Supplementary Materials

Matrix-Assisted DOSY for Analysis of Indole

Alkaloid Mixtures

Yu-Lin You, Fei-Fei Li, Ning Wang and Shu-Qi Wang*

School of Pharmaceutical Sciences, Shandong University, 44# West Wenhua Road, Jinan 250012, China

youyulin@mail.sdu.edu.cn (Y.-L.Y.); lifeifei2013@126.com (F.-F.L.); wangningsdyxy@163.com (N.W.)

* Correspondence: wangsq@sdu.edu.cn; Tel./Fax: +86-0531-88382014

Table of contents

Element C1	Experimental results for an indole alkaloid mixture of reserpine,	3
Figure 51.	catharanthine, β -carboline and yohimbine in DMSO- <i>d</i> ₆ .	
	¹ H NMR spectra at 600 MHz of (a) indole alkaloid mixtures (each	
Figure S2.	component was 2 mg) and (b) the same mixtures as in (a), but in the	4
	presence of SDS. Signals from SDS micelles were marked by red dot.	
Tabla S1	Influence of different matrices on the diffusion coefficient and	E
Table 51.	resolution.	5
Table 62	Influence of the number of dummy scans (DS) on diffusion coefficient	6
Table 52.	and resolution.	0
Table 62	Influence of the number of scans (NS) on diffusion coefficient and	-
Table 55.	resolution.	1
Table 64	Influence of the values of the FID data points (TD) on diffusion	Q
Table 54.	coefficient and resolution.	0
Table SE	Influence of experimental temperature (T) on diffusion coefficient and	0
Table 55.	resolution.	9
Table S6	Influence of SDS concentration (C) on diffusion coefficient and	10
Table 30.	resolution.	10
Table S7.	Influence of the sample stability on diffusion coefficient and resolution.	11
Figure S2	DOSY spectrum of model mixtures (each component was 2 mg) in the	12
Figure 35.	presence of 2 mg SDS dissolved in 600 μ L of DMSO- <i>d</i> ₆ .	15
	Searching ¹ H spectrum extracted from the DOSY spectrum of the	
Table S8.	model mixture in the database, and the following are the options with	13
	the highest scores and their corresponding compounds.	
	DOSY spectra of a mixture of the real total alkaloid extract (20 mg)	
Figure S4.	before (a, upper) and after (b, lower) the addition of SDS (10 mg) in	14
	DMSO-d6 (600 μ L). Experimental temperature was 298 K.	
	Searching ¹ H spectrum extracted from the DOSY spectrum of the actual	
Table S9.	sample mixture in the database, and the following are the options with	14
	the highest scores and their corresponding compounds.	

Fig. S1. Experimental results for an indole alkaloid mixture of reserpine, catharanthine, β carboline and yohimbine in DMSO-*d*₆. 2D DOSY spectral of (a)mixtures with SDS, (b) mixtures with PVP, (c) mixtures with PEG, (d) mixtures with PDMS were obtained. Signals from different matrices were marked by circles of different colors. Diffusion coefficient (D) was reported in m²s⁻¹×10⁻¹⁰.

Figure S2. ¹H NMR spectra at 600 MHz of (*a*) indole alkaloid mixtures (each component was 2 mg) and (*b*) the same mixtures as in (*a*), but in the presence of SDS. Signals from SDS micelles were marked by red dot.

	reserpine	yohimbine	catharanthine	β-carboline	ΔD1	ΔD2	ΔD3
None	1.76	2.11	2.41	3.99	0.35	0.30	1.58
SDS	3.08	3.64	4.04	6.80	0.56	0.40	2.76
PEG	1.58	2.02	2.31	3.77	0.44	0.29	1.46
PVP	2.19	2.55	2.81	4.38	0.36	0.27	1.57
PDMS	1.63	2.09	2.22	3.67	0.46	0.13	1.45

Table S1. Influence of different matrices on the diffusion coefficient and resolution.

DS	reserpine	yohimbine	catharanthine	β-carboline	ΔD1	ΔD2	ΔD3
0	1.53	1.70	1.80	2.75	0.17	0.10	0.95
4	1.56	1.72	1.84	2.74	0.16	0.12	0.90
8	3.82	4.31	4.61	6.85	0.49	0.30	2.24
16	1.49	1.69	1.80	2.68	0.20	0.11	0.88

Table S2. Influence of the number of dummy scans (DS) on diffusion coefficient and resolution.

NS	reserpine	yohimbine	catharanthine	β-carboline	ΔD1	ΔD2	ΔD3
8	1.56	1.72	1.84	2.74	0.16	0.12	0.90
16	1.51	1.71	1.82	2.73	0.20	0.13	0.91
32	1.51	1.71	1.82	2.72	0.20	0.11	0.90

TableS3.Influence of the number of scans (NS) on diffusion coefficient and resolution.

