

SUPPORTING INFORMATION

NEW PHARMACEUTICAL SALTS OF TRAZODONE

Jolanta Jaśkowska ^{1,*}, Przemysław Zaręba ¹, Anna Drabczyk ¹, Agnieszka Kozak ², Izabela D. Madura ³, Zbigniew Majka ⁴ and Edyta Pindelska ^{2,*}

- ¹ Institute of Organic Chemistry and Technology, Faculty of Chemical and Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; przemyslaw.zareba@pk.edu.pl (P.Z.); anna.drabczyk@pk.edu.pl (A.D.).
- ² Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland; asokal@wum.edu.pl.
- ³ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; izabela@ch.pw.edu.pl.
- ⁴ Zbigniew Majka Consulting, ul Górczewska 200c /58, 01-460 Warszawa, Poland; zbig_majka@wp.pl.
- Correspondences: jolanta.jaskowska@pk.edu.pl (J.J.); edyta.pindelska@wum.edu.pl (E.P.); Tel.: +48-12-628-27-40 (J.J.); Tel.: +48-22-572-07-57 (E.P.)

Contents:

Page 2: Table S1. ¹³C CP/MAS NMR chemical shifts (ppm) of T:HCl and T:OHN.

Page 2: Figure S1. Comparison of experimental and theoretical chemical shifts of carbon-13 of **T:HCl**.

Page 3: Figure S2. Comparison of experimental and theoretical chemical shifts of carbon-13 of **T:OHN**.

Page 3: Figure S3. Experimental powder X-ray diffraction pattern for bulk **T:OHN** sample (upper chart) and simulated from single crystal data (lower chart).

Page 4: Table. S2. Geometry of main weak intermolecular interactions in **T:OHN** crystal.

Page 4: Table. S3. Geometry of main weak intermolecular interactions in **T:HCl** crystal.

Page 4: Figure S4. Weak interactions motives found in **T:OHN** (a) and **T:HCl** (b) crystals.

Page 5: Figure S5. Packing diagram for **T:OHN** crystal. View along [101] direction. Page 5: Figure S6. Packing diagram for **T:HCl** crystal. View along [010] direction.

Crown	Assignment	T:HCl ð [ppm]		T:OHN δ [ppm]		TallCl Source TrOUN Source [recent]
Group		EXP	CAL*	EXP	CAL*	1:HCI oexp - 1:OHN oexp [ppm]
С	1	148,37	146,19	149,02	147,56	-0,65
CH	2	121,62	118,35	118,18	117,39	3,44
CH	3	132,32	132,57	129,83	130,09	2,49
CH	4	108,63	111,25	107,76	109,85	0,87
CH	5	126,08	125,74	125,85	125,66	0,23
С	6	142,64	142,05	141,89	142,06	0,75
CH_2	7	48,26	44,6	46,35	42,25	1,91
CH_2	8	26,4	19,8	25,79	22,76	0,61
CH_2	9	56,54	50,87	53,75	50,35	2,79
CH_2	10	50,3	49,79	46,35	41,83	3,95
CH_2	11	48,26	41,62	44,16	40,02	4,1
CH_2	12	48,26	44,34	46,35	42	1,91
CH_2	13	50,3	46,14	52,66	49,09	-2,36
С	14	148,37	150,1	150,94	149,54	-2,57
CH	15	108,63	111,71	115,44	112,48	-6,81
CH	16	131,3	131,05	129,83	129,57	1,47
CH	17	121,24	116,77	118,18	117,38	3,06
С	18	142,64	142,01	141,89	139,97	0,75
CH	19	110,93	112,89	115,44	115,15	-4,51
С	20			112,15	110,25	
С	21			161,63	165,95	
С	22			161,63	165,95	
CH	23			127,91	126,62	
CH	24			124,07	125,53	
CH	25			127,91	128,98	
CH	26			129,83	130,38	
С	27			135,86	134,87	
CH	28			141,89	141,58	
CH	29			129,83	129,13	
С	30			173.97	175.35	

Table S1. ¹³C CP/MAS NMR chemical shifts (ppm) of T:HCl and T:OHN.

*CASTEP computed δ values have been obtained from all atoms positions optimization (the lattice parameters were fixed to their experimental values);.

Figure S1. Comparison of experimental and theoretical chemical shifts of carbon-13 of T:HCl.

Figure S2. Comparison of experimental and teoretical chemical shifts of carbon-13 of T:OHN.

Figure S3. Experimental powder X-ray diffraction pattern for bulk **T:OHN** sample (upper chart) and simulated from single crystal data (lower chart).

Caption	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N4–H4O5	1.72(2)	2.651(2)	169.4(18)
O4–H4BO3	1.50(3)	2.457(2)	159(3)
O5–H5A…O2 ⁱ	1.86	2.710(2)	177.1
O5–H5B…O3 ⁱⁱ	1.85	2.695(2)	176.8
C9–H9BO2 ⁱⁱ	2.49	3.351(2)	147
C10–H10AO1 ⁱⁱⁱ	2.44	3.166(3)	132
C10–H10A…Cg1a ^{iv}	2.91	3.327(2)	107
C11–H11BCg2a ^{iv}	2.73	3.645(2)	158
C12–H12AO4 ^v	2.48	3.405(2)	160
C13–H13AO2 ⁱⁱ	2.55	3.390(2)	146
C15–H15…O4 ^v	2.54	3.454(2)	169
C30–H30…O5 ⁱ	2.59	3.486(3)	161
$Cg(t6)Cg(1a)^{ii}$		4.184(2)	
Cg(PhCl)Cg(PhCl ^{iv})		4.766(2)	

Table S2. Geometry of main weak intermolecular interactions in T:OHN crystal.

Symmetry operations: [i] -x,1-y,1-z; [ii] 1/2-x,-1/2+y,3/2-z; [iii] -1/2+x,1/2-y,-1/2+z; [iv] 1-x,1-y,1-z; [v] 1-x,1-y,2-z. Ring codes: Cg1a, Cg2a – rings of the anion; Cg(t6) – six membered ring of the fused 9-membered ring (head); Cg(PhCl) – chlorophenyl ring.

Table S3. Geometry of main weak intermolecular interactions in T:HCl crystal.

Caption	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N4–H49Cl2	1.97	3.0418	173
C8–H31…Cl2 ⁱ	2.68	3.5870	140
C9–H50Cl2 ⁱⁱ	2.54	3.5833	157
C10–H40Cl2 ⁱⁱⁱ	2.69	3.7176	155
C11–H34O1 ⁱⁱⁱ	2.37	3.2058	132
C12–H35O1 ⁱ	2.50	3.2541	125
C13–H36Cl2 ⁱⁱ	2.63	3.6541	154
C19–H47O1 ⁱⁱⁱ	2.31	3.3964	173
$Cg(t5)Cg(t6)^{ii}$		4.6241	
Cg(PhCl)Cg(PhCl) ^{iv}		4.8828	

Symmetry operations: [i] [-x, 2-y,1-z]; [ii] x,3/2-y,-1/2+z; [iii] -x,-1/2+y,3/2-z; [iv] -1-x,1-y,1-z. Ring codes: Cg(t5), Cg(t6) – five- and six membered ring of the fused 9-membered ring (head); Cg(PhCl) – chlorophenyl ring.

Figure S4. Weak interactions motives found in T:OHN (a) and T:HCl (b) crystals.

Figure S5. Packing diagram for T:OHN crystal. View along [101] direction.

Figure S6. Packing diagram for T:HCl crystal. View along [010] direction.