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Abstract: In this work, the advantages of applying the temperature and pressure replica-exchange
method to investigate the phase transitions and the hysteresis for liquid-crystal fluids were demon-
strated. In applying this method to the commonly used Hess–Su liquid-crystal model, heat capacity
peaks and points of phase co-existence were observed. The absence of a smectic phase at higher
densities and a narrow range of the nematic phase were reported. The identity of the crystalline
phase of this system was found to a hexagonal close-packed solid. Since the nematic-solid phase
transition is strongly first order, care must be taken when using this model not to inadvertently
simulate meta-stable nematic states at higher densities. In further analysis, the Weighted Histogram
Analysis Method was applied to verify the precise locations of the phase transition points.

Keywords: Monte Carlo; replica exchange; liquid crystal

1. Introduction

Despite the significant impact that liquid crystals have had in the development of
portable display devices, there remains much that is incomplete in our understanding
of their complex phase behavior. The precise prediction of phase transition points is a
challenging task when using molecular simulations. This is due to the fact that simula-
tion trajectories may often become trapped in local minima rather than their most stable
phase [1].

When simulating liquid crystals, it is desirable to be able to capture the essential
molecular properties that give rise to the multitude of different phases that are observed
experimentally. The most common of these are the isotropic, nematic, and smectic phases.
The isotropic phase is characterised by both random positioning and orientation. With
decreasing temperature and increasing pressure, molecules gain orientational order [2].
This is the so-called nematic phase. At yet higher densities, the smectic phases result in
layered structures which also possess some positional ordering [3].

There are several well-established molecular models which have seen widespread use
in simulation studies of liquid crystals. For example, in molecular dynamics simulations
of systems of particles interacting via the Gay–Berne potential, all of the aforementioned
phases may be observed [4]. With the hard spherocylinder model, Frenkel discovered
that the system can exist in both nematic and smectic phases [5]. Hard ellipsoids, on the
other hand, cannot form stable smectic phases [6]. The latter point aptly demonstrates the
importance of selecting an appropriate molecular model if one wishes to study the phase
behaviour of a specific liquid crystal.

In addition to the previously discussed liquid-crystal molecular models, the Hess–Su
model is a more recent development [7]. It represents the interactions between slightly
elongated molecules and has some unique features that make it particularly attractive
for both simulators and theoreticians. The model has a pair interaction potential that
is a modification of the standard Lennard–Jones model. The attractive term has an ad-
ditional anisotropic contribution from the intermolecular pair interaction, which varies
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according to the relative positions and orientations of the molecules. With the Hess–Su
model, the computational costs are generally lower than they are with other models and
it is relatively straightforward to implement in both simulations and theories [8,9]. In
simulations, this model exhibits isotropic and nematic liquid-crystal phases as well as
crystalline solids, but the phase transition points are, as yet, not precisely known.

Greschek and Schoen [10] looked at surface prewetting for various orientationally
dependent surface interaction types, each of which resulted in different molecule surface-
anchoring behaviour. Their main findings were that the enhancement of orientational
ordering at the surface leads to surface wetting with the formation of thick surface layers.
In similar work with slit-pore systems, it was found that variations in surface interactions
may cause shifts in the phase transition points [11]. Similarly, Melle et al. [12] looked at the
surface interactions around spherical patchy colloids and found novel defect topologies. In
a closely related study, Steiger et al. [13] performed a similar analysis with Janus colloids.

For liquid-crystal phases, which exhibit wide variation in their positional and orien-
tational properties, there are often significant density differences at the phase transition
points. This difference is often the cause of hysteresis in simulation results. For exam-
ple, hysteresis has been observed for many commonly used molecular models, including
Gay–Berne [14,15], hard ellipsoids [6], spin crossover materials [16], and square-well and
soft-repulsive spherocylinders [17].

