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Abstract: This work presents a method to move beyond the recently introduced atomic fragment
approximation. Like the bare atomic fragment approach, the new method is an ab initio, parameter-
free, orbital-free implementation of density functional theory based on the bifunctional formalism
that treats the potential and the electron density as two separate variables, and provides access to the
Kohn–Sham Pauli kinetic energy for an appropriately chosen Pauli potential. In the present ansatz,
the molecular Pauli potential is approximated by the sum of the bare atomic fragment approach,
and a so-called deformation potential that takes the interaction between the atoms into account. It is
shown that this model can reproduce the bond-length contraction due to multiple bonding within
the list of second-row homonuclear dimers. The present model only relies on the electron densities of
the participating atoms, which themselves are represented by a simple monopole expansion. Thus,
the bond-length contraction can be rationalized without referring to the angular quantum numbers
of the participating atoms.

Keywords: orbital-free density functional theory; bifunctional approach; Pauli potential; Pauli kinetic
energy; chemical bonding; real space; deformation potentials

1. Introduction

The Hohenberg–Kohn theorems [1] lay the foundation for a purely density-based
description of quantum mechanics, covering, in principle, all aspects of electronic structure
theory and, consequently, chemical bonding. However, the deficiencies of orbital-free den-
sity functional approaches, such as the failure to reproduce the atomic shell structure [2,3]
and the lack of proper chemical bonding [4], are well known drawbacks [5]. As a conse-
quence, orbital-free density functional theory (OF-DFT) was abandoned by most researchers
and the widespread believe in the native insufficience of OF-DFT grew within the community.
Given the enormous success of the orbital-based Kohn–Sham (KS) method [6] (exploiting
a fictious system of non-interacting electrons in order to approximate the kinetic energy
for the system of interest), where the burden of approximation is left to the exchange-
correlation energy only, and where sophisticated methods have been developed over the
years [7,8], its original, purely orbital-free variant fell into oblivion.

Noticeable exceptions to the recent work on OF-DFT have been provided by Nagy
and coworkers [9,10], directly addressing the Pauli kinetic energy and the Pauli potential, a
concept that was derived by March [11] in 1986 by separating the total kinetic energy into
an analytically known expression, namely, the von Weizsäcker kinetic energy [12], and an
unknown remainder, called Pauli kinetic energy. Since then, Pauli kinetic energy and its
potential have been subjected to various theoretical studies [11,13–22] .

Valuable contributions, via the path of generalized-gradient-expansion techniques
and in-depth investigations of parameterization techniques, have been provided by
Trickey et al. [4,23,24]. To date, expansion techniques remain the most common research
line in the field of OF-DFT [3,12,25–43]. Surely, one of the highly celebrated benefits of
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OF-DFT is its enormous gain in computational speed-up, as shown by Carter et al. [44–47]
and related groups [48,49], but also the interest in conceptual insights has recently been
renewed [50,51].

The aim of the present work is to provide a further contribution in this concep-
tual direction. It has recently been shown that chemical bonding of increasing accuracy
can be obtained from non-parameterized, ab initio, orbital-free methods [52–54] via the
bifunctional approach [52–57] (exploiting the homogenous scaling behavior of the function-
als [58]), and the introduced atomic fragment approximation [52–54,56,57]. The target of
the present study is to shed some light on potential systematic pathways beyond the atomic
fragment approximation. The paper contains a compilation of bond lengths for second-row
homonuclear dimers using the bare atomic fragment approach, showing the ability and
limitations of this ansatz. Based on a detailed investigation of the orbital-based KS Pauli
potential for the respective dimers, with the inclusion of ideas from traditional molecular
orbital (MO) theory and their influence on the respective electronic structure graphs of
molecular Pauli potential, a new form of the approximate molecular Pauli potential is
proposed. The new model is based on the idea of the constructive versus destructive
interaction of atomic electron densities, and its performance with respect to equilibrium
bond lengths is tested accordingly. The final task is to reproduce traditional chemical
concepts [59–61] such as multiple bonding from a purely density-based ansatz.

