Supplementary Materials

Title: Phytochemical profiling, *in vitro* and *in silico* anti-microbial and anti-cancer activity evaluations, and Staph-GyraseB and *h*-TOP-II β receptor-docking studies of major constituents of *Zygophyllum coccineum* L. aqueous-ethanolic extract and its subsequent fractions: An approach to validate traditional phytomedicinal knowledge

A. CHROMATOGRAMS:

Figure S1: -ESI-TOF–MS negative ion mode mass analysis-LC Chromatogram of *Z. coccineum* mother liquor, aq.-ethanolic extract

Figure S2: ESI-TOF–MS positive ion mode mass analysis-LC Chromatogram of *Z. coccineum* mother liquor, aq.-ethanolic extract

Figure S3: LC chromatogram of negative ion mode mass analysis for major constituents in *Z. coccineum* aq.-ethanolic extract

Figure S4: LC chromatogram of positive ion mode mass analysis for major constituents in *Z. coccineum* aq.-ethanolic extract

B. MASS SPECTRA:

Figure 5S: Negative ion mode mass fragmentation of Isorhamnetin-3-O-rutinoside

Figure 6S: Negative ion mode mass fragmentation of Kaempferol-3-O-(6""-*p*-coumaroyl)-glucoside

Figure 7S: Negative ion mode mass fragmentation of Delphinidin-3-O-(6"-O- α -rhamnopyranosyl- β -glucopyranoside)

Figure 8S: Negative ion mode mass fragmentation of Kaempferol-3,7-O-bis-α-L-rhamnoside

Figure 9S: Negative ion mode mass fragmentation of Quercetin

Figure 10S: Negative ion mode mass fragmentation of Caffeic acid

Figure 11S: Negative ion mode mass fragmentation of Gibberellin-A4

Figure 12S: Negative ion mode mass fragmentation of Kaempferol-3-O-glucoside

Figure 13S: Negative ion mode mass fragmentation of 3-O-[β-D-glucopyranosyl] quinovic acid

Figure 14S: Negative ion mode mass fragmentation of 3-O-[β -D-quinovopyranosyl] quinovic acid-28- β -D-glucopyranosyl ester

Figure 15S: Negative ion mode mass fragmentation of Zygophyloside-F

Figure 16S: Negative ion mode mass fragmentation of Zygophyloside-G

Figure 17S: Positive ion mode mass fragmentation of Spermine

Figure 18S: Positive ion mode mass fragmentation of Luteolin

Figure 19S: Positive ion mode mass fragmentation of Isorhamnetin-3-O-glucoside

Figure 20S: Positive ion mode mass fragmentation of Kaempferol 3,7-di-O-α-L-rhamnoside

C. UV-CALIBRATION CURVES:

Figure 21S: Standard calibration curve of gallic acid used in the calculation of total phenolic contents of *Z. coccineum*

Figure 22S: Standard calibration curve of rutin used in the calculation of total flavonoid contents of *Z. coccineum*

D. IN SILICO BINDINGS:

Table S1: 3D structures, binding domains, and energies of the major constituents of Z. coccineum.

Tuble offob bulue	ares) eman	g aomaine	, and energies of the major const	ituerites of E	
Compound	Relative percent of abundance	<u>ΔG</u> (Kcal /mol) at 4URO	3D Structure and binding domains	<u>ΔG</u> (Kcal/mol at_3QX3	3D Structure and binding domains
Tiliroside	19.80	-6.46		-6.63	
Zygophyloside-F	12.78	-6.06		-6.22	
Isorhamnetin-3- O-glucoside	4.75%	-6.37		-5.75	
Kaempferol 3,7- di-O-α-L- rhamnoside	1.61	-6.47		-5.65	
Luteolin	1.48	-5.19		-5.08	

Spermine	0.94	-4.91		-5.10	
Gibberellin-A4	0.58	-3.81	Args	-4.23	
3-O-[β-D- Quinovo pyranosyl] quinovic acid- 28-β-D- glucopyranosyl ester	3.31	-6.38		-6.23	
Caffeic acid	0.45	-4.6		-4.6	
Etoposide				-5.94	
Novobiocin		-6.72			