocimene, m-cymene, phenol, undecane,
dodecane, terpineol and tridecane. However, as demonstrated in the next section, com-
pounds other than these displayed usefulness in the characterization of studied groups,
presenting themselves as discriminating variables related to disease type. A combination
of mechanisms involved in carcinogenesis, inflammatory processes and microbiota activity–
which develop important role in pathogenesis of several diseases, may play a part in the
alterations observed for certain compounds in breath samples.

The propionic acid formed during microbial fermentation and the propionyl-CoA gen-
erated during amino acids degradation enters in the propanoate metabolism, which takes
place in the mitochondria and comprehend a series of reactions coupled with other path-
ways related to cell energetics. In microorganisms, 1-propanol is a product of propanoyl-
CoA transformation [45], while 2-propanol can be formed by the reduction of acetone
produced during the synthesis of ketone bodies [46]. 2-Butanone is a secondary ketone,
therefore its origin can be associated to the β-oxidation of fatty acids. The acetyl-CoA
units generated in this process fuel the citric acid cycle, supplying energy generation [47].
Terpenoids are very diverse natural products synthetized by plants, but also by bacteria.
These metabolites are associated to the mevalonate and deoxyxylulose phosphate path-
ways [48,49]. Although their biosynthesis in human so far remain unknown, studies have
reported terpenoid derivatives as potential cancer indicators. Considering this, increased
concentration of compounds such as (E)-ocimene, m-cymene and terpineol can either be
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a consequence of deficient metabolic function impairing proper elimination of these sub-
stances coming from diet [50], an indicative of specific bacterial activity, or even a product
of transformation of isoprenoids derivatives due to the dysregulated mevalonate pathway
in human during carcinogenesis [51].

Isododecane is known as a synthetic chemical with several applications in the indus-
try [52], without any identified biosynthetic pathway so far. Styrene is a constituent of
polymers, nevertheless, there is evidence that some microorganisms can produce styrene
using phenylalanine as precursor molecule [53]. On the other hand, phenol is often reported
as product of bacterial catabolism of aromatic amino acid species previously documented
as elevated in gastroesophageal neoplasms [54].

Their formation of the n-alkanes undecane, dodecane and tridecane can be related to
the oxidation of lipids, more precisely, a formed alkoxyl radical undergoes scission, gener-
ating an alkyl radical which abstracts a hydrogen atom, turning into a stable alkane [17,26].
2-Methylpentane and 3-methylpentane are other branched species possibly derive from
the oxidation of branched chain fatty acids generated by bacteria.

2.4. Diagnosis Prediction–Global Profiles

Most of the studies comprising the detection of diseases based on VOC analysis in
biological samples compare paired data from healthy and diseased groups. Many of the
compounds addressed as candidate biomarkers by literature are explained as produced
by oxidative stress–a process promoted by typical inflammatory immune responses and
thus non-specific. In this sense, illnesses sharing common etiological and pathological
processes may play a part as confounding factors when a specific diagnosis is intended.
For this reason, the present and following sections of the manuscript were dedicated to the
development of statistical models able to identify and discriminate specific VOC patterns,
allowing simultaneous differentiation of the studied lung diseases.

A random forest (RF) analysis was conducted on global profiles data, aiming to classify
obtained VOC fingerprints into the four investigated categories. Variance importance
was assessed based on the mean decrease Gini when one of the questioned variables is
removed from a preliminary RF model. Gini impurity can be interpreted as the chance
of a case sampled randomly to be incorrectly classified in relation to a given class, thus
being related to the purity of cases within a tree node [55]. Therefore, greater decreases
in this measurement indicate greater importance of a given variable. The resulting plot
is presented in Figure 4a, the compounds are ranked from the most essential to those
less relevant for the obtaining of homogenous classes. The 12 most important variables
were assigned to compose the RF final model, the selected compounds appear depicted
as the gray diamonds, in the upper part of the graph. The intention was to obtain the
greater model overall accuracy as possible, including a minimum number of features.
Predict probabilities of a case of the validation set to belong to a class were provided by RF
modeling. The receiver operating characteristic (ROC) curves presenting the ability of the
model to predict a certain condition are showed in Figure 4b, information on parameters
regarding classification performance are presented in Table 2. It can be observed that class
recognition was performed with at least 93% of sensitivity and 87.5% of specificity for lung
cancer, asthma and healthy groups. Regarding the later mentioned groups, prediction with
accuracy above 87% was achieved. The lower prediction capability obtained in case of
COPD (67%). An exemplary decision tree, from the 1000 generated during modeling, is
presented in Figure 4c.
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Figure 4. (a) Variable importance plot in terms of mean decrease Gini (node purity), obtained in the
first training of RF model. Diamonds refer to VOCs selected for generation of the final classificatory
model; (b) ROC curves based on RF’s final model output regarding the test set, using a panel of
12 VOCs; (c) Example decision tree produced by RF analysis, in which obtained accuracy was 81%
(AS = asthma, CA = lung cancer, COPD = chronic obstructive pulmonary disease, H = healthy).

