Supplementary Materials

Poly(pyridinium salt)s Containing 2,7-Diamino- 9,9'dioctylfluorene Moieties with Various Organic Counterions Exhibiting both Lyotropic Liquid-Crystalline and Light-Emitting Properties

Pradip K. Bhowmik ^{1,*}, Tae Soo Jo¹, Jung Jae Koh¹, Jongwon Park¹, Bidyut Biswas¹, Ronald Carlo G. Principe¹, Haesook Han¹, András F. Wacha², and Matti Knaapila³

- 1 Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA
- 2 Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, , Magyar tudósok körútja 2, Budapest, 1117 Hungary
- 3 Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- * Correspondence: pradip.bhowmik@unlv.edu; Tel.: +1 (702) 895-0885; +1 (702) 895-4072

Figure S1. FTIR spectra of polymers 1–5 taken at room temperature.

Figure S2. ¹⁹F NMR spectrum of polymer **2** in *d*₆-DMSO at 25 °C.

Figure S3. ¹H NMR spectra of polymers **1–5** [10 mg/mL in *d*₆-DMSO at 25 °C. An asterisk indicates H₂O from the NMR solvent).

Figure S4. Photomicrographs of (a) polymer **1** at 20 wt % in CH₃OH , (b) polymer **2** at 30 wt % in DMSO, (c) polymer **3** at 40 wt % in DMSO, and (d) polymer **4** at 35 wt % in DMSO under crossed polarizers exhibiting lyotropic LC phase, respectively, (magnification 400x).

Figure S5. Emission spectra of polymers in (a) DMSO, (b) acetonitrile, (c) methanol, and (d) THF at various excitation wavelengths.

Figure S6. Emission spectra of as synthesized polymers (powdered state) **1-3**, and **5** excited at 354, 360, 355 and 352 nm, respectively.

Figure S7. Photomicrographs of polymers **1**, **2**, **3** and **5** in thin film states under regular light and UV light.

Figure S8. Photomicrographs of synthesized polymers **1-5** (powdered form) under regular light and UV light.

Figure S9. Emission spectra of polymer 1 (1 μ M repeating units, excited at 339 nm) in DMSO/H₂O mixtures with varying amounts water % (v/v).

Figure S10. Emission spectra of polymer **1** (1 μ M repeating units, excited at 343 nm) in CH₃OH/H₂O mixtures with varying amounts water % (v/v).

Figure S11. Emission spectra of polymer **2** (1 μ M repeating units, excited at 342 nm) in CH₃CN/H₂O mixtures with varying amounts water % (v/v).

Figure S12. Fluorescence intensity and emission peak of polymer **2** as a function of water content in CH₃CN (1 μ M repeating units, λ_{ex} at 342).

Figure S13. Emission spectra of polymer 5 (1 μ M repeating units, excited at 336 nm) in CH₃OH/H₂O mixtures with varying amounts water % (v/v).

Figure S14. Fluorescence intensity and emission peak of polymer **5** as a function of water content in CH₃OH (1 μ M repeating units, λ_{ex} at 336 nm).