In the Monte Carlo (MC) simulation studies of Steuer et al. [18,19], strong hystere-
sis at the nematic–isotropic and nematic–solid phase transitions were observed in both
approaches of incrementally increasing and decreasing the pressure. The extent of this
hysteresis was particularly noticeable between the nematic and solid phases, with transi-
tions found to occur at reduced pressures of 7.4 from the nematic to solid phases, while
the opposite phase transition from solid to nematic required a pressure as low as 1.5 [19].
This pressure is actually low enough to subsequently transition to an isotropic phase,
effectively bypassing the nematic phase. The authors considered that this large discrepancy
was due to the strongly first-order nematic–solid phase transition, as well as finite size
effects and practical simulation time limitations. It is worth noting that the error bars in
the work of Steuer et al. are greater than would be expected for equilibrium systems with
N = 1000 particles. This leads us to believe that the presented results may not have been
run for a sufficient number of MC cycles. In their work, simulations were limited by the
computers available at the time and were performed over 10,000 MC cycles.

Fortunately, there are methods available to efficiently sample the low-energy (high den-
sity) regions in molecular simulations. One example is the isothermal-isobaric replica-
exchange method proposed by Okabe et al. [20]. They demonstrated the effectiveness of
this approach for systems of Lennard–Jones particles using isothermal-isobaric replica-
exchange MC simulations (REMC). The potential energy was able to reach the low-energy
region in the crystal phase, whereas in conventional MC simulations the energy remained
high for those states.

This method is widely applicable and has been used for a diverse range of sys-
tem types, such as hard spherocylinders [21], small mercury clusters [22], Glutamine
Amides [23], and water confined within nanotubes [24]. The isothermal-isobaric replica-
exchange algorithm inhibits kinetic trapping problems and, as such, can be used to greatly
reduce or even eliminate hysteresis.

There are also significant speed increases to be gained when using this method.
For example, in the constant NVT MD simulations of soft-core Gay–Berne molecules
performed by Berardi et al. [25], equilibrium states were attained approximately 20% faster
when compared to standard MD simulations.

In the implementation of this replica-exchange method, non-interacting replicas are
prepared, each with a different set of temperatures and pressures. All the replicas are
simulated independently and at the same time, with attempts made to exchange replicas
of different pressures and temperatures at set intervals. Eventually, multiple canonical
distributions equivalent to the number of replicas are obtained.
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Whereas local minima trapping, problems are often seen in the results produced
by conventional methods; in the replica-exchange method, where replicas may have
various pressure and temperature values, structural fluctuations are larger. This allows
the system to find the veridical minimum free-energy condition. It should be noted that
two replicas can be switched only when their energy histograms overlap each other. Thus,
many replicas are necessary near the phase transition regions. This is especially true for
first-order phase transitions.

One tool that is particularly useful in the analysis of phase transitions is the Weighted
Histogram Analysis Method (WHAM) [26]. This provides free-energy estimates with
minimal statistical errors. It can also be used to calculate free-energy differences between
phases at points where their probability distributions overlap.

The original WHAM method, as proposed by Kumar and co-workers [26], is an
extension of prior work by Ferrenberg and Swendsen [27,28]. This method has been
extensively used for the study of phase transitions and has seen use with systems of
Lennard-Jones molecules [29], Cylinder Amyloids [30], lattice polymers [31] and various
Mie-potential molecular models [32]. As such it is suitable for analysis of first-order phase
transitions and the results produced using replica-exchange MC.

With the aforementioned points in mind, our objective in this study is to investigate
the phase transitions of a rod-like Hess–Su liquid-crystal fluid. To this end, we shall
employ the replica-exchange MC method, the results of which we shall compare with
those obtained using the conventional MC method. Further to this, the WHAM will be an
essential component of our analysis as it will allow us to visualize the free-energy surfaces
for each temperature and pressure.

The following sections of this paper are arranged as follows: in Section 2, we give
details of the molecular model used, the replica-exchange method, methods for calculating
the heat capacity and bond order parameters, the weighted histogram analysis method,
and the simulation conditions used in this work; Section 3 contains the results from these
numerical simulations; concluding remarks are made in Section 4.