2. Theory

Within an OF-DFT method, the Pauli kinetic energy TP remains the only unknown
functional expression, while approximations for the exchange-correlation part, resulting
from the electron–electron repulsion, are generously accepted as sufficiently well-described
by a local theory level (LDA) in order to focus on the more problematic issue of representing
the kinetic energy of the system. As for the well-known KS-DFT method, the foundations
of OF-DFT lie in the Hohenberg–Kohn theorems [1], according to which the total electronic
energy E of a system can be expressed as a functional of the electron density ρ

E[ρ] = Ts[ρ] + Vee[ρ] + VZ[ρ]. (1)

Here, Ts[ρ] is the non-interacting kinetic energy, Vee[ρ] is the Coulomb repulsion between
the electrons, and VZ[ρ] is the electron–nuclear attraction energy. The latter term is known
exactly as electron density functional

VZ[ρ] =
∫

ρ(~r)vZ(~r)d~r (2)

where the nuclear potential of a molecule vZ(~r) = ∑A vA
Z (~r) is given by the superposition

of all atomic nuclear potentials vA
Z (~r) = −ZA/|~r− ~RA|, with ZA being the nuclear charge

and ~RA the nuclear coordinates. The electron–electron repulsion Vee[ρ] is usually split into
the Hartree energy EH[ρ] and the exchange-correlation energy EXC[ρ], where the Hartree
energy is given by

EH[ρ] =
1
2

∫ ∫
ρ(~r)ρ(~r′)
|~r−~r′| d~r′ d~r. (3)

As pointed out in the beginning of this section, in OF-DFT methods, the focus is set on
approximating the kinetic energy and thus, for simplicity reasons, the exchange-correlation
part is expressed as local exchange energy only ELDA

X [ρ] [1]

ELDA
X [ρ] = −CX

∫
ρ

4
3 (~r)d~r (4)

with CX = 3/(4π)(3π2)1/3 ≈ 0.73856.
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Following the idea of March, the non-interacting kinetic energy Ts[ρ] can be regarded
as being constructed from a bosonic part, the von Weizsäcker term [12] TW, and a remainder,
called Pauli kinetic energy TP, which, consequently, is defined as the difference [11]

TP = Ts − TW. (5)

The von Weizsäcker kinetic energy TW is given analytically in terms of the electron den-
sity [11,12]

TW[ρ] =
∫

tW(~r)d~r =
∫ 1

8

[
~∇ρ(~r)

]2

ρ(~r)
d~r, (6)

where the integral kernel tW(~r) is called Weizsäcker kinetic energy density. Finally, the
Pauli kinetic energy TP remains the only unknown functional expression for a purely
orbital-free description of quantum mechanics. In recent publications [52,53], it was shown
that the Pauli kinetic energy can be evaluated from the so-called bifunctional expression

TP[ρ, vP] = −
1
2

∫
ρ(~r)~r · ~∇vP(~r)d~r (7)

involving both the electron density ρ(~r) and the Pauli potential vP(~r) as two separate
variables. The bifunctional expression exploits the homogenous scaling behavior and
the corresponding formulas [58] of the otherwise unknown functional expression. Conse-
quently, the bifunctional expression yields exactly the KS Pauli kinetic energy, when the
molecular electron density and the molecular Pauli potential are inserted into Equation (7).
Of course, the Pauli potential of the molecule is only known in terms of the molecular KS
eigenfunctions φi(~r) and their respective eigenvalues εi [13]

vP(~r) =
δTp

δρ
=

tP(~r)
ρ(~r)

+ ∑
i
(εM − εi)

|φi(~r)|2
ρ(~r)

(8)

where the sum runs over all occupied eigenfunctions, εM is the highest occupied eigenvalue
of the system, and the Pauli kinetic energy tP(~r) is given by

tP(~r) =
1
2 ∑

i
|∇φi(~r)|2 − tW(~r). (9)

In an orbital-free formalism, the KS eigenfunctions and eigenvalues are, of course, not
available, and, thus, sufficiently accurate approximations for the molecular Pauli potential
have to be found. The recently introduced atomic fragment approximation can be seen as a
somewhat natural first step in order to approximate the molecular entity. In the applied
formalism, the choice of atomic fragments markedly influences the ability of the method to
properly model chemical bonding curves. It has been shown that artificially constructed
closed-shell atoms better mimic the corresponding atomic fragments within the molecule,
and thus yield better equilibrium bond lengths compared to experimental data [54] than
the ordinary ground-state atoms. In the recently introduced OF-DFT methods, the total
kinetic energy was given by

