Supporting information

Synthesis of MeON-Glycoside derivatives of oleanolic acid by neoglycosylation and evaluation of cytotoxicity against selected cancer cell lines

Zhichao Du 1,+, Guolong Li 2,+, Xiaoyang Zhou 1 and Jian Zhang 1,3,*

SUPPORTING INFORMATION CONTENTS

I. ¹ H NMR anomeric proton and HRMS characterization of C-3 or C-28	
MeON-neoglycosides of oleanolic acidS2	2

	1				<u></u>			
Entry	neoglycoside	α -anomeric H1		β -anom	α: β	HRMS(ESI)MS m/z		
		δ (ppm)	J(Hz)	δ (ppm)	J(Hz)	ratio	measured	calculated
4 a	D-glucose		4	.83-4.81 ^d		1 anomer	706.4525ª	706.4525
4b	L-glucose	not observed		4.84	8.7	Only β	706.4533ª	706.4525
4c	2-deoxy-D-glucose		4	4.81-4.79 ^d		1 anomer	690.4575 ^a	690.4576
4d	3-O-methyl-D-glucose		4	4.82-4.76 ^d		1 anomer	720.4678^{a}	720.4681
4 e	D-galactose	5.34	5.7	4.87-4.81°	n/d ^e	n/d	706.4520^{a}	706.4525
4f	2-deoxy-D-galactose	not observed		4.76	10.9	Only β	690.4581ª	690.4576
4g	D-mannose	4.93	1.7	4.70-4.67 ^c	n/d	n/d	706.4528^{a}	706.4525
4h	D-arabinose	5.33	5.4	not observed		Only α	676.4413ª	676.4419
4i	L-arabinose	5.32	5.4	4.64	9.0	1:1	676.4411ª	676.4419
4j	D-fucose	5.29	5.3	4.70	9.1	2:1	690.4585ª	690.4576
4k	L-fucose	5.31	5.3	4.72	9.0	2:1	688.4434 ^b	688.4430
4 1	D-xylose	not observed		4.70	8.4	Only β	676.4426 ^a	676.4419
4m	L-xylose	not observed		4.72	8.2	Only β	676.4430ª	676.4419
4n	L-lyxose	not observed		5.18	8.2	Only β	676.4417 ^a	676.4419
4 0	L-rhamnose	4.67	2.0	5.14-5.09°	n/d	n/d	690.4578^{a}	690.4576
4p	D-ribose	5.41	2.9	5.08	8.2	1:2	676.4423ª	676.4419
4 q	L-ribose	5.42	3.7	5.10	8.6	1:2	676.4413ª	676.4419
4r	2-deoxy-D-ribose	5.32	2.9	4.66-4.62°	n/d	n/d	658.4326 ^b	658.4324
8a	D-glucose	not observed		4.61	7.9	Only β	634.4676ª	634.4677

I. Table S1. ¹H NMR anomeric proton and HRMS characterization of C-3 or C-28 MeON-neoglycosides of oleanolic acid

8b	L-glucose	not observed		4.60	8.0	Only β	634.4673ª	634.4677
8c	2-deoxy-D-glucose	not observed		4.72	10.5	Only β	618.4730 ^a	618.4728
8d	3-O-methyl-D-glucose	not observed		4.63	8.9	Only β	648.4825 ^a	648.4834
8 e	D-galactose	4.67	2.8	5.11	6.2	4:1	634.4676 ^a	634.4677
8f	2-deoxy-D-galactose	5.36	6.5	4.68-4.63 ^c	n/d	n/d	618.4739 ^a	618.4728
8g	D-mannose	5.00	2.5	4.77-4.70 ^c	n/d	n/d	634.4672 ^a	634.4677
8h	D-arabinose	5.18	5.5	4.67-4.65°	n/d	n/d	604.4581 ^a	604.4572
8i	L-arabinose	5.18	5.9	4.63-4.59°	n/d	n/d	604.4576^{a}	604.4572
8j	D-fucose		2	4.55-4.51 ^d		1 anomer	618.4733 ^a	618.4728
8k	L-fucose	not observed		4.44	8.7	Only β	618.4732 ^a	618.4728
81	D-xylose	not observed		4.57	6.7	Only β	604.4572 ^a	604.4572
8m	L-xylose	not observed		4.55	8.7	Only β	604.4587^{a}	604.4572
8n	L-lyxose	5.88	3.5	4.77-4.75 ^c	n/d	n/d	604.4575^{a}	604.4572
80	L-rhamnose	4.69	2.9	5.28	6.1	4:1	618.4733 ^a	618.4728
8p	D-ribose	5.23	3.4	4.80-4.77 ^c	n/d	n/d	604.4580^{a}	604.4572
8q	L-ribose	5.20	3.1	4.81-4.78 ^c	n/d	n/d	604.4575^{a}	604.4572
8r	2-deoxy-D-ribose	5.30	3.3	4.70-4.65 ^c	n/d	n/d	588.4616 ^a	588.4623
1a	D-glucose	not observed		6.34	8.0	Only β	641.4029^{f}	641.4024
1b	D-glucose	not observed		4.92	7.7	Only β	$627.4231^{\rm f}$	627.4231

^a HRMS (ESI) m/z for [M+H]⁺, ^b HRMS (ESI) m/z for [M-H]⁻, ^c Anomeric proton obscured by another peak, ^d Single anomeric proton signal detected but obscured by another peak, ^eNot determined, ^f HRMS (ESI) m/z for [M+Na]⁺.

II. Figure S1 NMR spectra of neoaglycone and representative neoglycosides

The ¹H NMR spectrum of compound **3** (500 MHz, in C_5D_5N)

The ¹³C NMR spectrum of compound **3** (125 MHz, in C₅D₅N)

The HSQC spectrum of compound 3 (500 MHz, in C_5D_5N)

The ¹H NMR spectrum of compound 4a (500 MHz, in C₅D₅N)

The ¹³C NMR spectrum of compound **4a** (125 MHz, in C₅D₅N)

The HSQC spectrum of compound 4a (500 MHz, in C5D5N)

The ¹H NMR spectrum of compound 7 (500 MHz, in C₅D₅N)

The ¹³C NMR spectrum of compound 7 (125 MHz, in C₅D₅N)

The ¹H NMR spectrum of compound **8a** (500 MHz, in C₅D₅N)

The ¹³C NMR spectrum of compound **8a** (125 MHz, in C₅D₅N)

The ¹H NMR spectrum of compound **1a** (500 MHz, in C₅D₅N)

The ¹H NMR spectrum of compound **1b** (500 MHz, in C₅D₅N)