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Abstract: Cathodes for supercapacitors with enhanced capacitive performance are prepared using
MnO2 as a charge storage material and carbon nanotubes (CNT) as conductive additives. The en-
hanced capacitive properties are linked to the beneficial effects of catecholate molecules, such as
chlorogenic acid and 3,4,5-trihydroxybenzamide, which are used as co-dispersants for MnO2 and
CNT. The dispersant interactions with MnO2 and CNT are discussed in relation to the chemical
structures of the dispersant molecules and their biomimetic adsorption mechanisms. The dispersant
adsorption is a key factor for efficient co-dispersion in ethanol, which facilitated enhanced mixing of
the nanostructured components and allowed for improved utilization of charge storage properties
of the electrode materials with high active mass of 40 mg cm−2. Structural peculiarities of the
dispersant molecules are discussed, which facilitate dispersion and charging. Capacitive properties
are analyzed using cyclic voltammetry, chronopotentiometry and impedance spectroscopy. A capac-
itance of 6.5 F cm−2 is achieved at a low electrical resistance. The advanced capacitive properties
of the electrodes are linked to the microstructures of the electrodes prepared in the presence of
the dispersants.

Keywords: catechol; manganese dioxide; carbon nanotube; composite; dispersant; supercapacitor

1. Introduction

Organic molecules, containing catechol groups, exhibit exceptionally strong adsorp-
tion on inorganic surfaces, which is a key factor for their applications for surface mod-
ification of various materials and fabrication of adherent coatings [1]. The adsorption
mechanism of such molecules is similar to that of mussel proteins bonding to different
surfaces, which results in super strong adhesion [2–4]. It is based on the bidentate chelating
or bridging bonding of phenolic OH groups of the catechol ligands [1] to the metal atoms.
The structural features of catecholates have rendered them useful in dispersion of various
inorganic materials and fabrication of coatings by electrophoretic deposition [1,5]. Various
charged dispersants have been developed for nanotechnology of functional materials [1].
The use of catecholate bonding mechanism has been gaining ground in the development of
liquid-liquid extraction techniques [6], which facilitate the fabrication of non-agglomerated
nanoparticles for diverse applications. Polyaromatic catecholates allowed efficient co-
dispersion of inorganic materials and carbon nanotubes for the fabrication of advanced
composites [7,8]. Various catecholate molecules were used as capping and structure di-
recting agents for the synthesis of non-agglomerated nanoparticles, coated particles and
nanorods with high aspect ratios [9–14]. Moreover, it was found that metastable materials
can be synthesized in the presence of catecholate molecules [15].

Significant interest has been generated in the synthesis of polymer adhesives, contain-
ing catecholate monomers [16–18] and modification of polymers with catechol
molecules [19,20]. The adsorption of catecholates on semiconductors allowed for en-
hanced charge transfer, advanced optical and photovoltaic properties, which were used
for the development of various photovoltaic devices and sensors [21–23]. Catecholate
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molecules have been utilized for the fabrication of magnetic nanoparticles with enhanced
magnetization [24], materials with luminescent properties [25], and quantum dots [26].

Anionic catecholate molecules were utilized for the fabrication of polypyrrole coatings
on various non-noble substrates by anodic electropolymerization [27–29]. The role of
catecholates in the electropolymerization process was multifunctional. Such molecules
acted as anionic dopants for the electropolymerization process, facilitated charge transfer
and allowed for electropolymerization at reduced electrode potential, which is critically
important for corrosion prevention and fabrication of adherent coatings. Catecholate
molecules facilitated incorporation of carbon nanotubes into the polypyrrole coatings [29].
Moreover, the catecholate-type bonding of the molecules to the electrode surface was
another important factor for the fabrication of adherent polypyrrole coatings. Antifouling
polymer coatings were prepared using catecholate molecules as anchors and initiators
for surface-initiated polymerization on metallic substrates [30]. The strong adsorption of
catecholates on metal surfaces was an important factor for their applications as corrosion
inhibitors for stainless steel [31].