E[ρ, vΩ
P ] = TW[ρ] + TΩ

P [ρ, vΩ
P ] + EH[ρ] + ELDA

X [ρ] + VZ[ρ]. (10)

employing the fragment Pauli kinetic energy TΩ
P [ρ, vΩ

P ] given in terms of a bifunctional

TΩ
P [ρ, vΩ

P ] = −1
2

∫
ρ(~r)~r · ~∇vΩ

P (~r)d~r (11)



Molecules 2021, 26, 1539 4 of 13

where the molecular Pauli potential is approximated by its atomic fragment variant

vΩ
P (~r) = ∑

A
vA

P (~r− ~RA) (12)

and vA
P (~r) is the KS Pauli potential for atom A. Note that the approximations made here

are due to physically meaningful considerations of the molecular formation process. At
this level of theory, neither approximate analytical functional expression, nor parameters
or fitting procedures have been introduced.

In this work, systematic improvements beyond the atomic fragment approximation
are studied. As mentioned above, the bifunctional approach yields exactly the KS Pauli
kinetic energy, when the Pauli potential in the bifunctional expression equals the KS Pauli
potential. Consequently, the following ansatz, employing a deformation potential vdef

P (~r)

vΩdef
P (~r) = vΩ

P (~r) + vdef
P (~r) (13)

can improve the bare atomic fragment approach when a sufficiently accurate approximation
for vdef

P (~r) is inserted. The corresponding Pauli kinetic energy is evaluated again via the
bifunctional formalism

TΩdef
P [ρ, vΩdef

P ] = −1
2

∫
ρ(~r)~r · ~∇vΩdef

P (~r)d~r (14)

and the total electronic energy is finally given by

E[ρ, vΩdef
P ] = TW[ρ] + TΩdef

P [ρ, vΩdef
P ] + EH[ρ] + ELDA

X [ρ] + VZ[ρ]. (15)

While it is relatively easy to obtain the KS Pauli kinetic energy for a given system of interest,
and, consequently, its total KS energy, e.g., simply by inverting the KS equations and
defining the deformation potential as the difference between the KS Pauli potential and the
bare atomic fragment approach, it is of great difficulty to predict the performance of a given
approximate deformation potential in advance. The challenge here is not only to yield
good energetic agreement for a special case, but to obtain reasonable energy differences,
e.g., for a molecule at various geometries. The reasonable description of chemical bonding,
thus lies in the choice of an appropriate deformation potential vdef

P (~r).
In this work, a parameter-free ansatz that relies on the constructive versus destructive

interaction between the atomic fragments is investigated. As will be shown in the subse-
quent section, the dominant part of the KS Pauli potential, responsible for the deviation
from the bare atomic fragment ansatz, is given by the first term in Equation (8). Therefore,
the deformation potential is represented by the following ansatz

vdef
P (~r) =

tdef
P (~r)
ρ(~r)

(16)

where the deformation Pauli kinetic energy tdef
P (~r) is constructed from those electrons

which take part in the bonding. Here, the interaction between atoms A and B may be of a
constructive or destructive nature

Φ±(~r) =
1√

1± S
[ΦA(~r)±ΦB(~r)] (17)

as indicated by the plus and minus sign, respectively, and S is the overlap between the
functions ΦA(~r) and ΦB(~r). The individual atomic contributions ΦA(~r) and ΦB(~r) are
evaluated with the help of the respective atomic shape functions [62]

ΦA(~r) =

√
ρA(~r)

NA
(18)
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where NA and ρA(~r) are the number of electrons and the electron density of atom A,
respectively.

Thus, for the ansatz made in this work, it suffices to scale Equation (17) with the
chosen number of constructive and destructive electronic interactions within the molecule
and insert the corresponding formulas into Equations (9) and (16) together with the appro-
priately scaled von Weizsäcker term (describing the same number of electrons) in order to
determine the deformation potential

vdef
P (~r) =

c 1
2 [∇Φ+(~r)]

2 + d 1
2 [∇Φ−(~r)]

2 − c+d
N tW(~r)

ρ(~r)
(19)

where c and d are the number of constructive and destructive terms, respectively and N is
the total number of electrons in the system. Note that this approach allows for the treatment
of electron-counting rules, e.g., originating from an MO graph, within an OF-DFT method,
as well as for the separate treatment of core and valence electrons.

