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Abstract: This paper studies the effective dielectric properties of heterogeneous materials of the type
particle inclusions in a host medium, using the Maxwell Garnet and the Bruggeman theory. The
results of the theories are applied at polymer-dispersed liquid crystal (PDLC) films, nanoparticles
(NP)-doped LCs, and developed for NP-doped PDLC films. The effective permittivity of the com-
posite was simulated at sufficiently high frequency, where the permittivity is constant, obtaining
results on its dependency on the constituents’ permittivity and concentrations. The two models
are compared and discussed. The method used for simulating the doped PDLC retains its general
character and can be applied for other similar multiphase composites. The methods can be used to
calculate the effective permittivity of a LC composite, or, in the case of a composite in which one of
the phases has an unknown permittivity, to extract it from the measured composite permittivity. The
obtained data are necessary in the design of the electrical circuits.

Keywords: effective permittivity; liquid crystal; polymer-dispersed liquid crystal; nanoparticle

1. Introduction

Composite electro-optic materials, such as polymer/liquid crystal (LC) blends cover a
large area of two phase mixtures as, for example: polymer-Ddspersed liquid crystal (PDLC)
films [1], liquid crystal dispersed in an electrospun cellulose acetate network [2,3], cellulose
film/LC composite [4], polymer balls/nematic LC films [5].

Polymer-dispersed liquid crystal (PDLC) films consist of micrometer or sub-micrometer-
sized nematic droplets dispersed in a polymer matrix [6]. Their optical transmission re-
sponse is based on the electrically controlled light scattering properties of the droplets. An
applied electric field aligns the nematic droplets, and due to the refractive index match
of the polymer and the aligned LC, a transparent non-scattering state is obtained. In the
absence of the field, the molecules inside the droplets return to their original orientation
and results in a scattering opaque state.

The reorientation of the LC molecules depends on the electric field across the droplet [6,7],
and at a macroscopic scale, it depends on the dielectric permittivity. The LC droplets inside
the polymer matrix form a bi-phase system, and to study the dielectric permittivity, the
Maxwell Garnet [8] and the Bruggeman [9,10] effective medium models are considered in
this paper. Generally, the permittivity has frequency dispersion, but conductivity effects
become unimportant compared to dielectric effects at relatively high frequencies, where the
ionic motion is frozen out, and at high resistivities, where the small number of mobile ions
will not give rise to a significant depolarization field [1], and the present study considers
this situation.

At present, many studies are dedicated to nanoparticles (NPs)-doped LCs [11] and
PDLC films, in order to take advantage to each constituent beneficial contribution [12–14].
The contribution of the third phase formed by the dispersed NPs both in the LC droplets
and in the polymer matrix is taken into account at the calculation of the effective dielectric
permittivity of NPs-doped PDLC films.
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It is generally accepted that the LC form droplets encapsulated in the polymer up till
a concentration of about 50%. For greater concentrations, interconnecting channels will
form between the LC droplets, the structure passing gradually in a sponge-like one.

Because LC doping with small fractions of NP is a very delicate process that might
lead to tricky experimental results, it is important to use models to gain information about
the effective dielectric constant of NPs containing multiphase systems.

2. Theoretical Models

The investigated medium is a heterogeneous composite at microscopic scale, where we
can evaluate the effective dielectric function of the macroscopic uniform medium depending
on the permittivity of the individual components and their respective volume fractions.
Two of the most used effective medium approaches are the Maxwell Garnet [15,16] and the
Bruggeman theories which are discussed further.

2.1. Maxwell Garnett (MG) Model

Let us consider a dense medium formed by molecular dipoles. Firstly, one should
evaluate the local field at the site of a molecule, supposing that the molecule is surrounded
by a spherical cavity of radius R, as seen in Figure 1. The space inside the sphere has free
space permittivity, since it is the space between two molecules. When applying an external

electric field
→
E ext, the electrical charges will move according to their sign, producing the

electric field
→
ES due to the polarization charges, which, in the case of the considered sphere,

is ES = P
3ε0

, where P is the macroscopic polarization. The local field acting in the central of
the dipole is

→
E L =

→
E ext +

→
ES +

→
Ed +

→
Enear (1)

where
→
Ed is the depolarization field lying at the external surface of the medium, Ed = −P

ε0
;