Many applications of catecholates are based on their interesting redox
properties [32–34]. Catecholate molecules were used as reducing agents for the syn-
thesis of inorganic nanoparticles by chemical precipitation methods [20,32]. Moreover,
there is a growing interest in the applications of redox active catecholates for the fab-
rication of electrochemical sensors [19,20] and supercapacitors [35]. Chiral catecholate
molecules were utilized for the fabrication of sensors for chiral electrochemical recognition
of biomolecules [36]. Recently it was discovered that catecholate molecules can be used as
charge transfer mediators between charge storage material and current collector of super-
capacitor electrodes [9]. As a result, significant improvement in charge storage properties
was achieved [9].

The increasing number of successful applications of catecholates and promising results
achieved in various research fields have generated interest in fundamental investigation of
various catecholate molecules. This interest is fueled by the rich functional properties of
catecholate molecules. The investigation of multifunctional catecholate molecules, combin-
ing properties of catechol ligands with properties of other functional groups is a promising
strategy for the development of advanced materials and composites as well as their surface
modification and functionalization. An important task is to analyze the influence of various
factors, such as chemical structure and solvent composition on interactions of catecholates
with different materials.

Chlorogenic acid and 3,4,5-trihydroxybenzamide are promising molecules for the
surface modification of materials by catecholate-type bonding and development of ad-
vanced functional materials. Chlorogenic acid is a natural material found in coffee and
tea. Previous investigations focused on the rich variety of biomedical and pharmaceu-
tical applications of this molecule [37]. Moreover, chlorogenic acid exhibits interesting
functional properties for applications in sensors and photoluminescent devices [38–40].
Investigations revealed strong complexation of metal ions with chlorogenic acid [41].
3,4,5-Trihydroxybenzamide exhibits interesting redox active and antioxidant
properties [42,43].

The goal of this investigation was the application of chlorogenic acid and
3,4,5-trihydroxybenzamide for the fabrication of MnO2-carbon nanotube (CNT) electrodes
for supercapacitors. The approach was based on the catecholate-type bonding of the
molecules to the MnO2 surface which facilitated particle dispersion and charging. An
important finding was the possibility to co-disperse MnO2 and CNT in ethanol, which
facilitated their enhanced mixing and allowed for the fabrication of advanced electrodes.
Testing results showed good capacitive properties at high active mass, which resulted in
high areal capacitance.
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2. Results and Discussion

Recent studies on the development of supercapacitors stressed the importance of
advanced manufacturing technologies [44–48]. The development of nanostructured elec-
trodes has generated a need for advanced dispersants for active materials [49,50]. Therefore,
in this investigation chlorogenic acid and 3,4,5-trihydroxybenzamide were tested as co-
dispersants for MnO2 and CNT.

Figure 1A,B shows the chemical structures of chlorogenic acid and
3,4,5-trihydroxybenzamide. The structure of chlorogenic acid includes a catechol group.
The anionic properties of this molecule are attributed to a carboxylic group. The adsorption
of chlorogenic acid on inorganic surfaces can involve catecholate or carboxylate bond-
ing mechanisms [1,51]. However, catecholate bonding to metal oxide surfaces is usually
stronger than that of carboxylate bonding [1]. The structure of 3,4,5-trihydroxybenzamide
contains a galloyl group, containing three phenolic OH groups bonded to adjacent carbon
atoms of the aromatic ring. The galloyl group allows for catecholate type bonding, which
usually involves two phenolic OH groups [1]. Moreover, NH2 group of the structure can
potentially be involved on weak bonding to metal atoms on the inorganic surfaces. Dif-
ferent modes of catecholate bonding are presented in Figure 1(Ca–c), including chelating,
bridging inner sphere and bridging outer sphere bonding.
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Figure 1. (A,B) Chemical structures of (A) chlorogenic acid and (B) 3,4,5-trihydroxybenzamide, (C)
bonding mechanism of catechol to the metal atoms (M) on inorganic surface: (a) chelating, (b) inner
sphere bridging and (c) outer sphere bridging.