The input of c and d does, of course, require some knowledge from electronic structure
theory, and so does the concept of separation between core and valence electrons. Such
concepts, however, are at the basis of almost every chemical reasoning and find applications
outside quantum chemistry as well, e.g., the commonly used octet rule which serves to
explain the vast majority of molecular compositions. Additionally, the reader will notice
the close connection of Equation (17) to the ansatz for classical one-electron functions in
molecular orbital theory [63], which is the underlying reasoning for the proposed model.
However, there are two main differences rendering the present model an approximation of
the orbital-based KS PP, cf. Equation (8). First of all, the ansatz given in Equation (17) is not
considered an eigenfunction, and second, the whole deformation potential is constructed
with the help of one single atomic function, namely, its electron density, whereas, in classical
MO theory, the ansatz is split according to the atomic angular quantum numbers, both
conceptually and computationally. Of course, the present model can be made exact (in
the sense to match the KS energy) by searching for those functions and corresponding
values ε, cf. Equations (8) and (9), obeying the necessary nodal conditions and become
the KS eigenfunctions and eigenvalues at the end of the optimization process. In this case,
however, one would finally have performed a classical KS calculation.

The point, here, is to investigate which parts of the molecular KS eigenfunctions are the
necessary ingredients for an approximate PP in order to properly model chemical bonding.
As will be shown in the following section, in case of chemical bonding, such a mandatory
ingredient seems to be the proper mixture (according to the MO concept) of constructive
and destructive terms given by Equation (17), as the impact of the nodal plane given by
the destructive combination is responsible for the increasing Pauli repulsion in O2, F2, and
Ne2. In other cases, like modeling the proper atomic shell structure for atoms in their
groundstate, nodal planes do not seem to play an important role, but a proper relationship
is needed between the exponential decay and the model for the eigenvalues [64].

3. Results and Discussion

Figure 1 compiles the Pauli potential (PP) from the bare atomic fragment approach,
together with the molecular PP obtained from KS orbitals as well as its components, cf.
Equation (8), for the second-row homonuclear dimers at their respective equilibrium bond
distances obtained from KS/LDA/QZ4P calculations [65]. Here, the heaviest dimer, Ne2,
is shown in the first row, followed by successively lighter dimers, until Li2 is shown in the
last row. At first glance, the close similarity between the bare atomic fragment approach
(first column) and the molecular KS Pauli potential (second column) can be noted. This
is due to the fact that the PP exhibits its most dominant values within the core regions:
those regions which are not affected during chemical processes. For this reason, the bare
atomic fragment potential serves as a natural starting point for reasonable approximations
of the molecular Pauli potential. However, as will be shown later, the bare atomic fragment
approach yields systematically decreasing equilibrium bond length with the increasing
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nuclear charge of the participating atoms. While this is a favorable observation from Li2 to
N2, the bare atomic fragment approach, thus, misses the reproduction of the increasing
Pauli repulsion in O2, F2, and Ne2. The latter potentials are shown in the upper last rows of
Figure 1. As can be seen from the figure, the atomic fragment potential deviates from the
KS PP, especially in the bonding region. While the overall magnitude of the Pauli potential
within this region is small, it exhibits a pronounced influence on the chemical bonding
curve and, consequently, the equilibrium bond distance.

Compare the molecular PP (second column) with its components, tP(~r)/ρ(~r) and
∑i(εM − εi)|φi(~r)|2/ρ(~r), shown in columns three and four, respectively. The latter mainly
serves to increase the Pauli repulsion in the core regions, while the former takes part of
the distortion in the bonding region, especially when molecular orbitals of antibonding
character are filled up. Therefore, the deformation potential accounting for the various
bonding scenarios was chosen to be constructed from the first part of Equation (8), while
the differences in the eigenvalues are already contained in the bare atomic fragment
potential. As mentioned in Section 2, the interaction between both atoms can be of either a
constructive or destructive character, indicated by the plus and minus sign in Equation (17).
In the case of molecular orbitals, the termini bonding and anti-bonding character would
be appropriate. Note that only the destructive combination of atomic electron densities
may increase the value of the PP at the bond-critical point (bcp), cf. Equation (17), since
the contribution from the constructive interaction is always zero at the bcp. In principle,
for each homonuclear dimer, one can investigate any combination of constructive versus
destructive natures, unless the number of total electrons is not exceeded, but, of course, the
most interest lies in those combinations that are in line with traditional electronic graphs
from the molecular orbital theory [63,66].