→
Enear is the field induced by other dipoles lying within the sphere, which, in the case

of a symmetric cubic lattice, vanishes. Since the sum
→
E ext +

→
Ed =

→
E , where

→
E is the

macroscopic electric field, the local field becomes:

→
E L =

→
E +

→
P

3ε0
(2)

P = NαEL = Nα

(
E +

P
3ε0

)
(3)

where α is the polarizability of one molecule and N is the volume density of dipoles.
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Figure 1. Auxiliary sphere around a molecule for determining the local electric field. 
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The electric induction being

→
D = ε0

→
E +

→
P = ε0εr

→
E (4)



Molecules 2021, 26, 1441 3 of 12

Using Equations’ (3) and (4) results, the Clausius–Mossotti relation is

Nα

3ε0
=

εr − 1
εr + 2

(5)

Considering the Clausius–Mossotti relation for a composite formed of spherical parti-
cles of relative permittivity ε1 embedded in a host medium of relative permittivity εh:

Nα

3ε0εh
=

εe f f ,MG − εh

εe f f ,MG + 2εh
(6)

where εe f f ,MG is the effective permittivity obtained using the MG formula. Considering f
the volume filling factor of the spheres, the polarizability in relation (5) becomes:

α =
3ε0εh f

N
ε1 − εh

ε1 + 2εh
(7)

By substituting Equation (7) in (6), the MG formula is obtained:

εe f f ,MG − εh

εe f f ,MG + 2εh
= f

ε1 − εh
ε1 + εh

(8)

εe f f ,MG = εh
1 + 2 f ε1−εh

ε1+2εh

1− f ε1−εh
ε1+2εh

(9)

To model the capacity properties of the pure PDLC, we have chosen the MG formula
adapted for the LC-polymer bi-phase system:

εe f f ,MG = εply

1 + 2 fLC
εLC−εply

εLC+2εply

1− fLC
εLC−εply

εLC+2εply

(10)

where εe f f ,MG is the effective dielectric constant of the composite PDLC film, εply is the
dielectric constant of the polymeric matrix, εLC is the dielectric constant of the dispersed
liquid crystal, and fLC is the volume fraction of the LC.

LCs are anisotropic materials and the dielectric anisotropy in the uniaxial nematic
phase is characterized by two principal components, one component is parallel, ε I I , and
the other component is perpendicular ε⊥ to the director of the LC. The dielectric anisotropy
∆ε in the uniaxial phases is ∆ε = ε I I − ε⊥ and its sign depends on the chemical struc-
ture of the constituent molecules [17]. The average permittivity of the LC is defined as
εLC = εLC,random = ε I I+2ε⊥

3 and is used in our discussion. By measuring the capacitance
of the film, one can determine an effective permittivity in zero-applied electric field (ε⊥)
and in the high-applied electric field (corresponding to the oriented LC, and to ε I I) states.
Equation (9) can be applied to obtain the effective permittivity of the film (corresponding
to ε⊥, ε I I , and εLC,random) and the results are presented in Section 4.

2.2. Bruggeman Effective Medium Model

The model considers spherical particles of two different materials, of permittivities ε1,
ε2 dispersed in a host matrix of dielectric constant εh [9,15]. For a two inclusion composite,
induced in a symmetric manner, the following expression was obtained:

εe f f ,B − εh

εe f f ,B + 2εh
= f1

ε1 − εh
ε1 + 2εh

+ f2
ε2 − εh

ε2 + 2εh
(11)

where εe f f ,B is the Bruggeman’s effective permittivity of the medium.
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For a two phase system, f1 + f2 = 1, if each material is considered as one inclusion
and the host medium is the material itself. In this case εe f f ,B = ε h and the left hand side

of Equation (6) becomes zero. It follows:

f1
ε1 − εe f f ,B

ε1 + 2εe f f ,B
+ f2

ε2 − εe f f ,B

ε2 + 2εe f f ,B
= 0 (12)

The solution of Equation (12) is

εe f f ,B =
1
4

{
(3 f1 − 1)ε1 + (3 f2 − 1)ε2 ±

√
[(3 f1 − 1)ε1 + (3 f2 − 1)ε2]

2 + 8ε1ε2 } (13)

The sign in Equation (13) is chosen such that the imaginary part of the effective
permittivity is positive. For the pure PDLC, the effective permittivity considering the
Bruggeman expression, εe f f ,B becomes:

εe f f ,B =
1
4

{
(3 fLC − 1)εLC +

(
3 fply − 1

)
εply ±

√[
(3 fLC − 1)εLC +

(
3 fply − 1

)
εply

]2
+ 8εLCεply

}
(14)

2.3. NPs-Doped LC

The LC droplet is doped with NPs and the effective permittivity of the doped LC
considering the MG formula is (15), resulted from (10), and considering the Bruggeman
expression is presented in (16) (resulted from (14)), respectively.