2. Method
2.1. Hess–Su Model

In this work, we perform MC simulations in the isobaric-isothermal ensemble (NPT),
following the method used by Cuetos et al. [17]. The uniaxial and anisotropic liquid-
crystal molecules simulated here are represented by the model of Hess–Su, as implemented
by Steuer et al. [18]. The interaction energy between a pair of two such molecules is
described by:

Φ(r, u1, u2) = 4ε

[(σ

r

)12
−
(σ

r

)6
{1 + Ψ(r̂, u1, u2)}

]
, (1)

where ε and σ are the usual Lennard–Jones dispersion and distance parameters, respectively,
with σ being used as our unit of distance throughout this paper. r̂ is the unit vector of r,
the center to center vector between each molecule: r = r2 − r1. The longest axes of the
two molecules in the interacting pair are denoted by the orientation vectors u1 and u2.
The anisotropy coefficients are ε1 and ε2, which define the effective shape of this molecular
model. Specifically, the molecule behaves in a disk-like manner when ε2 is positive and is
rod-like when ε2 is negative. Finally, the attractive term is written as:

Ψ(r̂, u1, u2) = 5ε1P2(u1 · u2) + 5ε2[P2(u1 · r̂) + P2(u2 · r̂)] , (2)

where P2(x) = (3x2 − 1)/2, which is the second Legendre Polynomial.

2.2. Simulation Conditions

Following the work of Steuer et al. [18,19], the anisotropy coefficients are chosen to be
ε1 = 0.04 and ε2 = −0.08 and the cut-off distance is set to rc = 3.0σ. Temperature, pressure,
energy, internal energy, volume, and number density are expressed as non-dimensional
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values [33], where T∗ = kBT/ε, P∗ = Pσ3/ε, E∗ = E/ε, U∗ = U/ε, V∗ = V/σ3 and
ρ∗ = N/V∗.

As our primary interest in this study is to examine the isotropic-nematic and nematic-
solid phase transitions, it is essential that we be able to efficiently simulate high-density
phases. This rules out using the Grand Canonical ensemble, as particle insertion methods
are notoriously inefficient at high densities. Instead, the natural choice here is to perform
our simulations in the isobaric-isothermal, constant NPT, ensemble. We choose to perform
the simulations in this work with the smallest possible system size, given our choice of
rc = 3.0σ and the densities required to simulate nematic and solid phases. This permits
us to simulate systems with N = 256 molecules. The reasoning behind having such a
low number of molecules is because replica-exchange transition probabilities are higher
for larger systems.

2.3. Replica-Exchange Method

The implementation of the replica-exchange method used in this work is that of Okabe
and co-workers [20]. We chose this method because it allows us to simulate individual
systems in the constant isobaric-isothermal ensemble while permitting temperature and
pressure exchanges to occur between systems at regular intervals of 7000 to 8000 MC cycles.

These exchanges are attempted between systems of adjacent temperatures and pres-
sures with acceptance probabilities between systems m and n given by:

W
(
X, βm, P∗m|X′, βn, P∗n

)
=

{
1 for ∆ ≤ 0
exp(−∆) for ∆ > 0 ,

(3)

where ∆ is defined as:

∆ = (βm − βn)(U∗n −U∗m) + (βmP∗m − βnP∗n )(V
∗
n −V∗m) . (4)

Here, β(m,n), V∗(m,n), P∗(m,n), and U∗(m,n) correspond to the inverse temperature, volume,
pressure, and internal energy of the mth and nth replicas, respectively. In this paper, we
prepare 572 replicas of the 256-particle system with pressures of P∗ = 0.1 to P∗ = 7.2
at intervals of P∗ = 0.1 and temperatures of T∗ = 0.98 to T∗ = 1.05 at intervals of
T∗ = 0.01. The initial systems are all low-density isotropic states with near-zero nematic-
order parameters. The replicas are exchanged in accordance with the Metropolis criterion
written above in Equation (3).