In line with the ideas mentioned above, various deformation potentials have been
created in order to test their performance with respect to chemical bonding. Here, adding
constructive terms to the deformation potential should favor chemical bonding and, conse-
quently, yield shorter equilibrium bond lengths, while adding destructive combinations
should weaken the chemical bond and yield larger equilibrium bond distances or no
bond at all. Exemplarily, the data are compiled for N2, see Table 1. The Table contains
equilibrium bond distances for any combination of constructive versus destructive atomic
interaction, unless the total number of electrons is exceeded. Since each N atom may, at
most, contribute seven electrons, all possible combinations up to 14 electrons have been
investigated. At first glance, most of the combinations yield unbound atoms. These are,
of course, all the combinations that have more destructive than constructive terms, but
also those combinations with an equal amount of constructive and destructive interactions
(with the exception of the bare atomic fragment approach). From the chemical viewpoint,
this is a favorable outcome. Remember that the present OF-DFT approach is based on
traditional concepts from chemical bonding theory only, and does not contain any parame-
terization or data fitting. Of course, atoms that share more destructive than constructive
interactions are unbound, and so are those with an equal amount, since, as shown by
Kutzelnigg [63], the impact of an antibonding orbital in dimers is larger than the impact of
the corresponding binding orbital, due to the normalization constant; see Equation (17).
Note that, the combination of six constructive and four destructive, as well as the defor-
mation potential constructed using eight constructive and six destructive terms also yield
unbound atoms. Thus, within the present model, destructive terms are slightly oversized
while the corresponding constructive terms cannot fully compensate for it. This is also
reflected by the equilibrium bond length for the optimal MO scheme, in case of N2 being
determined from the deformation potential with eight constructive and two destructive
terms, in order to yield six electrons for the triple bond. The corresponding bond distance
is, with 2.38 bohr, roughly 15% too large compared to its experimental value.
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Figure 1. Pauli potential and components for second-row dimers. The first column depicts the Pauli potential (PP) using the
bare atomic fragment approach. In the second column, the molecular PP evaluated from Kohn–Sham orbitals is compiled,
together with its components tP(~r)/ρ(~r) and ∑i(εM − εi)|φi(~r)|2/ρ(~r), cf. Equation (8), shown in columns three and four,
respectively. First row: Ne2 color scale from 0.0 (blue) to 41.0 (white). Second row: F2 color scale from 0.0 (blue) to 36.0
(white). Third row: O2 color scale from 0.0 (blue) to 26.0 (white). Fourth row: N2 color scale from 0.0 (blue) to 18.5 (white).
Fifth row: C2 color scale from 0.0 (blue) to 14.3 (white). Sixth row: B2 color scale from 0.0 (blue) to 8.9 (white). Seventh row:
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Be2 color scale from 0.0 (blue) to 5.2 (white). Eighth row: Li2 color scale from 0.0 (blue) to 2.4 (white). Orthoslices are shown
within the range of 5 × 8 bohr for all dimers.

Table 1. Equilibrium bond distances for N2 from OF-DFT approaches, including various amounts of
constructive versus destructive interactions between the atoms. According to molecular orbital (MO),
theory N2 exhibits eight constructive and two destructive interaction terms. The corresponding entry
is indicated in bold. The equilibrium bond distance for the bare atomic fragment approach was
already published elsewhere [54].

N2
Constructive

0 2 4 6 8 10

de
st

ru
ct

iv
e

0 2.12 2.01 1.93 1.86 1.80 1.76

2 nb nb 2.89 2.56 2.38 2.25

4 nb nb nb nb 3.28 2.93

6 nb nb nb nb nb /

8 nb nb nb nb / /

10 nb nb nb / / /
nb: not bound.