εLC_NP,MG = εLC
1 + 2 fNP

εNP−εLC
εNP+2εLC

1− fNP
εNP−εLC

εNP+2εLC

(15)

εLC_NP,B =
1
4

{
(3 fNP − 1)εNP + (3(1− fNP)− 1)εLC ±

√
[(3(1− fNP)− 1)εLC + (3 fNP − 1)εNP]

2 + 8εLCεNP

}
(16)

where we have taken into consideration that the sum between the NPs volume fraction (in
LC) and the LC volume fraction (in NPs) is 1.

2.4. NPs-Doped PDLC Films

To obtain the effective permittivity for the doped PDLC, the following system is
considered: the NPs-doped polymer matrix, LC droplets doped with NPs, as presented
in Figure 2.
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Figure 2. Schematic presentation of a nanoparticles (NPs) polymer-dispersed liquid crystal (PDLC)-
doped film between two indium tin oxide (ITO) glass coated plates: LC droplets are spherical.
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Since the fraction of NPs in LC is very small, we may consider the MG formula for the
NPs doped polymer, and using Equation (10) it follows:

εply,NP_MG = εply

1 + 2 fNP
εNP−εply

εNP+2εply

1− fNP
εNP−εply

εNP+2εply

(17)

For the doped LC, we consider Equation (14).
Finally, for the NPs-doped PDLC, we use the Bruggeman formula:

εPDLC,NP =
1
4

{
(3 fLC − 1)εLC_NP,MG + (3(1− fLC)− 1)εply_NP,MG ±

√
∆
}

(18)

∆ =
[
(3(1− fLC)− 1)εply_NP,MG + (3 fLC − 1)εLC_NP,MG

]2
+ 8εLC_NP,MGεply_NP,MG (19)

3. Results and Discussions
3.1. PDLC Film

Figure 3 shows the numerical representation of PDLC effective permittivity, vertical
colour bar, Ox axis represents LC permittivity εLC, Oy axis represents polymer permittivity
εply, obtained using the Maxwell Garnett model (Equation (10)), for LC volume fractions
of 20%, 30%, and 40%, commonly used in the study of PDLC films and for whom LC
forms individual droplets. The numerical values in the following discussions refer to
the relative permittivity of the materials. The polymer permittivity variation domain is
chosen between 3 and 10, and the LC permittivity between 4 and 20, considering their
values at high frequency [17–20]. As easily seen in Figure 3a, at constant volume fraction
and constant LC permittivity, the effective MG permittivity increases with the polymer
permittivity, and at constant polymer permittivity, the effective MG permittivity increases
with the LC permittivity.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 14 
 

 

3. Results and Discussions 

3.1. PDLC Film 

Figure 3 shows the numerical representation of PDLC effective permittivity, vertical 

colour bar, Ox axis represents LC permittivity LC , Oy axis represents polymer permit-

tivity ply , obtained using the Maxwell Garnett model (Equation (10)), for LC volume 

fractions of 20%, 30%, and 40%, commonly used in the study of PDLC films and for 

whom LC forms individual droplets. The numerical values in the following discussions 

refer to the relative permittivity of the materials. The polymer permittivity variation 

domain is chosen between 3 and 10, and the LC permittivity between 4 and 20, consid-

ering their values at high frequency [17–20]. As easily seen in Figure 3a, at constant 

volume fraction and constant LC permittivity, the effective MG permittivity increases 

with the polymer permittivity, and at constant polymer permittivity, the effective MG 

permittivity increases with the LC permittivity. 

 
(a) 

 
(b) 

Molecules 2021, 26, x FOR PEER REVIEW 7 of 14 
 

 

 
(c) 

Figure 3. Representation of PDLC permittivity in the Maxwell Garnett model, for different LC 

fractions: (a) fLC,a = 0.2; (b) fLC,b = 0.3; (c) fLC,c = 0.4. Ox: LC permittivity LC , Oy: polymer permittivi-

ty ply ; vertical color bar: PDLC film effective permittivity using the Maxwell Garnet model, 

symbol @ stands for “at”. 