We impose a restriction on our use of this equation such that attempted exchange
moves are made between systems of equal temperature or of equal pressures, but never
both at the same time. This was done in part to simplify the implementation of the
replica-exchange method and because a more complicated exchange branch for both
different temperatures and different pressures in a single exchange move would not yield
appreciably different results.

Equilibrium states were obtained after 100,000,000 MC cycles, taking care to run for
longer than the 10,000 cycles used in the prior study of Steuer et al. 2004 [19]. The results
of these simulations are presented in the section that follows. We refer to these equilibrium
states as the upward branch. In the second stage of this work, we perform identical
simulations to those described above, differing only in that the initial system used for all
replicas is a high-density solid state taken from the final configuration at T∗ = 0.98 and
P∗ = 7.2. The results from these simulations will comprise the downward branch of our
study of the hysteresis of this system.

In order to validate our simulation approach compared to conventional methods,
we concurrently simulated the above two branches using the traditional MC method,
without replica exchanges. This will allow a clear comparison between the two methods
and demonstrate the advantages of the replica-exchange method.
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2.4. Heat Capacity

One of benefits of recording the instantaneous energies and densities in our simula-
tions is that it allows us to straightforwardly calculate the dimensionless molar heat capacity
c∗p. This is obtained using a similar relation to that previously used by Kronome et al. [34]
for a Lennard-Jones based system:

c∗p = N
< h∗2 > − < h∗ >2

T∗2
, (5)

where the non-dimensional molar enthalpy is given by h∗ = (E∗ + P∗V∗)/N.
The results from this analysis and the preceding simulation are presented in the

following section.

2.5. WHAM

In the analysis of our simulation results, it is helpful to make use of the WHAM.
This will aid us in identifying the precise locations of the phase transition points. To do
this we require the density of states n(U∗, V∗). This can be obtained using the method of
Okumura et al. [29,35].

The molar free-energy surface g∗ can then be obtained as:

g∗ = − ln
(

c0n(U∗, V∗)exp
(

U∗

N
+

P∗

ρ∗

))
, (6)

where c0 is a normalisation constant [36] which does not affect the relative value of g∗.
In this work we set it to unity.

2.6. Bond Order Parameters

In this study, because we are also going to examine the high-density region of the
phase diagram it is useful to characterise the type of solid phase that may be present.
Here we use the order parameter developed by Halperin and Nelson [37]. Bond-order
parameters are often used to distinguish between liquid and possible solid structures.
This function is defined as:

Bν =
1

νN

∥∥∥∥∥ N

∑
j=1

ν

∑
k=1

exp(iνφjk)

∥∥∥∥∥, (7)

where φjk is the angle between the bond which connects particle j and k and a fixed reference
frame. A bond is a straight line which links the centres of mass of two neighboring particles.
N is the number of particles in the system. ν is the number of nearest-neighbor bonds.

When examining liquid–solid transitions, ν = 4 and ν = 6 are most commonly chosen
as they are useful to identify BCC (body-centered cubic), FCC (face-centered cubic) and
HCP (hexagonal close-packed) structures.

3. Results
3.1. Conventional MC

To validate our simulation set up and set a baseline from which to measure the precise
phase transition points in this system, we first perform a series of conventional constant
NPT MC simulations. These are identical in all respects to the replica-exchange method, as
described in the previous section, apart from one point which is that we do not attempt to
perform replica-exchange moves at any stage during the simulation.

For these simulations, two branches of the phase diagram as investigated so as to
measure the degree of hysteresis in this system. The first stage required us to start from a
low-density isotropic phase with gradually increasing pressure at a fixed temperature of
T∗ = 1.0. After we obtain a high-density equilibrium state at P∗ = 5.7, this is used as the
initial configuration for the downward branch, as described in the previous section.
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The results obtained from these simulations were taken as the average values of
density and nematic order over the final 20,000,000 MC cycles from simulations run over a
total of 200,000,000 MC cycles from their initial systems. Each simulation was performed
using a single CPU core from a conventional Intel Xeon processor. Nematic order S2 is
calculated using the standard second Legendre polynomial function. A plot of results is
given in Figure 1.
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Figure 1. Plots of nematic order S2 (top) and number density ρ∗ (bottom) versus pressure P∗ for
upward and downward branches using conventional MC at T∗ = 1.0.

