Supplementary Information

Computational Design of Macrocyclic Binders of S100B(ββ): Novel Peptide Theranostics

Srinivasaraghavan Kannan^{1,*}, Pietro G. A. Aronica¹, Thanh Binh Nguyen¹, Jianguo Li^{1,2} and Chandra S. Verma^{1,3,4,*}

- 1 Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore; pietroa@bii.a-star.edu.sg (P.G.A.A.); nguyenbinhchem@gmail.com (T.B.N.); lijg@bii.a-star.edu.sg (J.L.)
- ² Singapore Eye Research Institute, Singapore 169856, Singapore
- ³ School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- ⁴ Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- * Correspondence: raghavk@bii.a-star.edu.sg (S.K.); chandra@bii.a-star.edu.sg (C.S.V.); Tel: +65-6478-8353 (S.K.); Fax: +65-6478-9048 (S.K.); Tel: +65-6478-8273 (C.S.V.); Fax: +65-6478-9048 (C.S.V.)

Figure S1: Structure of S100B($\beta\beta$) – peptide complexes. Structures of S100B($\beta\beta$) - (A) TRTK12_e, (C) RSK_PEP2, (E) RSK_L_e complexes are shown. The S100B($\beta\beta$) protein dimer is shown as electrostatic surface (red to blue colours represent electrostatic potentials ranging from -5 to +5 kcal/mol) with the two monomers coloured separately (grey, cyan). The bound peptide is shown as cartoon (green) and peptide – protein interacting residues and h-bond interactions are highlighted in sticks and dashed lines respectively. (B) NMR ensemble of S100B($\beta\beta$) – NDR peptide complexes, with the S100B($\beta\beta$) protein dimer coloured separately (grey, cyan) and the bound peptide is shown as cartoon with the alpha helix (green) and flexible region (magenta).

Figure S2: Root mean square deviation (RMSD) of the conformations (left) S100B(ββ) (right) and the bound peptides (red: NDR, green: RAGE, blue: RSK_PEP1, orange: RSK_PEP2, magenta: TRTK12) sampled during MD simulations.

Figure S3: Distribution of Root mean square deviation (RMSD) of (A) $S100B(\beta\beta)$ (B) and the bound peptides in alpha helix (continuous line) and extended conformation (dotted line) (orange: RSK_PEP2, magenta: TRTK12).

Figure S4: Per residue decomposition energetic analysis of the MD simulations of the S100B($\beta\beta$)– peptide complexes. Energetic contribution of each peptide residue to the binding energies of the S100B($\beta\beta$)– peptide complexes calculated with the MMGBSA using the conformations sampled during MD simulations.