In Figure 4, the numerical simulations of PDLC effective permittivity (vertical col-

our bar) are presented, obtained using the Bruggeman model (Equation (14)), for LC 

volume fractions of 20%, 30%, and 40%, Ox axis: LC permittivity LC , Oy axis: polymer 

permittivity ply . At constant LC permittivity, the effective PDLC permittivity increases 

with the polymer permittivity. Considering, for example, the lower limit for the LC 

permittivity and the upper limit for the polymer permittivity, 4LC  and 10ply , 

the effective Bruggeman permittivity for the PDLC film decreases with the increase of the 

LC fraction. 

 
(a) 

Figure 3. Representation of PDLC permittivity in the Maxwell Garnett model, for different LC
fractions: (a) fLC,a = 0.2; (b) fLC,b = 0.3; (c) fLC,c = 0.4. Ox: LC permittivity εLC, Oy: polymer permittivity
εply; vertical color bar: PDLC film effective permittivity using the Maxwell Garnet model, symbol @
stands for “at”.
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In Figure 4, the numerical simulations of PDLC effective permittivity (vertical colour
bar) are presented, obtained using the Bruggeman model (Equation (14)), for LC volume
fractions of 20%, 30%, and 40%, Ox axis: LC permittivity εLC, Oy axis: polymer permittivity
εply. At constant LC permittivity, the effective PDLC permittivity increases with the
polymer permittivity. Considering, for example, the lower limit for the LC permittivity
and the upper limit for the polymer permittivity, εLC = 4 and εply = 10, the effective
Bruggeman permittivity for the PDLC film decreases with the increase of the LC fraction.
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Figure 4. Representation of PDLC film effective permittivity in the Bruggeman model for different
LC fractions: (a) fLC,a = 0.2, (b) fLC,b = 0.3, (c) fLC,c = 0.4. Ox: LC permittivity εLC, Oy: polymer
permittivity εply; vertical color bar: PDLC film effective permittivity using the Bruggeman model,
symbol @ stands for “at”.

To compare the results predicted by the two models, Figure 5 presents the difference
between the MG and Bruggeman effective permittivity, εe f f ,MG − εe f f ,B, for three LC
fractions. Considering, for example, the LC fraction of 20%, εply = 3, εLC = 10, it results in
an effective Bruggeman permittivity greater than the effective MG one. At εply = 10 and
εLC = 5, the MG effective permittivity is greater than the Bruggeman one. The modulus∣∣∣εe f f ,MG − εe f f ,B

∣∣∣ increases with the LC fraction, at constant constituents’ permittivity.
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3.2. NPs-Doped LCs

Figure 6 presents the effective permittivity for NPs-doped LC versus NPs’ permit-
tivity, εNP, for three NP volume fractions: 0.01; 0.001; and 0.0001, using the MG model
(Equation (15), Figure 6a) and the Bruggeman model (Equation (16) Figure 6b). The LC
permittivity is considered 10. In both cases, the effective permittivity increases with εNP
and with the NP volume fraction, excepting the case εNP = εLC (in our case equal 10),



Molecules 2021, 26, 1441 8 of 12

when the volume fraction of NP does not influence the result (intersection of the three
curves corresponding to the difference of NP volume fractions).

Molecules 2021, 26, x FOR PEER REVIEW 10 of 14 
 

 

and with the NP volume fraction, excepting the case LCNP    (in our case equal 10), 

when the volume fraction of NP does not influence the result (intersection of the three 

curves corresponding to the difference of NP volume fractions). 

Comparing the two models, Figure 6c shows the difference BeffMGeff ,,    for the 

NPs-doped LCs. It results that BeffMGeff ,,   , when 10NP  (which corresponds to 

LCNP   ) and then it changes its sign, the difference being noticeable at NP volume 

fraction of 0.01, but still of the order of 
410 

. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Representation of effective permittivity for NPs-doped LC versus NP permittivity, NP , 

for three NP volume fractions: 0.01; 0.001; and 0.0001, (a) MG model (Equation (14)); (b) Brug-

Figure 6. Representation of effective permittivity for NPs-doped LC versus NP permittivity, εNP, for
three NP volume fractions: 0.01; 0.001; and 0.0001, (a) MG model (Equation (14)); (b) Bruggeman
model (Equation (15)), and (c) the difference of the effective permittivity obtained using these models.