It is apparent that for the downward branch that the transition from solid to nematic
phases occurs inconsistently with pressure. For example, we see a nematic phase for
P∗ = 1.9 but the point at P∗ = 1.8 remains in the solid phase. It should be expected that
after a large number of cycles this point would eventually also transition to the nematic
phase. However, this is a stochastic process and we have no sure way of knowing when
this might occur. In addition, for the upward branch, the equilibrium densities are not
uniform at higher pressures. It is likely that some of these states are trapped in a metastable
solid phase. These situations clearly demonstrate the limitations of the conventional
MC approach.

3.2. Replica-Exchange MC

Moving on to the replica-exchange method, these simulations were performed over
100,000,000 MC cycles. These are half as many as our conventional MC simulations. Here,
we used a supercomputer with 576 cores at a rate of approximately 8,000,000 MC cycles
per day. Results from both the upward and downward branches of our replica-exchange
MC simulations for all temperature and pressure intervals studied are shown in Figure 2.
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Figure 2. Plots of nematic order S2 versus pressure P∗ for upward (top) and downward (bottom)
branches using replica-exchange MC at temperatures (T∗) as indicated by the legend.

In order to compare more directly with our previous conventional MC results, in Figure 3
we present a plot of the density and nematic ordering for T∗ = 1.0 only.
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Figure 3. Plots of nematic order S2 (top) and number density ρ∗ (bottom) versus pressure P∗ for
upward and downward branches using replica-exchange MC at T∗ = 1.0.

Clearly, our results show that, when compared to conventional MC simulations,
for half the number of cycles the replica-exchange method is able to predict consistent
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solid-nematic phase transition points and has uniform density for the solid phases at
higher pressures.

It is evident from the plots of nematic order and density for this system that at
T∗ = 1.0 and P∗ = 3.7 there is a transition from the nematic phase to another more ordered,
higher density, solid phase. We present our nematic phase as shown in Figure 4. Typically
for liquid-crystals fluids, this would be the smectic-A phase. However, upon closer inspec-
tion, we see that for the Hess–Su model studied here this phase transition instead goes
directly to a crystalline solid phase, as shown in Figure 5.

Figure 4. Snapshot of a nematic phase at T∗ = 1.0 and P∗ = 3.0 from three different angles.

Figure 5. Snapshot of a solid phase at T∗ = 1.0 and P∗ = 7.0 from three different angles. To help with
the visualisation of the structure of this phase, all molecules have been rendered as small spherically
symmetric spheres.

This behaviour was also reported in a prior simulation study by Steuer et al. [18],
who observed that for ε1 = 0.04 and ε2 = −0.08 there is no stable smectic phase. It was
conjectured, however, that different parameter values may yield stable smectic phases and
this would be an interesting subject for possible future research in this area.

3.3. Heat Capacity

To examine the phase transitions, we look for peaks in the heat capacity profiles. These
are calculated using Equation (5). Profiles from the simulations performed in this work
are presented in Figure 6. For the replica-exchange method, it is evident that there are
two-phase transition points: a broad peak and another much sharper peak. These corre-
spond to a second-order isotropic-nematic phase transition and a first-order nematic-solid
phase transition, respectively. In all cases, the upward and downward branches give an
isotropic-nematic phase transition point at P∗ = 1.3 for a temperature of T∗ = 1.0. It is
expected that both methods would give the same result here as second-order transitions
are not normally problematic for conventional MC. However, the location of the nematic-
solid phase transition point varies according to the method used and if the simulation
was performed on the upward or downward branches. In our case, it was found that
neither branch of the conventional MC simulations produced peaks for the nematic-solid
transitions. However, the replica-exchange method gives a pressure of P∗ = 3.7 for the
upward branch. Likewise, for the downward branch the replica-exchange method gives
the transition at P∗ = 1.8.
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Figure 6. Plots of heat capacity cp
∗ versus pressure P∗ for upward (top) and downward (bottom)

branches using conventional MC and replica-exchange MC at T∗ = 1.0.