Peptide		Sequence																	
		72	72	74	75	76	77	79	70	90	Q1	62	93	9/	95	96	97		% holicity
	Ac	<i>v</i>	/3 E	/4 T	5	г Г	<i></i>	70 D	15	<i>v</i>	D	02 T	D	1	6	1	с,	NLID	AC
	AC-	r v	5	Do	5	÷	1	D	1	v	CE	÷	n D	1	G	1			40
NDD CDED1 ANUTO	Ac-	v	2	DO	2	г 1//	1			v	55	÷	D	2	c	1	-	NUO	50
NDR_SPEP1_WOTZ	Ac-	~	7	DO	-	147	1	D	M	v	55	÷	D	· -	6	1		NUS	59
NDR_SPEPI_WUTS	AC-	N N	-	no	2		5	R D	1/11	N N	33	CE I	R	ŗ	DE	5			68
NUR_SPERS	AC-	N. V.	5	+	5	F	5	n D	L	ĸ	n D	33	n D	г г	ND DE	5	5		55
NUR_SPEPS_WUTZ	AC-	N	5	÷	5	W	-	ĸ	IVI NA	ĸ	ĸ	33	ĸ	r	RO DE	5	E 7	NHZ	57
NUK_SPEPS_WUTS	AC-	N	-	+	5	~	-	ĸ	<i>N</i> 1	ĸ	ĸ	33	ĸ	-	ĸ		E	NHZ	49
NUKS_PEP7	AC-	ĸ	5	÷	5	F	-	ĸ	L	ĸ	ĸ	+	ĸ	33	G		K5	NHZ	69
NDRS_PEP7_MUT2	AC-	ĸ	E .	-	E .	w	L	ĸ	M	ĸ	к	<u>_</u>	к	55	G	L	K5	NHZ	48
NDRS_PEP7_MUT5	AC-	ĸ	L	•	E	w	L	к	м	К	к	1	к	55	G	L	K5	NHZ	52
Peptide		Sequence																	
		697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712		% helicity
RSK_PEP1_WT	Ac-	Α	м	Α	Α	т	Y	S	Α	L	N	S	S	K	Ρ	т	Ρ	NH2	34
RSK PEP1 SPEP1	Ac-	А	м	Α	Α	т	S5	s	Α	L	S 5	s	s	к	Р	т	P	NH2	36
RSK PEP1 SPEP1 MUT3	Ac-	Α	м	Α	w	L	S 5	s	Α	м	S 5	s	s	к	Р	т	Р	NH2	31
RSK PEP1 SPEP1 MUT6	Ac-	A	L	0	W	L	S 5	s	A	м	S 5	S	T	ĸ	P	T	P	NH2	39
RSK PEP1 SPEP4	Ac-	Δ	M	Ā	Δ	т	Y	\$5	A	1	R5	s	s	S 5	P	Ť	P	NH2	37
RSK PEP1 SPEP4 MUT3	Ac-	Δ	M	A	w	i	Ŷ	\$5	A	M	R5	ŝ	s	\$5	P	Ť	P	NH2	16
RSK PEP1 SPEP4 MUT6	Δr-	Δ	1	0	w/	ī	Ý	\$5	Δ	м	R5	ŝ	Ŧ	\$5	P	Ť	P	NH2	10
RSK DED1 SDED6	Δr-	Â	M	Ā	Δ	Ť	ÿ	RR	Â	1	N	ŝ	ć	ĸ	\$5	÷	Þ	NH2	54
RSK DED1 SDED6 MIIT2	Ac-	Â	M	Â	ŵ	÷	ÿ	RS	Â	M	N	ŝ	ŝ	ĸ	55	÷	Þ	NH2	41
PSK DED1 SDED6 MUITE	Ac-	2	1	2	W/	,	ÿ	De	~		N	5	л Т	~	55	÷	D	NLI2	41
DEV DED1 SDED10	AL-	~	M	ч ,	A 1	- L T	v	no c	~	141	CE	5	6	~	33	÷	r D		42
NJK_FEFI_JFEFIU	AL-	~	IVI B.4	~		-	v	5	~	L.	33	5	5	r v	- 33	÷	r D		59
NSK_PEP1_SPEP10_IVIOIS	AL-	~	IVI 1	~	W	-	, r	5	~	191	33	5	э т	v	33	÷	r D		54
RSK_PEPI_SPEPIU_IVIUIO	AC-	A	L	ų	W	L +	, r	2	A	NN I	30	3		Ň	33	÷	r		30
KSK_PEP1_SPEP11	AC-	A	IVI	A	A		Y	5	A	L	N	55	2	ĸ	K5	÷.	r	NHZ	22
KSK_PEP1_SPEP11_MUT3	AC-	A	IVI	A	w	<u>,</u>	Y	5	A	M	N	55	5	ĸ	K5	<u>_</u>	r	NHZ	41
RSK_PEP1_SPEP11_MU16	Ac-	A	L	Q	w	L	Ŷ	S	A	м	N	55	'	ĸ	К5		۲	NHZ	43
Peptide									Seque	nce									
•									•										
		718	719	720	721	722	723	724	725	726	727	728	729	730	731				% helicity
RSK_PEP2_WT	Ac-	E	S	S	1	L	Α	Q	R	R	v	R	K	L	Ρ			NH2	52
RSK_PEP2_SPEP1	Ac-	S 5	S	S	R5	L	Α	Q	R	R	v	R	K	L	Ρ			NH2	31
RSK_PEP2_SPEP1_MUT	Ac-	S5	T	L	R5	L	F	Т	R	R	L	R	К	L	Р			NH2	35
RSK_PEP2_SPEP2	Ac-	S 5	s	s	1	S5	Α	Q	R	R	v	R	к	L	Р			NH2	34
RSK_PEP2_SPEP2_MUT	Ac-	S 5	T	L	1	S 5	F	Τ	R	R	L	R	к	L	Р			NH2	49
RSK PEP2 SPEP4	Ac-	Е	s	s	S 5	L	Α	R5	R	R	v	R	к	L	Р			NH2	34
RSK PEP2 SPEP4 MUT	Ac-	Е	T	L	S 5	L	F	R5	R	R	L	R	к	L	Р			NH2	19
RSK PEP2 SPEP5	Ac-	Ē	s	ŝ	Ĩ.	S 5	Å	0	R5	R	v	R	ĸ	Ē	P			NH2	26
RSK_PEP2_SPEP5_MUT	Ac-	E	T	Ĺ	i	S 5	F	T	R5	R	Ĺ	R	ĸ	Ē	P			NH2	33
Peptide								s	equer	nce									% helicity
			_	_	_	_		_	_										
T07813 W/7	A.,	1	2	3 T	4	5	6 D	7	8	9 v	10	11	12						20
ININIZ_WI	AC-	+	ri D	-	ĸ		0	VV	N	ĸ		L	5					NH2	20
ININIZ_SPEP1	AC-	1 -	ĸ	1 -	ĸ		55	w	N	K5		L	5					NH2	30
IKIKIZ_SPEP1_MUI1	AC-	-	ĸ	-	ĸ		55	w	N	К5	1	M	S					NH2	29
IKIK12_SPEP1_MUT3	Ac-	T	к	ľ	ĸ		S 5	W	N	R5	L	M	L					NH2	20
TRTK12_SPEP2	Ac-	T	R	1	ĸ		D	W	S5	ĸ	I	L	S5					NH2	34
TRTK12_SPEP2_MUT1	Ac-	T	R	1	ĸ		D	W	S5	ĸ	1	М	S 5					NH2	33
TRTK12_SPEP2_MUT2	Ac-	Ţ	R	T	ĸ		D	W	S5	к	L	М	S5					NH2	31
TRTK12_SPEP3	Ac-	т	R	т	К	I.	D	W	N	S 5	I.	L	R5					NH2	28
TRTK12_SPEP3_MUT1	Ac-	т	R	т	К	I.	D	W	N	S5	I.	М	R5					NH2	17
TRTK12_SPEP3_MUT2	Ac-	т	R	Т	K	1	D	W	N	S5	L	М	R5					NH2	28

Figure S5: Sequences of the designed stapled mutant peptides are shown here. Residues that are linked through all hydrocarbon linkers i,i+3, i,i+4 and i,i+7 are highlighted in red and the mutations are in italics. The helicity (percentage) of peptides when bound to $S100B(\beta\beta)$ are shown.