Comparing the two models, Figure 6c shows the difference εe f f ,MG − εe f f ,B for the
NPs-doped LCs. It results that εe f f ,MG > εe f f ,B, when εNP < 10 (which corresponds to
εNP = εLC) and then it changes its sign, the difference being noticeable at NP volume
fraction of 0.01, but still of the order of 10−4.
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Figure 7a represents the effective permittivity for the NPs-doped PDLC (Equation (17)),
versus εNP, at a constant LC volume fraction fLC = 0.4 and for three NP volume fractions
fNP: 0.01; 0.001; and 0.0001. For the LC permittivity, the value of a commercial LC mixture,
E7, was chosen at high frequency [18] εLC = 10, and for the polymer, the permittivity
of polyvinyl alcohol (PVA), εply = 8 [21–25]. The effective permittivity shows a modest
increase at very low NP concentrations, and a more significant variation at fNp = 0.01.
Figure 7b shows the effective Bruggeman permittivity versus LC concentration, for the
undoped PDLC film.
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Figure 7. (a) Effective permittivity for the NPs-doped PDLC, versus NP permittivity, εNP,
(Equation (18)) at a constant LC volume fraction fLC = 0.4 and for different NP volume fractions
fNP: 0.01; 0.001; and 0.0001. LC permittivty εLC = 10, polymer permittivity εply = 8; (b) representa-
tion of undoped PDLC effective permittivity in the Bruggeman model versus LC volume fractions,
Equation (14), at constant LC permittivty εLC = 10, polymer permittivity εply = 8.

When comparing the experimental values with the simulated ones, differences might
appear due to the errors in the determination of the geometrical dimensions of the sample.
To avoid this problem, in many dielectric spectroscopy studies, the aim is to obtain the
characteristic time of the dielectric relaxation processes, independent on the sample’s
dimension [10,11].

4. Comparison of Model Predictions with Test Data for PDLC Films

In order to compare the methods presented with experimental data from the litera-
ture [21–25], we chose a PDLC film consisting of the polyvinyl alcohol (PVA) polymer and
nematic LCs [25]. The volume fraction is f1 = f2 = 0.5. The dielectric constant of PVA is
8. Table 1 presents the permittivity of the LC (according to the producers’ data sheet [25])



Molecules 2021, 26, 1441 10 of 12

and the LC used for the calculation of the effective permittivity to test the Maxwell Gar-
nett (Equation (10)) and Bruggeman (Equation (14)) models. The effective permittivity of
the PDLC film is calculated considering the LC permittivity, each of the corresponding
values for ε⊥, ε I I and εLC,random. The dielectric constant of the PDLC film was measured
in [25], in the “rest” states (corresponding to ε⊥), zero electric field permittivity, and in the
field-aligned states (corresponding to ε I I) high electric field permittivity.

Table 1. Comparative presentation of calculated PDLC film permittivity using Maxwell Garnett (Equation (10)) and
Bruggeman (Equation (14)) formulas, and experimental results [25]; the field permittivity measured at low electric field
corresponds to ε⊥ of the LC and at high electric field to the ε I I of the LC (LC aligned in the direction of the field).

Nematic Liquid
Crystal LC Permittivity

Calculated Film
Permittivity Maxwell

Garnett 1, Equation (9)

Calculated Film
Permittivity Bruggeman 1,

Equation (13)

Measured Film
Permittivity [25]

E7
ε⊥ 5.2 6.5 6.5 6.7
ε I I 19.0 12.5 12.7 14.5

εLC,random 9.8 8.9 8.8 -

ZLI 1840
ε⊥ 4.3 6.0 5.9 5.7
ε I I 16.2 11.5 11.6 12.6

εLC,random 8.3 8.2 8.2 -
1 The calculated values are rounded in accordance with LC permittivity values.

The relative deviation of the calculated permittivity values is small. The calculated
values in these particular cases show that the two models are correct, in agreement with
the experiment, and with the ones calculated in [25] and suitable for the calculation of
the composites’ permittivity [24,25]. The methods can be used to calculate the effective
permittivity of a LC composite. If a series of LC composites are studied, measurements
can be done only on some particular ones and the other can be calculated. In the case of a
composite in which one of the phases has an unknown permittivity, this can be obtained
by measuring the permittivity of the composite and using one of the models presented.
The effective permittivity is necessary in the design of the electrical circuits where these
opto-electronic materials are applied.