However, notice the systematic change in the equilibrium bond lengths for the pro-
posed model. As mentioned in Section 2, obtaining a reasonable OF-DFT kinetic energy
for a special case can be done numerically in a straightforward way by the inversion of
the KS equations. Equally, one could think of a certain model with adjustable parameters
in order to obtain the desired match (as was frequently done with the von Weizsäcker
correction to the Thomas-Fermi theory [2]). In contrast to single-point matches, the design
of kinetic energy functionals yielding appropriate energy differences, e.g., for varying
nuclear coordinates, is still challenging. The model proposed in this work not only yields
reasonable energy differences for a chosen deformation potential with a fixed number for c
and d, thus yielding bound atoms with reasonable bond distances, it also yields reasonable
results among different ansatzes (using different numbers for c and d). Changes in the bond
length (the minima of the respective bonding curves) follow the reasoning of the traditional
electronic structure theory. As can be seen from Table 1, increasing the number of construc-
tive interactions for a given number of destructive terms decreases the corresponding bond
length, while the inclusion of more destructive interaction terms (for a given number of
constructive electron-sharing) systematically increases the respective bond length. Those
findings apply to all examined test cases. As a consequence, the deformation potential
for the corresponding MO scheme is expected to yield unbound atoms in the case of Be2
and Ne2, since, here, the number of constructive terms equals the number of destructive
electron sharing, but F2 is expected to be unbound in this model, since the number of
six destructive terms is rather high in this molecule and may not fully be compensated
by the remaining eight constructive terms. Still, the question remains as to whether the
proposed model is able to yield bond distances that are in accordance with our chemical
understanding of single, double and triple bonds. N2 shall yield the shortest equilibrium
bond distance within the list of the homonuclear second-row dimers, followed by its next
nearest neighbors (X2, with X = C,O) and so on.

Equilibrium bond lengths from OF-DFT using the deformation potential, in accordance
with the MO scheme, are compiled in Table 2. The model, however, does not seem to be
suitable for Li2, in which case the calculations are not converging. As can be seen from
the table, the abovementioned expectations for the model are met. Indeed, the present
approach yields the shortest bond distance for N2 (exhibiting a classical triple bond) within
the list of the second-row dimers. Note that the proposed model allows the examination
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of electron-counting rules based on a single function only, namely, the electron density
of the participating atoms. The present approach, thus, allows for the rationalization of
experimental findings, such as the bond-length contraction from B2 to N2, together with
the subsequent widening from N2 to O2, based on the simple electronic scheme shown
in Table 2. Note that no reference is made to the angular quantum number, since the
electron density is given as a simple monopole expansion (see Section 3) in all cases. The
present approach, thus, rationalizes the occurrence of multiple bonds and their respective
bond-length contraction without introducing concepts like p-orbitals, which are usually
employed in such discussions.

Table 2. Equilibrium bond distances for the second-row homonuclear dimers from OF-DFT using
the deformation potentials in accordance with molecular orbital (MO) theory.

X2
Constructive

0 2 4 6 8

de
st

ru
ct

iv
e 0 Ω Li2

nc

2 nb Be2
nb

B2
4.12

C2
3.02

N2
2.38

4 nb nb nb nb O2
2.77

6 nb nb nb nb F2
nb

8 nb nb nb nb Ne2
nb

nb: not bound.

Finally, a comparison is made to bond distances from the orbital-based KS scheme, as
well as to experimental bond lengths. Figure 2 shows the equilibrium bond distances for
the second-row homonuclear dimers, evaluated with the ADF program [65] at LDA(Xonly)
level using the QZ4P basis sets, shown in green, together with the corresponding experi-
mental values [67,68], shown in black, and the bond lengths from the two recent OF-DFT
approaches using the bare atomic fragment approximation, shown in blue, and the de-
formation potential, shown in red, respectively. As can be seen from the data, the bare
atomic fragment approach misses the reproduction of the influence of multiple bonding.
Since the model is a bare atomic fragment approach, the corresponding equilibrium bond
lengths basically follow the size of the core regions [69] of the participating atoms. The
bare atomic fragment approach accounts for the Pauli repulsion within each atom, as
well as, to some extent, for the repulsion in between the atoms. Namely, the bare atomic
fragment approach takes the repulsion due to the interaction of the incoming electron
density from the approaching atom B with the Pauli potential at atom A into account.
However, the influence on the molecular Pauli potential due to the interacting atoms is not
captured by this ansatz, since the bare atomic fragment potential is not optimized during
the molecular formation. The present work proposes an ansatz to relax the Pauli potential
due to the influence of the other atoms, by the introduction of a deformation potential. The
deformation potential is build from the electron density of the interacting atoms and can
be of a constructive as well as of destructive nature. This model allows to obey traditional
chemical-counting rules, and, based on them, bond-length contraction due to multiple
bonding can be appropriately modeled. Bear in mind that the present ansatz does not
contain any parameterization with respect to experimental values or data fitting. Since the
Pauli kinetic energy is evaluated via the bifunctional formalism, it can, in principle, yield
exactly the KS Pauli kinetic energy for an appropriately chosen deformation potential.
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Figure 2. Equilibrium bond length for second-row homonuclear dimers. Black squares: Experimental
values [67,68], green circles: Kohn–Sham calculations from ADF/LDA/QZ4P level, blue diamonds:
OF-DFT using the bare atomic fragment approach (some of the data previously published here [54]),
red triangles: OF-DFT using the deformation potential and electron counts from MO theory.