Table 2. RF model performance (AUC = area under the curve, CI = confidence interval).

Statistics by Class Sensitivity Specificity AUC Balanced Accuracy

Asthma 75.0% 100% 0.872 87.5%
Lung cancer 93.8% 87.5% 0.956 90.6%

COPD 67.0% 97.7% 0.935 82.2%
Healthy 95.0% 94.5% 0.994 94.7%

RF overall accuracy
(95% CI) 85.7% (73.7–93.6)

2.5. Diagnosis Prediction–Target Analysis

In this section, in accordance with the criteria described in the Material and Meth-
ods section and empiric observations drawn from multinomial logistic regression (MLR)
performance using different set of variables, 2-propanol, 3-methylpentane, (E)-ocimene,
limonene, m-cymene, benzonitrile, undecane, terpineol, phenol were the compounds se-
lected to build the MLR final model. A clearer depiction of variables distribution according
to their importance can be observed in Figure 5. Table 3 presents information regarding the
developed model, which, when applied to the train and test datasets provided 100% and
90.5% of accuracy, respectively (average overall accuracy = 95.3%).
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Figure 5. Plot of −(log 10) of p values when applying Mann-Whitney test for specific classes: (a) lung
cancer, (b) COPD or (c) asthma, against all other conditions. Dashed line represents where p ≤ 0.05.
Variables represented by triangle shape icon were those included in MLR final model.

Table 3. Description of MLR model (AS = asthma, CA = lung cancer, COPD = chronic obstructive pulmonary disease,
SE = standard error).

Condition

Coefficients

Intercept 2-Propanol 3-Methyl-
pentane

(E)-
Ocimene Limonene m-Cymene Benzonitrile Undecane Terpineol Phenol

AS −557.79 0.56 17.03 50.39 100.40 212.50 −22.69 −88.94 32.33 −12.95
(SE) (42.62) (0.37) (2.55) (2.48) (10.34) (11.52) (1.32) (3.64) (1.31) (5.31)
CA −127.12 0.61 −129.32 32.92 32.33 31.11 −96.07 26.50 32.81 −1.89
(SE) (29.25) (0.38) (17.43) (8.11) (9.90) (6.47) (16.91) (11.17) (8.40) (0.86)

COPD −23.49 0.49 −269.07 −64.27 11.09 −72.04 −7.72 −111.52 37.91 1.73
(SE) (3.35) (0.83) (6.92) (8.57) (3.39) (0.66) (1.29) (4.22) (8.18) (0.65)

In MLR, coefficients can be multiplied by the quantitative inputs for the calculation of
probabilities of a case to belong to a specific condition. Equation (1) presents the model
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regression equation, where ln[P/(1 − P)] represents the log-odds pertinent to a specific
disease, β0 is the intercept and β1 . . . k are the coefficients provided by the MLR model,
referring to the variables X (in the case, the concentration of the selected targets). A case
for which the calculated probabilities are greater than 50%, can be assigned as belonging to
that class.

ln[P/(1 − P)] = β 0 + β 1 · X 1 + . . . + β k · X k (1)

The numerical coefficients provided by MLR can be interpreted as weights, or the
contribution of these variables to the designated classes. Positive coefficients are related to
compounds with increased response when comparing to the reference class (“Healthy”),
while negative coefficients are associated to targets which were present in lower concentra-
tions in positive samples. In a closer interpretation, the coefficients express multinomial
log-odds. For example, assuming that all other variables remain constant, an increase of
one unit in the concentration of 2-propanol multiplies the odds of a sample belonging
to the asthma group instead of healthy group by 0.56. On the other hand, an increase
in one unit of (E)-ocimene concentration in breath implies the log-odds of COPD to de-
crease by 64.27, in an assumption that the remaining variables are kept constant. Con-
sidering this, increased levels of limonene and m-cymene are characteristic from samples
of asthma patients, while increased level of undecane and decreased concentrations of
benzonitrile are observed for breath of individual with lung cancer; Moreover, greater
concentrations of phenol and lower concentrations of m-cymene are particularly observed
in samples from COPD patients. Values fitted for the train set and predictions performed
by MLR method solely for the validation set were used as input to build ROC curves
(Figures 6a–d and 6e, respectively). Values of area under the curve (AUC) presented in
Figure 6a–d represent the probability of samples belonging to a given group to be classified
as the state condition. For each class specified in the model, AUC was 1.0, meaning that
100% of sensitivity and specificity was obtained. On the other hand, cases not assigned
as the state variable provided AUC ≤ 0.5 (curves below random guessing line). When
considering the performance of the model on the test data, an overall accuracy of 91%
was obtained, resulting in an average accuracy of 95.5% when both evaluated sets are
considered. Detailed information regarding MLR performance is presented in Table 4.

