

Supplementary Materials

The Microfluidic Toolbox for Analyzing Exosome Biomarkers of Aging

Jonalyn DeCastro ¹, Joshua Littig ¹, Peichi Peggy Chou ², Jada Mack-Onyeike ¹, Amrita Srinivasan ³, Michael J. Conboy ⁴, Irina M. Conboy ⁴ and Kiana Aran ^{1,4,*}

- ¹ Keck Graduate Institute, The Claremont Colleges, Claremont, CA 91711, USA; jherce@kgi.edu (J.D.); jlittig18@students.kgi.edu (J.L.); jmack18@students.kgi.edu (J.M.-O.)
- ² Pitzer College, The Claremont Colleges, Claremont, CA 91711, USA; pechou@students.pitzer.edu
- ³ Claremont McKenna College, The Claremont Colleges, Claremont, CA 91711, USA; asrinivasan23@students.claremontmckenna.edu
- ⁴ Department of Bioengineering, University of California, Berkeley, CA 94720, USA; conboymj@berkeley.edu (M.J.C.); iconboy@berkeley.edu (I.M.C.)
- * Correspondence: kiana_aran@kgi.edu

Isolation Technique	Basis of Isolation	Advantages	Limitations	Citations
Ultracentrifugation or differential centrifuga- tion	Isolation based on size, shape, and particle density	Most used; standardized speeds; Vesi- cle concentration and enrichment; High sample purity; Subtype vesicle popula- tions isolated with given speedsExtensive assay time (<16 hrs); Low yield; Vesicle aggregation from high speeds; Potential contamination with soluble proteins and other macromol 		[1-2]
Filtration or ultrafiltra- tion	Isolation based on size and molec- ular weight (MWCO)	Yields higher concentration of exo- somes; High sample purity; High intact exosome cargo (proteins and miRNA); Simple set up and equipment; Less time	Yields dilute samples; Potential loss of exosomes in membrane filter pores/clogging; Still requires a high- speed centrifuge	[3-4] ^{3,4}
Size-exclusion chroma- tography (SEC)	Isolation based on size with gel- based chromatography	Yields highly pure samples; More uni- form population size range; Ideal for small scale isolation; Pore sizes can match different exosome size ranges; Typically needs only low speed centrif- ugation step	Long extraction times; Difficult for large volumes; Dilute samples; Poten- tially low vesicle yield	[4-5]
Polymer-based precipita- tion	Isolation based on size with mesh- like polymeric precipitation	Exosomes pelleted at low centrifuge speeds; Uniform population size	Low purity of sample; Polymer pre- cipitation excludes larger exosomes in sample; Single Exoquick kits are ex- pensive; Limited to only a small num- ber of samples	[4-5] ^{4,5}
Immunoaffinity	Isolation based on immunoassays on beads or other surfaces	Higher target specificity; Secures exo- some integrity; Techniques are simple and easy to use; Ability to isolate sub- populations with specific surface mark- ers	Strong antibody-exosome interactions make elution difficult; Immuno-isola- tion devices require more expertise; Antibodies are costly; Other extracel- lular vesicles may have same surface markers	[1, 4]

Table S1. Comparison of conventional techniques for exosome isolation, detection and characterization.

Characterization Tech- nique	Basis of Characterization	Advantages	Limitations	Citations				
	Size-based characterization							
Dynamic light scattering	Measure of scattered light upon in- cidence with particles of varying size	No sample preparation; Determines av- erage size in monodisperse sample; Some software's can find zeta potential; Retain sample	Not suitable for polydisperse or heter- ogeneous samples; Only provides size	[6] ⁶				
Nanoparticle tracking analysis	Particles scatter laser beam upon incidence and motion is recorded by a CCD camera	Quick sample dilution prep; Deter- mines size and concentration; Dynamic range within standard 10 ⁷⁻ 10 ¹¹ ; Analysis of fluorescently labeled vesicles possi- ble	Expertise for accurate optimization of camera and analysis settings required; No biochemical information of vesi- cles; Loss of sample in analysis	[6]				
Resistance pulse sensing	Detection of single EV by transient decrease of ionic current	Tunable nanopores optimized for de- tection of different nanometer size ranges	Less widely used; Passing of electrical current in presence of vesicles; Lower LOD 100 nm	[6-8] ⊱8				
Flow cytometry	EVs on beads illuminated by lasers in a flow chamber with hydrody- namic focusing	Small EVs (<500nm) detected collec- tively with swarm effect; High powered laser with specific modifications (CCD camera) for detection of smaller ~ 100 nm EVs *Current development of single suspen- sion and cytometry	Single EV detection only at above 500 nm; identify subpopulations of large EVs with specific fluorescent antigen fluorophores	[9-10]				
Morphology-based identification								