4. Materials and Methods

Similar to previously published methods [53,54], energy minimization has been per-
formed by optimization of the respective exponents for the valence region of the participat-
ing atoms, where the electron density is represented by atom-centered, squared, real-type
nodeless Slater functions of 1S and 2S-type only

ρ(~r) = ∑
i

φ2
i (~r− ~RA). (20)

Those nodeless spherical Slater functions are given by [70,71]

φi(~r) = N0rai e−αir (21)

with

N0 =

√
(2αi)2ai+3

4π(2ai + 2)!
, (22)

ai = n∗ − 1 and αi = (Z− s)/n∗, where Z is the nuclear charge, n∗ is an effective quantum
number, and s is the so-called shielding constant [71]. Shell concept, occupation and
shielding constants have been evaluated according to the Slater rules [71], meaning that the
core and valence region around each nucleus are represented by a single 1S- and 2S-type
function, respectively. However, the atomic valence electron density has been restricted to
closed-shell states in order to model the closed-shell state for the molecule. As mentioned
above, the Slater exponents for the valence density, here α2S in all cases, are projected
to an optimization procedure in order to minimize the total energy. The optimization of
exponents with respect to the energy leads to a system of non-linear equations. Therefore,
the minimization procedure has to be performed iteratively.

The OF-DFT methods presented in this paper allow for the relaxation of the density
as well as for a relaxation of the deformation potential, due to the interaction between the
atoms. The inner part of the Pauli potential, however, obtained by the superposition of
closed-shell atomic Pauli potentials, is kept fixed (at a given internuclear distance) during
the optimization process. Those atomic Pauli potentials were taken from a LDA (Xonly) KS
calculation performed with ADF [65] using atoms in closed-shell configurations and the
QZ4P basis sets.

KS calculations for molecular PP were equally obtained at the LDA (Xonly) level using
the QZ4P basis sets.
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5. Conclusions

This study presents an ab initio, parameter-free, orbital-free implementation of density
functional theory. Here, the functional value of the Pauli kinetic energy is evaluated
from the density-potential pair using the bifunctional formalism. The recently introduced
bifunctional formalism allows for the treatment of the functional derivative, the potential,
and the electron density as two separate variables, while yielding exactly the Kohn–Sham
(KS) Pauli kinetic energy when the corresponding electron density and the orbital-based
KS Pauli potential are inserted. However, the bifunctional approach allows for further
meaningful approximations, and thus provides a new and strategic means for the design
of functionals.

This work extends the bifunctional approach beyond the recently introduced atomic
fragment approximation through the help of a deformation potential that accounts for the
constructive and destructive effects when two atoms approach each other. The interaction
is mimicked with the help of the electron density of the participating atoms and, similar
to molecular orbital (MO) theory, the interaction is taken into account with the help of a
constructive or destructive combination of those densities. This approach allows study of
the impact of electronic counting rules, with the help of the electron density only, and it was
found that the influence of multiple bonding within the homonuclear second-row dimers
is sufficiently well modeled, in the sense that the proposed model yields the shortest
bond length for N2, followed by an increasing bond length for its next nearest neighbors
(X2, X = C,O). Since the electron density is given as a simple monopole expansion, the
present approach, thus, allows for the rationalization of chemical concepts, such as multiple
bonds, together with the corresponding bond-length contraction without the necessity of
introducing angular quantum numbers for the participating atoms (as they are necessary
for the description of s-, p-, and d-orbitals).
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