It was suggested that catecholate bonding of chlorogenic acid and
3,4,5-trihydroxybenzamide to the MnO2 particle surface will facilitate their dispersion
and result in enhanced stability of suspensions for impregnation of current collectors.
Sedimentation tests confirmed enhanced stability of the MnO2 nanoparticles in ethanol
solvent (Figure 2). Figure 2 compares MnO2 suspensions prepared without and with
dispersant molecules. The enhanced suspension stability achieved in the presence of the
dispersants indicates that the dispersants adsorbed on the MnO2 particles. Moreover,
chlorogenic acid and 3,4,5-trihydroxybenzamide acted as dispersants for CNT in the same
solvent. The ability to co-disperse MnO2 and CNT in ethanol using chlorogenic acid and
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3,4,5-trihydroxybenzamide was critically important for the fabrication of electrodes.
Polyvinyl butyral (PVB) was dissolved in the same solvent and obtained slurry, containing
MnO2, CNT, and PVB binder, was used for the impregnation of Ni foam current collec-
tors. For comparison, the electrodes were prepared using slurries, which were fabricated
without dispersants.
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Figure 2. Sedimentation test for (A) carbon nanotubes (CNT) and (B) MnO2 prepared (a) without dispersants and in the
presence of (b) chlorogenic acid and (c) 3,4,5-trihydroxybenzamide.

Figure 3 shows Scanning electron microscopy (SEM) images of electrodes prepared
without dispersants. The electrodes contained large agglomerates of MnO2 (Figure 3A) and
CNT (Figure 3B). The SEM images indicate poor mixing of the capacitive MnO2 material
and conductive CNT additives. It will be shown below that such poor mixing resulted in a
low capacitance. In contrast, the use of chlorogenic acid and 3,4,5-trihydroxybenzamide
dispersants allowed for improved mixing of MnO2 and CNT. Figure 4 shows SEM images
of MnO2-CNT electrodes prepared using the dispersants. The SEM images at low magnifi-
cations show porous microstructures, which are beneficial for electrolyte transport. The
high magnification images show MnO2 particles as well as CNT and indicate enhanced
mixing of the components, which allowed for enhanced capacitance.
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Figure 3. SEM images of electrode prepared without dispersant: (A) area of MnO2 agglomerate and (B) area of
CNT agglomerate.

Capacitance measurements were taken using cyclic voltammetry (CV) and galvanos-
tatic charge–discharge (GCD) methods, which allowed for analysis of integral capacitance
in a voltage window of 0 to 0.9 V. Moreover, components of complex differential capaci-
tances were calculated from the electrochemical impedance spectroscopy (EIS) data at a
voltage amplitude of 5 mV at different frequencies. The data obtained by different methods
provided information on charging behavior of the electrodes at different conditions. The
experimental results presented below indicated that capacitance depends on different
factors, such has scan rate, frequency, charge/discharge current and voltage or potential.
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(C,D) 3,4,5-trihydroxybenzamide.