5. Conclusions

LC composites have a great importance in applications and are the subject of numerous
theoretical studies. Knowing their permittivity helps us to calculate the electric field at
which the reorientation effects of LC molecules occur, which gives rise to the desired
electro-optical effects.

Unlike other models of permittivity calculation (volumetric models—linear or log-
arithmic [18,26]), MG and Bruggeman models have a theoretical basis, by virtue of their
derivation from electrical principles.

PDLC being composites containing LC droplets in polymer form and a biphasic
system for which the MG and Bruggeman mixing models can be used. This paper applies,
develops, and compares the two models by mixing the permittivity of the constituents to
obtain the effective permittivity of the material. NP doping of LCs and PDLC films is a
current research topic of great interest. The MG and Bruggeman models were also applied
in case of NP doping of LCs.

To study NP-doped PDLCs, given the very low concentrations used in doping, we
used the MG model to obtain two biphasic media, one consisting of NP in LC and the other
of NP in polymer. The three-phase polymer-NP-LC medium was treated by the Bruggeman
method, considering the effective permittivity obtained for the NP-LC medium and the
permittivity of the NP-polymer medium.

Numerical simulations were performed in high frequency mode, in typical intervals
of variation of the permittivity of the constituents.
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For the PDLC system, the effective permittivity was obtained and the differences
between the two models were discussed. The results are in agreement with the experi-
ments [25]. The modulus of the difference between the Maxwell Garnet effective permittivity
and the Bruggeman one increases with the LC fraction, at constant constituents’ permittivity.

In the case of NPs-doped LCs, the difference between the two methods is modest at
low NP concentrations (0.0001–0.001), increasing in importance at higher values. If the
NP permittivity is equal to that of the LC host, the volume fraction does not influence the
calculated effective permittivity.

Using MG and Bruggeman models, the effective permittivity of the NPs-doped PDLCs
was simulated, obtaining information on its dependency on NPs permittivity and vol-
ume fractions.

The developed method can be applied for the calculation of the effective permittiv-
ity in the case of composites of LCs with quasi-spherical NPs such as titanium dioxide
and zinc oxide. In the case of a composite in which one of the phases has an unknown
permittivity, the models can be applied to extract it from the measured composite permit-
tivity. The method also retains a general character and can be applied to other similar
multiphase composites.

Funding: The APC for this paper was funded by University “Politehnica” of Bucharest. This research
was partly funded by the Romanian Governmental Representative at JINR Dubna through scientific
project RO-JINR Theme 04-4-1122-2015/2020, No. 58 in Order IUCN no. 269/20.05.2020 and Theme
04-4-1141-2020/2022.

Conflicts of Interest: The author declares no conflict of interest.

Sample Availability: Not available.

References
1. Drzaic, P.S.; Scheffer, T.J. Liquid Crystal Dispersions; Word Scientific: Singapore, 1995.
2. Manaila-Maximean, D.; Danila, O.; Almeida, P.L.; Ganea, C.P. Electrical properties of a liquid crystal dispersed in an electrospun

cellulose acetate network. Beilstein J. Nanotechnol. 2018, 9, 155–163. [CrossRef] [PubMed]
3. Maximean, D.M.; Danila, O.; Ganea, C.P.; Almeida, P.L. Filling in the voids of electrospun hydroxypropyl cellulose network:

Dielectric investigations. Eur. Phys. J. Plus 2018, 133, 159. [CrossRef]
4. Rosu, C.; Mănăilă-Maximean, D.; Godinho, M.H.; Almeida, P.L. Thermally stimulated depolarization currents and optical

transmissionon liquid crystal/cellulose derivative composite devices. Mol. Cryst. Liq. Cryst. 2003, 391, 1–11. [CrossRef]
5. Chang, S.J.; Lin, C.M.; Fuh, A.Y.G. Studies of polymer ball type polymer dispersed liquid crystal films. Liq. Cryst. 1996, 21, 19–23.