Next, we plot the heat capacity peaks for both our replica-exchange MC simulations,
as shown in Figure 7. This clearly shows the phase behaviour of the Hess–Su model
for temperatures close to T∗ = 1.0. It also demonstrates the extent of the hysteresis in
this system.
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Figure 7. Cont.
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Figure 7. Phase diagram plots for phase transition lines predicted from replica-exchange MC for the
upward (top) and downward (bottom) branches.

3.4. Overlapping Energy Distributions

The replica-exchange method works due to the increased probability of phase transi-
tions occurring during the simulations. This is due to overlapping free-energy distributions
at particular temperatures and pressures for the different phases. An example of this from
our simulations may be found in Figure 8. Note that it is important to select temperature
and pressure intervals such that these histograms overlap.
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Figure 8. Replica-exchange energy histograms for the upward branch.
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3.5. WHAM Landscape Pathways

Taking this analysis further, we make a detailed examination of the phase transition
points using the WHAM approach. In Figure 9 we show the free-energy landscape of the
nematic to solid phase transition in our replica-exchange simulations. This method serves
to highlight the locations of the phase transitions points from our simulations. These are
the locations where we observed phase coexistence, which is characterised by the presence
of double minima in the free-energy landscapes.

-2000 
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Figure 9. Plots of the free-energy surfaces for the nematic-solid phase transition for the upward (top)
and downward (bottom) branches using replica-exchange MC at T∗ = 1.0.
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3.6. Bond-Order Parameters

We compare the local bond order parameters, B4 and B6, of the different phases
simulated in this work. These results are presented in Figure 10. It is clear that there
is no appreciable increase in B4 from the isotropic to the solid phase. However, we see
a pronounced jump in B6, which corresponds to an HCP structure. This identification
of an HCP structure is in an agreement with the system snapshots observed in Figure 5,
from which we were able to observe hexagonal ordering in multiple axes or orientation.
Despite extensive investigation, no FCC order was observed in any of the phases from
our simulations.

 0
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 0.8

 1

0.10 0.15 0.20 0.25 0.30 0.35 0.40

B
6

B
4

Isotropic
Nematic

Solid
FCC
HCP

Figure 10. A plot of B4 versus B6 for the Hess–Su liquid-crystal model studied in this work using
the upward branch of the replica-exchange method simulations. The phase of each point is denoted
in the legend. For comparison, data points for perfect FCC and HCP crystals are also included.

4. Conclusions

In this paper, we have performed temperature and pressure replica-exchange MC
simulations of a simple model liquid-crystal fluid. In agreement with prior work by
Steuer et al. [18], we report a second-order isotropic-nematic phase transition and the
complete absence of a stable smectic phase for the range of temperatures and pressures
investigated. Instead, we found a direct nematic to solid phase transition which is strongly
first order. Importantly, we found the nematic phase is stable only over a narrow range
of densities. For example, any nematic state at T∗ = 1.0 with a number density above
ρ∗ = 0.98 is almost certainly meta-stable. Therefore, care must be taken when using this
potential at intermediate-to-high pressures. It should be noted of course that the presence of
stable phases and their phase transitions is heavily dependent on the particular molecular
characteristics selected for the study [38].

The results showed how the replica-exchange method enables us to explore a broad
range of phase space, which effectively samples the equilibrium, and provided an efficient
way of accessing wider free-energy regions. We have established that the replica-exchange
method can be used to find heat capacity peaks for the Hess–Su model of liquid crystals,
and obtained evidence that it can find points of phase co-existence. This approach is also
more computationally efficient for non-spherically symmetric molecules when compared
to the traditional MC method. This demonstrates that this algorithm is of great use for the
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study of complex materials, and it should be emphasized that it should play an integral
role in many future simulation studies.
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