Transmission electron microscopy	Uses electrons that pass-through sample for detection for 2D image of EVs	Images based on transparency of EV giving information about inner struc- tures	Fixation, drying and vacuuming of sample (Very complicated); Electron beam can damage EVs	[10-11] ^{10,11}
Scanning electron mi- croscopy	Electron beam with detection of secondary electrons emitted by at- oms in the area	Topography of EV surface; Size and morphology of EVs; Single EV mor- phology	Fixation, drying and vacuuming of sample (Very complicated); Electron beam can damage EVs	[10-11]
Cryo-electron microscopy	Imaging of ultra-thin vitrified film from flash freezing EVs in liquid nitrogen	High resolution imaging of EVs in na- tive state without drying or vacuum- ing; Identification of specific subsets of EVs with immunogold labelling; Most accurate size determination; 3D tomog- raphy images possible	Can have high background noise; Equipment availability	[10-11] ^{10,11}
Atomic force microscopy	EV interaction with tip of cantile- ver nanoprobe	Native EV sensing with minimal sam- ple prep; Real 3D image of surface to- pography; Size and structural infor- mation of EVs; Gives info of mechanical EV properties like stiffness and elastic- ity	High resolution images require EVs be attached to atomically flat surface; EVs may change shape once bound to flat surface; Low through-put; Equip- ment availability	[10-11]
		Biochemical EV Analysis		
Bradford assay or micro- bicinchoninic acid (BCA) assay	Total protein concentration colori- metric assays	Easy to use; Simple standard colorimet- ric assay; Conventionally used as an es- timation of EV concentration	General; Need highly pure EV sam- ple; Protein contaminants can affect accuracy	[10] ¹⁰
Immunosorbent Assays (ELISA)Use of specific EV antibodies to capture EVs on a supporting sur- face		Commonly done through ELISA with CD63, CD9 or CD81; Strong EV enrich- ment with capture; Capture antibodies can give subpopulations	Antibodies can be expensive and have different cross-reactivity; Typically for surface antigens unless do lysing step prior	[10]

Immunoblotting	Lysing of purified EVs and direct spotting on membrane (dot blot assay) or SDS-PAGE separation of proteins as in Western blot assay)	Commonly done through ELISA with CD63, CD9 or CD81 or cargo proteins ALIX, TSG101	Only semi quantitative and limited to bulk assays; Does not provide on het- erogeneity of sample; Requires large volumes and extensive sample pro- cessing	[10] ¹⁰
----------------	---	---	--	---------------------------

Device name	Sample Type	Input Vol- ume	Method	Data Output	Limit of De- tection	Sensitivity	Yield	Time	Cita- tion
	Exosome Isolation								
				Field-Based Isolation					
Acoustofluidics	Human blood	100 μL	Acoustics	Separation of primary human troph- oblast-derived EVs and MVs; isola- tion of >150 nm particles	N/A	N/A	~82%	25 min	[12]
Asymmetric flow field-flow fractiona- tion (AF4)	Melanoma-derived EVs	N/A	Separation based on particle density and hydrodynamic prop- erties	Separation of large (90-120 nm) and small (60-80 nm) exosomes and ~35 nm nanoparticles. real-time dynamic light scattering (DLS) measurements	N/A	N/A	N/A	A few hours	[13]
Thakur et al. micro- fluidic device	A-549 cells, SH- SY5Y cells, blood serum, urine from a lung cancer model	N/A	Localized surface plasmon resonance	Detection and distinguishment of ex- osomes from multivesicular vesicles	0.194 μg/mL	0.01793 μg/mL	N/A	30 min	[14]
RInSE	Cell culture super- natant	~ 20 uL	Rapid inertial solu- tion exchange + im- munolabeling on magnetic beads	Characterization of EPCAM cancer marker; Exosome diameter; RNA fluorescence measurements	N/A	N/A	99%	4-5 hrs	[15]
Eletrophoretic sys- tem	Plasma	1000 μL/h (500 μL for tests)	electrical migration and size exclusion	Zeta potential shift; diameter size	N/A	N/A	65%	30 min	[16]
			Su	rface functionalized Isolation					
Xia et al. microflu- idic device	Serum from breast cancer patients	N/A	Carbon nanotubes with anti-CD63; Col- orimetric assay	Colorimetric detection	5.2x10⁵ parti- cles/ μL	N/A	N/A	40 min	[17]
Zn-O Chip	Blood serum	100 μL	Surface functionali- zation w/ anti-CD63 Ab; TMB-based col- orimetric assay	Colorimetric detection	2.2x10⁴ parti- cles/ μL	2.2x10 ⁵ - 2.4x10 ⁷ particles/ μL	N/A	N/A	[18]
BAF-TiN Biosensor	Serum-derived ex- osomes	N/A	Immunocapture	Raman investigation of biotin direct adsorption on TiN film. And atomic	4.29 × 10−3 µg mL−1	0.005-500 μg/mL	N/A	2200s (36.7min)	[19]