Figure 6. ROC curves generated from fitted values (train set) created by MLR model, labelling (a)
healthy, (b) lung cancer, (c) COPD and (d) asthma as the state variables; (e) ROC curves generated
from predictions computed by the MLR model for the test set. Colored numerals refer to values of
AUC obtained for each depicted curve.
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Table 4. MLR model performance (AUC = area under the curve, CI = confidence interval).

Statistics by Class Sensitivity Specificity AUC Balanced Accuracy

Asthma 68.0% 100% 0.700 83.4%
Lung cancer 83.4% 93.4% 0.950 88.4%

COPD 100% 94.1% 0.971 97.1%
Healthy 100% 100% 1.000 100%

MLR overall accuracy
(95% CI) 91.0% (70.0–99.0)

3. Materials and Methods
3.1. Apparatus and Standards

The analyses were conducted on a model 6890 A gas chromatograph coupled with
a 5975 Inert XL MSD (Agilent Technologies, Waldbronn, Germany). Inlet temperature
was kept at 260 ◦C and carrier gas (helium 6.0) flow was set at 2.2 mL min−1. A DB-624
capillary column (Agilent) 60 m × 0.32 mm × 1.8 µm was used. The oven temperature
program was as follows: initial temperature was 35 ◦C (held for 3 min), ramped to 50 ◦C,
then 75 ◦C, 200 ◦C and finally 240 ◦C, at rates of 3 ◦C min−1, 5 ◦C min−1, 15 ◦C min−1 and
10 ◦C min−1, respectively. The last temperature was kept for 15 min, resulting in a run time
of 41.33 min. Full scan spectra were acquired within a range of 30–300 m/z, at electron
ionization (EI) of 70 eV. The ion source and transfer line were set to 250 ◦C. Chromatographic
data acquisition was performed using MSD ChemStation E.02.00.493 software (Agilent).
Compounds identification was performed using NIST05 mass spectra library. Each peak
was searched manually, including baseline subtraction and averaging over a peak. Forward
match quality of at least 750/1000 was applied as the lower match threshold.

Needle trap device 700-60d-PXC (PDMS + Carbopack X + Carboxen 1000) was pur-
chased from PAS Technology (Magdala, Germany). The air pump flow was conducted by a
sampling case model SC-B (PAS Technology), designed for controlled air sampling. Prior
first use, NTDs were conditioned in a heated conditioner (PAS Technology) at 300 ◦C under
helium flow (1 bar), for 30 min, in order to remove VOC’s contaminations from sorbent.
One liter-Tedlar bags were obtained from SKC (Eighty Four, PA, USA).

Chemicals used as standards (2-methylbutane, pentane, ethanol, isoprene, 2-propanol,
2-methylpentane, 3-methylpentane, 1-propanol, methylcyclopentane, 2-butanone, ben-
zene, acetoin, toluene, ethylbenzene, p-xylene, styrene, decane, 6-methyl-2-heptanone,
isododecane, 1,2,4-trimethylbenzene, ocimene, D-limonene, m-cymene, benzonitrile, phe-
nol, undecane, dodecane, terpineol and tridecane) were purchased from Sigma-Aldrich
(St. Louis, MO, USA), all with purity > 98%.

3.2. Breath Collection

The study was approved by the local Ethics Committee of Collegium Medicum in
Bydgoszcz (No. KB 621/2016–25.10.2016). Individuals aged over 18, with positive clinical
diagnosis for lung cancer (non-small cell lung cancer, subtype: adenocarcinoma) (n = 16),
chronic obstructive pulmonary disease (n = 12) and asthma (n = 8) were recruited at the
Department of Lung Diseases of the Provincial Polyclinic Hospital in Toruń. Samples
from enrolled cancer patients were obtained before any medical intervention (such as
neoadjuvant therapies or surgery).