Figure 5A–C show CV data at different scan rates for electrodes prepared without and
with dispersants. The electrodes prepared using dispersants showed significantly larger
areas of CVs, which indicated higher capacitances. The integral capacitances in a voltage
window of 0 to 0.9 V were measured at different scan rates and presented in Figure 5D.
The electrodes prepared with chlorogenic acid, 3,4,5-trihydroxybenzamide and without
dispersants showed areal capacitances of 6.4, 6.5 and 2.1 F cm−2, respectively at a scan
rate of 2 mV s−1. The increase in scan rate resulted in the reduced capacitance due to
diffusion limitations of an electrolyte in pores. The electrodes prepared using dispersants
showed significantly higher capacitance, compared to the electrodes prepared without
dispersants. The electrodes, formed using 3,4,5-trihydroxybenzamide, showed higher
capacitance retention at 100 mV s−1, compared to the electrodes formed using chlorogenic
acid. EIS studies (Figure 6) showed higher resistance R = Z′ of the electrodes prepared
without dispersant, which resulted from poor mixing of CNT with MnO2. Moreover, the
electrodes prepared without dispersant showed lower CS’ and lower relaxation frequency,
corresponding to the CS” maximum. The electrodes prepared in the presence of chloro-
genic acid showed the highest capacitance at 10 MHz. However, the electrodes formed
using 3,4,5-trihydroxybenzamide showed higher capacitance at frequencies above 50 Hz,
indicating better charge storage properties at higher charge discharge rates in agreement
with CV data. The electrodes prepared using 3,4,5-trihydroxybenzamide as a dispersant
showed the lowest resistance and the highest relaxation frequency, as indicated by the
location of the C” maximum. It is important to note that capacitances, calculated from the
CV data, depended on scan rate, whereas the capacitances calculated from the impedance
data depend on frequency. The comparison of the capacitances calculated at the same
charge–discharge time scale showed that integral capacitances were higher than differential
capacitances. The difference in the differential and integral capacitance was discussed
in the literature [52]. It was shown that such difference can result from various reasons,
such as the presence of sites with different redox potentials and limited access of the
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electrolyte to some redox sites at low voltages [52]. Testing results showed beneficial effect
of improved mixing of MnO2 and CNT, which was achieved using dispersant molecules.
However, this investigation revealed some difference in electrochemical behavior of the
electrodes prepared using chlorogenic acid and 3,4,5-trihydroxybenzamide. Turning again
to the chemical structures of the molecules (Figure 1) it is seen that the dissociation of the
carboxylic group of adsorbed chlorogenic acid can potentially impart a negative charge
to MnO2 and CNT and improve their dispersion and mixing. This can result in better
performance of the composite electrodes, which was observed at low frequencies. However,
little attention has been paid in the available supercapacitor literature to possible local pH
changes at the positive electrode during charge–discharge process.
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It is known that the application of a positive potential to the electrode usually re-
sults in a local pH decrease [53]; therefore, the protonation of amino groups of organic
molecules [1,53] can be expected at such conditions. Therefore, it was hypothesized that
the protonation of NH2 groups of adsorbed 3,4,5-trihydroxybenzamide can potentially
impart a positive charge to the electrode material.
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Figure 6. (A) Nyquist plot of impedance and (B,C) components complex capacitance C* = C′ − iC” versus frequency
for electrodes prepared (a) without dispersant, (b) in the presence of chlorogenic acid and (c) in the presence of
3,4,5-trihydroxybenzamide.

The charging process of the MnO2 electrode is given by the reaction, involving MnO2
oxidation from 3+ to 4+ and release of adsorbed Na+.

MnO2Na↔MnO2 + e− + Na+ (1)

It was suggested that the positive charge of the electrodes prepared using
3,4,5-trihydroxybenzamide will facilitate Na+ desorption and transport. In contrast, the
protonation of the carboxylic groups of the carboxylic acid molecules will result in their dis-
charge. Therefore, it was not surprizing that the electrodes prepared using
3,4,5-trihydroxybenzamide showed lower resistance and better capacitive properties at
high scan rates and high frequencies. The results of this investigation indicate that the
modification of the charge of an active material by adsorption of organic molecules can
potentially open a promising avenue for the development of electrodes with enhanced
performance.