TD	reserpine	yohimbine	catharanthine	β-carboline	ΔD1	ΔD2	Δ D 3
16	1.56	1.72	1.84	2.74	0.16	0.12	0.90
32	1.76	1.93	2.06	2.94	0.17	0.13	0.88
64	1.69	1.87	2.00	2.88	0.18	0.13	0.88

TableS4.Influence of the values of the FID data points (TD) on diffusion coefficient and resolution.

T (K)	reserpine	yohimbine	catharanthine	β-carboline	ΔD1	ΔD2	ΔD3
293 K	2.90	3.17	3.35	4.80	0.27	0.18	1.45
298 K	3.49	3.78	3.98	5.68	0.29	0.20	1.70
303 K	3.64	3.94	4.14	5.83	0.30	0.20	1.69

Table S5. Influence of experimental temperature (T) on diffusion coefficient and resolution.

С	reserpine	yohimbine	catharanthine	β-carboline	ΔD1	ΔD2	ΔD3
2mg	1.98	2.30	2.55	4.16	0.32	0.25	1.61
4mg	3.58	4.02	4.37	6.75	0.44	0.35	2.38
6mg	3.08	3.64	4.04	6.80	0.56	0.40	2.76
8mg	3.63	4.00	4.30	6.53	0.37	0.30	1.23
10mg	2.89	3.26	3.51	5.40	0.37	0.25	1.89

Table S6. Influence of SDS concentration (C) on diffusion coefficient and resolution.

Time(h)	reserpine	yohimbine	catharanthine	β-carboline
1h	5.22	2.93	2.70	2.21
2h	5.21	2.94	2.58	2.21
4h	5.21	2.93	2.60	2.19
8h	5.22	2.99	2.63	2.21

 Table S7. Influence of the sample stability on diffusion coefficient and resolution.

The literature indicates that several types of databases can be used. In the previous work of this research group, the ¹H chemical shift data of natural products was collected from the literature and has been used to establish a large "experimental database". More than 200 indole alkaloids representing *Apocynaceae* were included in this experimental database. These alkaloids were selected because of the diversity of their structures. For some compounds whose ¹H spectra were not recorded in the literature, we used the NMRP module in the MestReNova software to make predictions in order to enrich the database.

As a routine verification test, the MestReNova software was used to search ¹H spectrum extracted from the DOSY spectrum of the *Alstonia mairei* mixtures and ranked by accuracy. In order to make the results more reliable, we used the search result of the proton spectrum extracted from the model mixture with SDS as a control. The option with the highest score was considered to be the compound we separated. Compared with the score of the experiment without SDS, it is obvious that the addition of a matrice can improve the resolution of DOSY spectra. The analyte signals were mixed together in the DOSY spectrum due to the similar structures of analytes. In practical sample, it can be seen that, the signal overlap was serious without SDS, and we can only roughly extract four ¹H spectra from the spectra. After adding a matrix, the strong overlapping areas can be well separated, we got nine ¹H spectra. Therefore, the matrice can be added to make the search results more accurate. And the results are as follows:

Figure S3. (a) DOSY spectrum of mixtures (each component was 2 mg) dissolved in 600 μ L of DMSO-*d*₆. (b) DOSY spectrum of the same mixtures as in (a), but in the presence of 2 mg SDS.

Table S8. Searching ¹H spectrum extracted from the DOSY spectrum of the model mixture in the database, and the following are the options with the highest scores and their corresponding compounds.

Spectra	Compound	Score (‰)
C1	Reserpine	858
C2	Yohimbine	756
C3	Catharanthine	616
C4	β-Carboline	787

(a) Scores obtained from model mixtures without SDS and the corresponding compounds.

(b) Scores obtained from model mixtures with the addition of SDS and the corresponding compounds.

Spectra	Compound	Score (‰)
C1	Reserpine	923
C2	Yohimbine	953
C3	Catharanthine	989
C4	β-Carboline	998

Figure S4. DOSY spectra of a mixture of the real total alkaloid extract (20 mg) before (a, upper) and after (b, lower) the addition of SDS (10 mg) in DMSO-d6 (600 μ L). Experimental temperature was 298 K.

Table S9. Searching ¹H spectrum extracted from the DOSY spectrum of the actual sample mixture in the database, and the following are the options with the highest scores and their corresponding compounds.

(a) Search scores of four ¹H spectra extracted from total alkaloid extract of *Alstonia Mairei* without SDS in the database and the corresponding compounds.

Spectra	Compound	Score (‰)
C1	Syringaresino	724
C2	Echitoveniline	538
C3	10-Hydroxy-dihydroperaksine	673
C4	N1-(hydroxymethyl)isositsirikine	848

Spectra	Compound	Score (‰)
C1	Tueiaoine	833
C2	N1-(hydroxymethyl)isositsirikine	898
C3	Rauvotetraphylline B	894
C4	10-Hydroxy-dihydroperaksine	929
C5	10-methoxypanarine	901
C6	Echitoveniline	868
C7	Syringaresino	870
C8	17-acetylsandwicine	848
С9	Cyclodicaprylactam	808

(b) Search scores of nine ¹H spectra extracted from total alkaloid extract of *Alstonia Mairei* with SDS in the database and the corresponding compounds.