Table S2. Comparative analysis and specifications of microfluidic devices for exosome isolation and detection.

				force microscopy to detect anti-CD63					
	from mice			antibody.	for CD63, an				
					exo-				
					some marker,				
					and 2.75 × 10–3				
					µg mL−1				
					(
					for epidermal				
					growin factor				
					variant-III				
			oFFT surface func-		variant-ini,				
gFET biosensor	Lyophilized exo-	10 uL	tionalization w/ anti-	Real-time current and voltage meas-	0.1 ug/ml	5000 exosomes/	N/A	30 min	[20]20
8	somes		CD63 Ab	urements; exosome concentration	011 48,111	μL	,		[-•]
			Surface functionali-		0 100				
Doldan et al. micro-	N/A	1.5 uL	zation + electrochem-	Real-time current measurements; ex-	2x10 ² parti-	N/A	N/A	N/A	[21]
fluidic device			ical sensing osome concentration	cles/uL					
An integrated dou-		10 µL of							
ble-filtration	Urine of bladder	plasma	Size-exclusion filtra-	ELISA	N/A	81.3%	74 2%	N/A	[22]2
microfluidic device	cancer patients	per	tion		1 4/1 1	01.070	, 1.2 /0	1 4/11	[]
interontatate de tree		marker							
Integrated Mag-			magnetic enrichment		3 × 104 exo-	~10^5 vesicles			
neto-Electrochemi-	Plasma or serum	10 µL	and enzymatic am-	Current change over time	somes per	with 10 µL of	N/A	1 hour	[23]
cal exosome (iMEX)		·	plification,	0	sample (10 μL)	samples			
platform	Comum and ava				1 1 /	*			
Surface Plasmon	Serum and exo-		Surface plasmon rec	Spectral shift analysis of contured	2070 even	2.07x10 ³ to 3.3x10 ⁴			
Posonanco Platform	broast cancer cell	N/A	opanco	ovosomos	2070 exo-	exosomes/uL	N/A	N/A	[24]
Resonance I lationin	line		onance	exosomes	somes/ µL				
	Undiluted plasma								
Alternating Cur-	spiked with glio-		Dielectrophoretic	Flourescence analysis of exosomes,					
rent Electrokinetic	blastoma exo-	30–50 μL	separation force; im-	EVs, and RNA and immuno-	N/A	N/A	N/A	>30 min	[25]
(ACE) Microarray	somes. Also whole		munofluorescence	tiourescence analysis of CD 63 and	·				
Chip	blood			15G101 proteins					

ExoTENPO	Murine and clinical cohort exosomes in serum and plasma	N/A	Magnetically trap- ping and sorting magnetically labeled exosomes	Dynamic light scattering; exosome concentration; RNA; machine learning	N/A	N/A	N/A	10mL/h	[26]
Liu et al. microflu- idic device	Plasma; Cell cul- ture supernatant	50 uL	Surface plasmon res- onance w/ gold film	Retractive index; Exosome concen- tration with specific antibody bind- ing	2 × 10^10 exo- somes/mL	9.258 x 10^3 %/RIU	N/A	N/A	[27]
Plasmonic interfer- ometer array	Lung cell culture supernatant	N/A	Plasmonic interfer- ometer array (PIA)	Refractive index unit	3.86x10 ⁸ exo- somes/mL	9.72x10 ⁹ exo- somes/mL (smartphone de- tection)	N/A	N/A	[28]
Oh et al. Microflu- idic assay	Bovine serum cul- tured with neuro- blastoma and cer- vical cancer cells.	N/A	In vitro microfluidic cell culture assay	Immunofluorescent stains, NTA with Nanosight, RT-PCR	N/A	N/A	N/A	N/A	[29]
SAW-IEM Chip	Untreated plasma	20 uL	Surface acoustic waves and ion ex- change membranes	Mechanism exosome lysing; miRNA quantification	1pM	N/A	N/A	20 min	[30] ³⁰