[CrossRef]
6. Mănăilă-Maximean, D.; Cîrcu, V.; Ganea, P.; Bărar, A.; Danila, O.; Staicu, T.; Loiko, V.A.; Konkolovich, A.V.; Miskevich, A.A.

Polymer dispersed liquid crystals films doped with carbon nanotubes: Preparation methods. In Advanced Topics in Optoelectronics,
Microelectronics, and Nanotechnologies IX, Constanta, Romania, 23–26 August 2018; International Society for Optics and Photonics:
Bellingham, WA, USA, 2018; Volume 10977, p. 1097702. [CrossRef]

7. Wu, B.-G.; Erdmann, J.H.; Doane, J.W. Response times and voltages for PDLC light shutters. Liq. Cryst. 1989, 5, 1453–1465.
[CrossRef]

8. Garnett, J.M., XII. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. 1904, 203, 385–420. [CrossRef]
9. Bruggeman, D.A.G. Calculation of different physical constants of heterogen substances I Dielectric constants and conductibility

of mixtures from isotrop substances. Ann. Phys. 1935, 24, 665–679. [CrossRef]
10. Polder, D.; van Santeen, J. The effective permeability of mixtures of solids. Physica 1946, 12, 257–271. [CrossRef]
11. Ganea, C.P.; Cîrcu, V.; Manaila-Maximean, D. Effect of titanium oxide nanoparticles on the dielectric properties and ionic

conductivity of a new smectic bis-imidazolium salt with dodecyl sulfate anion and cyanobiphenyl mesogenic groups. J. Mol. Liq.
2020, 317, 113939. [CrossRef]

12. Ganea, C.P.; Manaila-Maximean, D.; Cîrcu, V. Dielectric investigations on carbon nanotubes doped polymer dispersed liquid
crystal films. Eur. Phys. J. Plus 2020, 135, 1–14. [CrossRef]

13. Dănilă, O. Spectroscopic assessment of a simple hybrid si-Au cell metasurface-based sensor in the mid-infrared domain. J. Quant.
Spectrosc. Radiat. Transf. 2020, 254, 107209. [CrossRef]

14. Loiko, V.; Konkolovich, A.; Miskevich, A.; Manaila-Maximean, D.; Danila, O.; Cîrcu, V.; Bărar, A. Optical model to describe
coherent transmittance of polymer dispersed liquid crystal film doped with carbon nanotubes. J. Quant. Spectrosc. Radiat. Transf.
2020, 245, 106892. [CrossRef]

15. Cai, W.; Shalaev, V. Optical Metamaterials; Springer: New York, NY, USA, 2010; Volume 10, p. 40. [CrossRef]

http://doi.org/10.3762/bjnano.9.18
http://www.ncbi.nlm.nih.gov/pubmed/29441261
http://doi.org/10.1140/epjp/i2018-11997-8
http://doi.org/10.1080/10587250216170
http://doi.org/10.1080/02678299608033791
http://doi.org/10.1117/12.2326186
http://doi.org/10.1080/02678298908027783
http://doi.org/10.1098/rsta.1904.0024
http://doi.org/10.1002/andp.19354160802
http://doi.org/10.1016/S0031-8914(46)80066-1
http://doi.org/10.1016/j.molliq.2020.113939
http://doi.org/10.1140/epjp/s13360-020-00795-w
http://doi.org/10.1016/j.jqsrt.2020.107209
http://doi.org/10.1016/j.jqsrt.2020.106892
http://doi.org/10.1007/978-1-4419-1151-3


Molecules 2021, 26, 1441 12 of 12

16. Blinov, L.M. Structure and Properties of Liquid Crystals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010;
Volume 123.

17. De Gennes, P. The Physics of Liquid Crystals; Oxford University Press: Oxford, UK, 1974.
18. Vaz, N.A.; Montgomery, J.G.P. Electrical properties of polymer-dispersed liquid crystal films. In Liquid Crystal Materials, Devices,

and Applications, Proceedings of the SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, San Jose, CA, USA, 9–14
February 1992; International Society for Optics and Photonics: Bellingham, WA, USA, 1992; Volume 1665, pp. 64–79. [CrossRef]

19. Wypych, A.; Bobowska, I.; Tracz, M.; Opasinska, A.; Kadlubowski, S.; Krzywania-Kaliszewska, A.; Grobelny, J.; Wojciechowski, P.
Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J. Nanomater. 2014, 2014,
1–9. [CrossRef]
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