Humic Acid Extracts Leading to the Photochemical Bromination of Phenol in Aqueous Bromide Solutions: Influences of Aromatic Components, Polarity and Photochemical Activity

Hui Liu ^{1,*}, Yingying Pu ¹, Xiaojun Qiu ¹, Zhi Li ¹, Bing Sun ¹, Xiaomei Zhu ¹ and Kaiying Liu ²

- ¹ College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; py1120181596@dlmu.edu.cn (Y.P.); qiuxiaojun0103@dlmu.edu.cn (X.Q.); lizhi9471@dlmu.edu.cn (Z.L.); sunb88@dlmu.edu.cn (B.S.); zhuxm@dlmu.edu.cn (X.Z.)
- ² School of Science, Dalian Maritime University, Dalian 116026, China; kyliuxw@dlmu.edu.cn
- * Correspondence: liuhui@dlmu.edu.cn

Text S1

Detailed calculation of formation rate (R) and the quantum yields (Φ) of ³DOM^{*}, ¹O₂ and [•]OH and solution rates of light absorbance (R_{abs}) of the three HA fractions.

Probe compound stock solutions were prepared in Milli-Q water and spiked into water samples containing HA fractions. 2,4,6-Trimethylphenol (TMP), furfuryl alcohol (FFA), and terephthalic acid (TPA) were used to measure ³DOM^{*}, ¹O₂, and [•]OH, respectively. In the measurements of ³DOM^{*} and ¹O₂, methanol (0.1 M) was added to quench the photogeneration of [•]OH. In the determination of ³DOM^{*}, an initial concentration of 1 mM TMP was added into the sample. The solutions were sparged with N₂ to remove dissolved oxygen. The degradation rate constant of TMP (k_{TMP} , s⁻¹) was fitted by pseudo-first order kinetics. The initial transformation rate (M s⁻¹) of TMP was defined as $R_{TMP} = k_{TMP}$ [TMP]₀. The

formation rate of ${}^{3}\text{DOM}^{*}$ (R_{3} , M s⁻¹) could be obtained from Equation S1 [1,2].

$$R_{TMP} = R_{_{3}}{_{DOM^{*}}} \frac{k_{_{TMP},^{_{3}}DOM^{*}} [TMP]_{_{0}}}{k_{_{TMP},^{_{3}}DOM^{*}} [TMP]_{_{0}} + k_{_{d}}}$$
(S1)

where $k_{TMP,^3DOM^*}$ is the second-order rate constant between $^3DOM^*$ and TMP (~ $3.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$); k_d is the

physical quenching constant of ³DOM^{*} (~ 5.0 × 10⁴ s⁻¹) [2]. Addition of 1 mM of TMP in this study yielded a scavenging rate of approximately 3 × 10⁶ s⁻¹, at least 2 orders of magnitude greater than *k*_d. Thus, the value of $R_{3_{DOM^*}}$ is approximately equal to R_{TMP} . Linear plots to determine k_{TMP} are presented in Figure S2,a.

FFA (50 μ M initial concentration) was employed to measure the formation rate of ¹O₂ ($_{R_{1}o_2}$, $_{M}$ s⁻¹), which could be determined by the following Equations [1,2]:

$$k_{FFA} = k_{FFA, {}^{1}O_{2}} \frac{R_{{}^{1}O_{2}}}{k_{FFA, {}^{1}O_{2}} [FFA]_{0} + k_{{}^{1}O_{2}}}$$
(S2)

where k_{FFA} (s⁻¹) the pseudo-first order rate constant of FFA, $k_{FFA, 1O_2}$ is the second-order rate constant between $^{1}\text{O}_2$ and FFA (1.0 × 10⁸ M⁻¹ s⁻¹),[1] $k_{^{1}O_2}$ presents the physical quenching of $^{1}\text{O}_2$ by water (2.5 × 10⁵

s⁻¹). Linear plots to determine *k*_{FFA} are presented in Figure S2,b.

The formation rate of •OH (R•OH, M s⁻¹) were quantified by the addition of TPA (1 mM, non-fluorescent) and the detection of 2-hydroxyterephthalate (HTPA, fluorescent), which is the single hydroxylation product of TPA. This reaction has been shown to proceed with a yield of 35%. The generation of HTPA was linear with time (Figure S2,c). R•OH were calculated using the following equation [1]:

$$\frac{d[HTPA]}{dt} = 0.35 \times k_{.OH,TPA} \times [TPA] [\cdot OH]_{ss} = 0.35 \times R_{.OH}$$
(S3)

where $k \cdot OH, TPA$ is the second-order rate constant between OH and TPA (3.3 × 10⁹ M⁻¹ s⁻¹).

The quantum yields of ³DOM*, ¹O₂, and [•]OH were calculated using Equation 4 [1].

$$\phi_i = \frac{R_i}{I_0 \sum_{\lambda} F_{\lambda} (1 - 10^{\varepsilon_{\lambda} b c})}$$
(S4)

where R_i is the formation rate of ³DOM^{*}, ¹O₂, and [•]OH in the HA fraction solutions, respectively, I_0 (Es L⁻¹ s⁻¹) is the incident light intensity obtained by the *p*-nitroanisole/pyridine actinometer, F_{λ} is the spectral distribution of the light emitted by the lamp, ε_{λ} (L mg⁻¹ cm⁻¹) is the absorption coefficient of DOM at a specific wavelength, *b* (cm) is the path lengthinside the reactor, and c (mg L⁻¹) is the concentration of DOM.