References

1. Contreras-Naranjo, J.C.; Wu, H.-J.; Ugaz, V.M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. *Lab a Chip* **2017**, *17*, 3558–3577, doi:10.1039/c7lc00592j.

2. Chiriacò, M.S.; Bianco, M.; Nigro, A.; Primiceri, E.; Ferrara, F.; Romano, A.; Quattrini, A.; Furlan, R.; Arima, V.; Maruccio, G. Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. *Sensors* **2018**, *18*, 3175, doi:10.3390/s18103175.

3. He, M.; Zeng, Y. Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer. J. Lab. Autom. 2016, 21, 599–608, doi:10.1177/2211068216651035.

4. Yu, L.-L.; Zhu, J.; Liu, J.-X.; Jiang, F.; Ni, W.-K.; Qu, L.-S.; Ni, R.-Z.; Lu, C.-H.; Xiao, M. A Comparison of Traditional and Novel Methods for the Separation of Exosomes from Human Samples. *BioMed Res. Int.* 2018, 2018, 1–9, doi:10.1155/2018/3634563.

5. Stranska, R.; Gysbrechts, L.; Wouters, J.; Vermeersch, P.; Bloch, K.; Dierickx, D.; Andrei, G.; Snoeck, R. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. *J. Transl. Med.* **2018**, *16*, 1–9, doi:10.1186/s12967-017-1374-6.

6. Witwer, K.W.; Buzás, E.I.; Bemis, L.T.; Bora, A.; Lässer, C.; Lötvall, J.; Hoen, E.N.N.- 'T; Piper, M.G.; Sivaraman, S.; Skog, J.; et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. *J. Extracell. Vesicles* **2013**, *2*, doi:10.3402/jev.v2i0.20360.

7. de Vrij, J. et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (Lond) 8, 1443–1458 (2013).

8. Momen-Heravi, F.; Balaj, L.; Alian, S.; Etigges, J.; Etoxavidis, V.; Ericsson, M.; Distel, R.J.; Ivanov, A.R.; Skog, J.; Kuo, W.P. Alternative Methods for Characterization of Extracellular Vesicles. *Front. Physiol.* **2012**, *3*, 354, doi:10.3389/fphys.2012.00354.

9. Gurunathan, S., Kang, M.-H., Jeyaraj, M., Qasim, M. & Kim, J.-H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 8, (2019).

10. Hartjes, T.A.; Mytnyk, S.; Jenster, G.; Van Steijn, V.; Van Royen, M.E. Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. *Bioeng.* **2019**, *6*, 7, doi:10.3390/bioengineering6010007.

11. Szatanek, R.; Baj-Krzyworzeka, M.; Zimoch, J.; Lekka, M.; Siedlar, M.; Baran, J. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int. J. Mol. Sci. 2017, 18, 1153, doi:10.3390/ijms18061153.

12. Wu, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P.-H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. *Proc. Natl. Acad. Sci.* 2017, *114*, 10584–10589, doi:10.1073/pnas.1709210114.

13. Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Benito-Martin, A.; Bojmar, L.; et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. *Nat. Cell Biol.* **2018**, *20*, 332–343, doi:10.1038/s41556-018-0040-4.

14. Thakur, A. et al. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron 94, 400–407 (2017).

15. Dudani, J.S.; Gossett, D.R.; Tse, H.T.K.; Lamm, R.J.; Kulkarni, R.P.; Di Carlo, D. Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. *Biomicrofluid-ics* **2015**, *9*, 014112, doi:10.1063/1.4907807.