Individuals were refrained to eat, drink or smoke 2 h prior sample collection. No
special dietary regimes were applied. All individuals gave informed consent to participa-
tion in the study. The patients completed a questionnaire describing their age, gender and
current smoking status (active smokers, non-smokers). Samples of mixed alveolar breath
gas (alveolar and dead space gas) were collected in Tedlar bags with parallel collection
of ambient air at the same room. Breath samples were obtained after approximately after
10 min rest in the same ambient. Each subject provided breath samples using a disposable
plastic straw connected to the Tedlar bag.
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Control samples (n = 20) were collected from healthy individuals aged over 18 years,
without any history of positive diagnosis for cancer or respiratory diseases, who were not
suffering from any other inflammatory disease. All samples were analyzed within 2–3 h
after collection–this timeframe was considered adequate to avoid the interference of gas
composition losses [56]. In the total, 56 breath samples were collected. Information regard-
ing enrolled volunteers is summarized in Table 5 (details regarding presented significance
probabilities are described in the section “Data analysis and chemometrics approaches”).

Tedlar bags involved in sample collection and calibration experiments were daily
treated with several cycles of cleaning, each consisting of consecutively filling and evacuat-
ing argon 5.0 from the bag. Afterwards, the bags filled with argon were kept in an oven at
65 ◦C. The content bag was tested before breath sampling, by means of GC-MS, in order to
verify the effectiveness of cleaning procedure.

Table 5. Main information regarding volunteers (SD = standard deviation, CA = lung cancer,
COPD = chronic obstructive pulmonary disease, AS = asthma).

Group
Control Positive

p
n % n %

Total 20 36 0.367

Gender
Male 13 65.0% 27 75.0% 0.325

Female 7 35.0% 9 25.0% 0.437

Age (SD) 41.2 (10.1) 66.8 (8.22) 0.078

Smoking status
Active smoker 2 10.0% 5 (2 COPD, 3 CA) 13.9% 0.287

Ex-smoker 2 10.0% 22 (12 CA, 10 COPD) 61.1% 0.083
Non-smoker 16 80.0% 9 (1 CA, 8 AS) 25.0% 0.640

Condition
Lung cancer − 16 44.4%

COPD − 12 33.3% −
Asthma − 8 22.2%

3.3. Selection of Targets

The compounds selected as targets were VOCs previously reported as potential breath
biomarkers of lung cancer, COPD and asthma, in accordance with previous studies on
this theme. A literature search was performed in the electronic database Web of Science
Core Collection (from Clarivate Analytics; Philadelphia, PA, USA), as well as Google
Scholar. The searched terms were: “volatile organic compounds”, “gas chromatography”,
“biomarker”, “lung cancer”, “COPD” and “asthma”, considering a time span from 1999 to
2016. The indexed literature is presented in the Supplementary Material (Table S2) [57–80].

3.4. Calibration Procedure

Gas mixtures of the analytes were prepared by injection of 1 µL of liquid standards
into 1 L glass bulb (Supelco, Bellefonte, PA, USA) previously evacuated. Methanol HPLC
was used for the preparation of 50:50 (v/v) dilution of acetoin, phenol and terpineol,
which are solids at room temperature. After the complete vaporization of the liquids,
the interior of the bulb was equilibrated with nitrogen, generating a gas mixture of the
compounds of interest. Using a gas-tight syringe, different volumes of the stock gas
solution were transferred to Tedlar bags filled with 1 L of nitrogen, in order to obtain the
desired concentrations.

The concentrations were calculated in terms of part per billion per volume of analyte
(ppbv), taking in consideration their molar volume. Six calibration levels were used in
the construction of calibration curves, all analyzed in triplicates. The limit of detection
(LOD) was defined as the lowest detectable concentration of analyte, considering a signal-
to-noise (S/N) ratio of at least 3. LOQ was considered as the lowest concentration of
analyte with imprecision of at least 15%, considering a minimum S/N value equal to 10.
Calibration was conducted by linear regression analysis, using the obtained experimental
data. Linearity was evaluated by the method of least squares and reported as the coefficient
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of determination (R2). Linearity was confirmed for values of R2 above 0.99. Inter-assay
imprecision was assessed from the evaluation of assays in triplicate, these were expressed
in terms of relative standard deviation (RSD%). Reported RSD% values are the average of
imprecision calculated for lower (LOQs), medium (5.17–17.25 ppbv) and high calibration
levels (9.52–3452.0 ppbv)—which concentrations varied depending on the linearity range
displayed by the analyte.