The solution screening factor (S_{λ}) is determined from solution absorbance (α_{λ} , cm⁻¹) and the light path length (*l*, cm) [3], as in Equation S5.

$$S_{\lambda} = \frac{1 - 10^{-\ell \times \alpha_{\lambda}}}{2.303 \times \ell \times \alpha_{\lambda}} \tag{S5}$$

Solution rates of light absorbance (R_{abs}) were determined from the photon flux (I_{λ} , Es cm⁻² s⁻¹), measured solution absorbance (α_{λ} , cm⁻¹), and the screening factor (S_{λ}) [4], as in Equation S6.

$$R_{\rm abs} = 2.303 \sum_{\lambda} I_{\lambda} \alpha_{\lambda} S_{\lambda} \tag{S6}$$

The photon flux (I_{λ} , Es cm⁻² s⁻¹) is determined by PNA-pyridine actinometry. I_{λ} is determined as a function of $R_{a,PNA}$, S_{λ} , the molar absorptivity of PNA (ε_{λ} , M^{-1} cm⁻¹), and *l* as in Equation S7 [3]:

$$I_{\lambda} = R_{a,PNA} \sum_{\lambda} \frac{1}{2.303 \times S_{\lambda} \times \varepsilon_{\lambda} \times \ell}$$
(S7)

 $R_{a,PNA}$ of an actinometer solution is determined from the pseudo-first-order loss rate of PNA ($k_{obs,PNA}$, s^{-1}), the initial concentration of PNA ([PNA]t=0, M), and the quantum yield of reaction between PNA and pyridine (Φ_{PNA}) [3], as in Equation S8:

$$R_{a,PNA} = \frac{k_{obs,PNA} [PNA]_{t=0}}{\phi_{PNA}}$$
(S8)

Text S2

Analysis of Bromophenol Products, TMP, FFA, HTPA and PNA

A sample solution (20 mL) after irradiation was spiked with 1 μ L 2-hydroxy-5-chlorobiphenyl (100 μ g/L) as the internal standard, and then was acidified to pH ~2 using 2.5 M H₂SO₄, followed by extraction with dichloromethane (10 mL, 2x). After dehydration using an anhydrous sodium sulfate column, the extract was concentrated to 200 μ L for direct analysis by GC–MS. Analysis was performed using an Agilent 7890 GC and 5975C MSD with an EI source operating in SIM mode, using ions at mass/charge ratios (m/z) 172 and 174 for bromophenols determination and 204 and 206 for 2-hydroxy-5-chlorobiphenyl determination. The GC was operated with helium as the carrier gas in the splitless mode with a DB-5ms capillary column (30 m × 0.25 mm × 0.25 μ m). The following conditions were used for the analysis: a 1- μ L injection, a source temperature of 230°C and an inlet temperature of 270°C. The column temperature ramp was as follows: 80°C for 2.0 min, 80–270°C at 15°C/min and 270°C hold for 10 min.

The concentrations of TMP, FFA and PNA were measured using a high-performance liquid chromatography (HPLC) system (Waters 717 plus) with a C18 column (5 μ m, 250 × 4.6 mm, Agilent). The mobile phases were 70% acetonitrile/30% water with 10 mM phosphate buffer for TMP, 30% methyl alcohol/70% water for FFA, and 60% acetonitrile/40% water for PNA. The detection wavelengths were 280, 220 and 315 nm for TMP, FFA, and PNA, respectively. The concentration of HTPA was detected using a fluorescence spectrophotometer (λ_{ex} = 315 nm and λ_{em} = 425 nm).

Figure S1 EEM fluorescence spectrum of $F_A(\mathbf{a})$, $F_B(\mathbf{b})$, and $F_C(\mathbf{c})$.

Figure S2 The curve of each probe molecule and PNA over time under simulated sunlight: (**a**) TMP, [TMP]₀=1mM; (**b**) FFA, [FFA]₀=50μM; (**c**) HTPA, [TPA]₀=1mM; (**d**) PNA, [PNA]₀=10μM.

References

1. Wan, D.; Sharma, V.K.; Liu, L.; Zuo, Y.; Chen, Y. Mechanistic Insight into the Effect of Metal Ions on Photogeneration of Reactive Species from Dissolved Organic Matter. *Environ. Sci. Technol.* **2019**, *53*, 5778–5786.

2. Marchisio, A.; Minella, M.; Maurino, V.; Minero, C.; Vione, D. Photogeneration of Reactive Transient Species upon Irradiation of Natural Water Samples: Formation Quantum Yields in Different Spectral Intervals, and Implications for the Photochemistry of Surface Waters. *Water Res.* **2015**, *73*, 145–156.

3. Maizel, A.C.; Remucal, C.K. Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter. *Environ. Sci. Technol.* **2017**, *51*, 2113–2123.

4. Maizel, A.C.; Li,J.; Remucal, C.K. Relationships between dissolved organic matter composition and photochemistry in lakes of diverse trophic status. *Environ. Sci. Technol.* **2017**, *51*, 9624–9632.