16. Cho, S.; Jo, W.; Heo, Y.; Kang, J.Y.; Kwak, R.; Park, J. Isolation of

17. Xia, Y.; Liu, M.; Wang, L.; Yan, A.; He, W.; Chen, M.; Lan, J.; Xu, J.; Guan, L.; Chen, J. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. *Biosens. Biosens. Biosens.* **Biosens. Biosens. B**

18. Chen, Z.; Cheng, S.-B.; Cao, P.; Qiu, Q.-F.; Chen, Y.; Xie, M.; Xu, Y.; Huang, W.-H. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. *Biosens. Bioelectron.* 2018, 122, 211–216, doi:10.1016/j.bios.2018.09.033.

19. Qiu, G. et al. Detection of Glioma-Derived Exosomes with the Biotinylated Antibody-Functionalized Titanium Nitride Plasmonic Biosensor. Advanced Functional Materials 29, 1806761 (2019).

20. Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes | Scientific Reports. https://www.nature.com/articles/s41598-019-50412-9.

21. Doldán, X.; Fagúndez, P.; Cayota, A.; Laíz, J.; Tosar, J.P. Electrochemical Sandwich Immunosensor for Determination of Exosomes Based on Surface Marker-Mediated Signal Amplification. Anal. Chem. 2016, 88, 10466–10473, doi:10.1021/acs.analchem.6b02421.

22. Liang, L.-G.; Kong, M.-Q.; Zhou, S.; Sheng, Y.-F.; Wang, P.; Yu, T.; Inci, F.; Kuo, W.P.; Li, L.-J.; Demirci, U.; et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. *Sci. Rep.* 2017, *7*, srep46224, doi:10.1038/srep46224.

23. Jeong, S.; Park, J.; Pathania, D.; Castro, C.M.; Weissleder, R.; Lee, H. Integrated Magneto–Electrochemical Sensor for Exosome Analysis. ACS Nano 2016, 10, 1802–1809, doi:10.1021/acsnano.5b07584.

24. Sina, A. A. I. et al. Real time and label free profiling of clinically relevant exosomes. Scientific Reports 6, 30460 (2016

25. Ibsen, S.D.; Wright, J.; Lewis, J.M.; Kim, S.; Ko, S.-Y.; Ong, J.; Manouchehri, S.; Vyas, A.; Akers, J.; Chen, C.C.; et al. Rapid Isolation and Detection of Exosomes and Associated Biomarkers from Plasma. ACS Nano 2017, 11, 6641–6651, doi:10.1021/acsnano.7b00549.

26. Ko, J.; Bhagwat, N.; Yee, S.S.; Ortiz, N.; Sahmoud, A.; Black, T.; Aiello, N.M.; McKenzie, L.; O'Hara, M.; Redlinger, C.; et al. Combining Machine Learning and Nanofluidic Technology To Diagnose Pancreatic Cancer Using Exosomes. ACS Nano 2017, 11, 11182–11193, doi:10.1021/acsnano.7b05503.

27. Liu, C.; Zeng, X.; An, Z.; Yang, Y.; Eisenbaum, M.; Gu, X.; Jornet, J.M.; Dy, G.K.; Reid, M.E.; Gan, Q.; et al. Sensitive Detection of Exosomal Proteins via a Compact Surface Plasmon Resonance Biosensor for Cancer Diagnosis. *ACS Sensors* **2018**, *3*, 1471–1479, doi:10.1021/acssensors.8b00230.

28. Zeng, X.; Yang, Y.; Zhang, N.; Ji, D.; Gu, X.; Jornet, J.M.; Wu, Y.; Gan, Q. Plasmonic Interferometer Array Biochip as a New Mobile Medical Device for Cancer Detection. *IEEE J. Sel. Top. Quantum Electron.* **2019**, *25*, 1–7, doi:10.1109/jstqe.2018.2865418.

29. Oh, H.J.; Shin, Y.; Chung, S.; Hwang, D.W.; Lee, D.S. Convective exosome-tracing microfluidics for analysis of cell-non-autonomous neurogenesis. *Biomater.* 2017, *112*, 82–94, doi:10.1016/j.bio-materials.2016.10.006.

30. Ramshani, Z.; Zhang, C.; Richards, K.; Chen, L.; Xu, G.; Stiles, B.L.; Hill, R.; Senapati, S.; Go, D.B.; Chang, H.-C. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. *Commun. Biol.* 2019, 2, 1–9, doi:10.1038/s42003-019-0435-1.