Figure 7A–C shows GCD data for electrodes prepared without and with dispersants.
The use of dispersants resulted in significantly longer charge–discharge currents, which
was attributed to higher capacitance. The capacitances calculated from the discharge data
were presented in Figure 7D. It is seen that the use of dispersants allowed for the fabrication
of electrodes with significantly higher capacitances, compared to the electrodes prepared
without dispersants. The electrodes showed good cyclic stability (Figure 8). The elec-
trodes prepared without dispersants, with chlorogenic acid and 3,4,5-trihydroxybenzamide
showed capacitance retentions of 111, 102 and 113%, respectively. The slight increase in re-
tention during cycling can result form microstructure changes during cycling or enhanced
wetting of the electrodes by the electrolyte [54,55]. Obtained cathodes are promising for
applications in asymmetric devices operating in Na2SO4 electrolyte. However, in order to
utilize the benefits of high capacitance of the cathodes in devices, the anodes of similar ca-
pacitance must be used. The analysis of literature indicates that reported areal capacitances
of some promising anode materials in the same electrolyte are significantly lower and their
cyclic stability must be improved [56]. Therefore, further progress must be achieved in the
discovery and development of advanced anode materials.
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3. Materials and Methods

KMnO4, polyvinyl butyral (PVB), chlorogenic acid, ethanol, Na2SO4, and
3,4,5-trihydroxybenzamide (Aldrich), CNT (multiwalled, Bayer) and Ni foams (Vale) were
used. MnO2 nanoparticles were prepared by a chemical precipitation method described in
a previous investigation [49]. This method was based on reduction of Mn7+ in an aqueous
KMnO4 solution by addition of ethanol as a reducing agent. The method resulted in nearly
amorphous MnO2, which also contained a small amount of a birnessite phase. Previous
investigations showed poor stability of prepared MnO2 in ethanol. It was found that the
dispersant, used in the previous investigation for MnO2 dispersion, failed to disperse
CNT. Therefore, in this investigation chlorogenic acid, and 3,4,5-trihydroxybenzamide
were tested as co-dispersants for MnO2 and CNT. The ability to co-disperse MnO2 and
CNT was critical for the fabrication of slurries, containing dissolved PVB as a binder, for
impregnation of Ni foam current collectors and fabrication of high active mass electrodes
with the mass of impregnated material of 40 mg cm−2. The mass ratio MnO2:CNT:PVB
was 80:20:3.

SEM studies were performed using a microscope JEOL SEM (JSM-7000F). Cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies were per-
formed using a potentiostat-impedance analyzer PARSTAT 2273 (Ametek). EIS data were
obtained at an open circuit potential using alternating voltage with an amplitude of 5 mV
in the frequency range 0.01–10 kHz. Galvanostatic charge–discharge (GCD) investigations
in a fixed potential range were performed using BioLogic VMP 300. Testing was performed
using a 3-electrode electrochemical cell containing a working electrode (impregnated Ni
foam), counter electrode (Pt mesh), and a reference electrode (SCE, saturated calomel elec-
trode). Aqueous 0.5 M Na2SO4 solution was used as an electrolyte. Integral capacitances
in a potential window of 0 to 0.9 V were calculated from CV and GCD data, as described in
previous investigations [56,57]. Mass normalized Cm and area normalized CS capacitances
were analyzed. Differential capacitance was calculated from the EIS data by the methodol-
ogy described in [56,57]. All the testing results were obtained for 5 electrodes of the same
active mass. The capacitances obtained by the same method for different electrodes varied
within 3%.

4. Conclusions

For the first time, chlorogenic acid and 3,4,5-trihydroxybenzamide were used as dis-
persants for MnO2 and CNT and fabrication of composite cathodes for supercapacitors.
The chemical structures of the molecules facilitated their adsorption on MnO2 and CNT,
which allowed for co-dispersion and enhanced mixing. Structural peculiarities of the
dispersant molecules facilitate dispersion and charging. This simple strategy allowed for
the fabrication of supercapacitor electrodes, which showed a capacitance of 6.5 F cm−2

and low resistance at high active mass of 40 mg cm−2. The analysis of microstructures
of electrodes prepared without dispersant and with dispersant provides an insight into
the influence of chlorogenic acid and 3,4,5-trihydroxybenzamide dispersants on the elec-
trode performance. The electrodes showed good cyclic stability and can be used for the
fabrication of asymmetric supercapacitor devices.
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