3.5. Sample Extraction

Prior to sample extraction process, NTDs were conditioned for 10 min, at 300 ◦C,
under helium 6.0 flow (Air Products, Warsaw, Poland). Samples in Tedlar bags were drawn
through the air pump, at a flow rate of 30 mL min−1. The fixed volume of 50 mL was
sampled from each bag. Once extraction was complete, the loaded NTD was desorbed into
GC inlet port for 2 min.

3.6. Data Analysis and Chemometrics Approaches

For the building of main dataset, area of peaks belonging to ambient air samples
were subtracted from respective samples obtained from patients. Evaluation of normality
of distributions was conducted using Kolmogorov-Smirnov test. Differences between
volunteers’ ages was assessed by t-test. Principal component analysis was performed in
order to evaluate data patterns regarding sample’s group. Mann-Whitney test was used
to indicate VOCs which presented statistically relevant differences in their responses in
the studied groups, p ≤ 0.05 was considered as the relevance criteria. For the above cited
tests, IBM SPSS Statistics v. 24 software (IBM Corp., Armonk, NY, USA) was used. The
following approaches were executed in R environment, using RStudio console v. 1.1.463
(RStudio, PBC, Boston, MA, USA). Significant differences between the proportions of
volunteers assigned to a certain group were assessed by the test of equal or given propor-
tions, employing the R function “prop.test”. For chemometrics approaches, the packages
“gplots”, “RandomForest”, “caret”, “ROCR” were employed. Random forest is a machine
learning method based on recognition of latent patterns within global VOC profiles. RF
was conducted in order to develop a multiclass model, able to distinguish between studied
conditions. RF input consisted of peak table data converted into binary entries–once this
algorithm was dedicated to non-quantified data, this format of dataset was considered as
more appropriate than to express RF outcome in terms of peak area. Variable importance
plots were assessed for selection of variables to be included in the model. Half of the data
was randomly selected to compose the training set (bootstrap sampling method) and the
remaining data was applied in the validation process. Receiver operating characteristic
curves were built based on calculated probabilities output from RF modeling. Ultimately,
the development of a classificatory model based solely on target compounds was aimed, for
that, variables (targets) were selected according to their discriminative potential between all
four investigated conditions. The criteria comprised most unique targets which presented
higher discriminative relevance when considering a given condition against all others.
MLR was performed using the package “nnet”, employing the data regarding quantitation
of the selected targets in analyzed samples. This multiclass categorical method performs a
linear combination of features, allowing prediction through the calculated probabilities of
an input (set of features’ values) to belong to each class specified in the model. Sixty percent
of the data regarding quantitation of targets in the samples was randomly addressed as
the training set, while the remaining data was addressed to a testing set. “Healthy” group
was defined as the reference class. ROC curves were prepared based on the predictions
computed by developed MLR model for fitted values and test data.

4. Conclusions

The developed NTD-GC-MS method was demonstrated to be suitable for the determi-
nation of target VOCs in breath samples, providing considerably low limits of detection
and quantitation, as well as appropriate reproducibility. From the 29 targets selected from
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literature, more than half of them presented significant differentiated responses among con-
trol and positive groups – found discriminating features were 2-propanol, 2-methylpentane,
3-methylpentane, 1-propanol, 2-butanone, styrene, isododecane, 1,2,4-trimethylbenzene,
(E)-ocimene, m-cymene, phenol, undecane, dodecane, terpineol and tridecane, limonene
and benzonitrile (which proved to serve for further differentiation between diseases). Built
statistical models (using both self-annotated discriminating variables and quantified tar-
gets) aimed to simultaneously classify VOC profiles into lung cancer, COPD or asthma
cases. Both classification models (RF and MLR), provided an overall accuracy above 80%.
The distinction between VOC profiles related to clinical conditions involving concomitant
molecular mechanisms is extremely relevant in order to assess cofounding aspects of breath
analysis diagnosis. In this sense, machine learning tools and other mathematical models can
be useful to identify disease-specific latent patterns. Cross-validated studies, comparing
candidate biomarkers found by different research groups by means of different techniques,
are essential for a future implementation of breath screening tests in a clinical setting.
Such an approach can also enable a focused investigation of the pathways involved in the
modulation of these potential biomarkers, as well as it can contribute to the establishment
of optimized analysis protocols.

Supplementary Materials: The following are available online, Table S1: Data regarding calibration
method of gas mixtures (LOD = limit of detection, LOQ = limit of quantitation, ppbv = part per
billion per volume, R2 = determination coefficient, RSD = relative standard deviation). Table S2:
References which reported the targets selected in the present study as potential biomarker of lung
diseases in breath samples, where: LC–lung cancer; COPD–chronic obstructive pulmonary disease.
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