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Abstract: The requirements for analytical tools are changing due to the global production chain, the
increasing cases of adulteration, and the growing trend towards consumption of plant-based food
products worldwide. The assessment of bioactivity of natural foods is currently not a quality criterion,
and a paradigm shift is postulated. A non-targeted effect-directed profiling by high-performance
thin-layer chromatography hyphenated with five different effect-directed assays was developed
exemplarily for the puree and juice products of mango Mangifera indica L. (Anacardiaceae) and
pineapple Ananas comosus (L.) Merr. (Bromeliaceae). Several bioactive compounds were detected
in each sample. The additional bioactivity information obtained through effect-directed profiles
improves, expands and modernizes product control. Non-target effect-directed profiling adds a
new perspective to previous target analysis results that can be used not only to ensure health claims
based on bioactive compounds, but also to detect unknown bioactive compounds coming from
contamination or residues or changes caused by food processing.

Keywords: effect-directed analysis; healthy food; food processing; adulteration; authentication

1. Introduction

Bioactive compounds present in natural plant-based foods and their products attract
increasingly both consumers and researchers. Epidemiological evidence indicates a con-
tribution to the preventive effects in reducing the risk of certain common diseases, e.g.,
cardiovascular disorder, cancer, osteoporosis, infections, cataract and diabetes [1,2]. The
spectrum and content of bioactive compounds in fruits vary, among other things, depend-
ing on the cultivar and maturity stage of the product [3,4]. The most prominent bioactive
compounds found in tropical fruits are ascorbic acid (vitamin C), tocopherols (vitamin E),
carotenoids (provitamin A candidates), flavonoids and thiol compounds. In particular, the
widely distributed polyphenols are the predominant antioxidative secondary metabolite
group [5].

The pineapple Ananas comosus (L.) Merr. (Bromeliaceae) and the mango Mangifera
indica L. (Anacardiaceae) are important tropical fruits popular all over the world. Global
pineapple and mango production in 2019 were about 28 million tons and 56 million tons,
respectively, of which Thailand accounted for about 6% and 3% [6]. Pineapple is commonly
consumed as fresh fruit, or processed to conventional products including canned fruit,
jam, concentrated juice, and dried chips, or used as an ingredient in exotic food [7] or
as material for pineapple wine production [8]. Thailand is not only a world leader in
the export volume of canned pineapple, but many local cultivars are also unique in their
taste and aroma [9]. Commercial cultivars of pineapple in Thailand are Pattavia, Phuket,
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Nanglae and Phulae. Pineapple is considered a very nutritious and functional fruit, as it is
rich in vitamin A, vitamin B, and minerals such as calcium, phosphorus and iron [10]. It
contains also several proteinases, such as bromelain, comosain and ananain, which support
the digestive tract [11]. Moreover, it has several compounds with antioxidant properties,
namely ascorbic acid, β-carotene and phenolic compounds such as flavonoids [12–15].

The mango fruit is widely accepted by consumers due to its succulence, sweet taste
and exotic flavor. Mango flesh is consumed in both ripe and unripe stages. It is also
processed to foods and drinks, such as pickled products, beverages, vinegar, chutneys, and
desserts [16]. In Thailand, the major mango varieties, consumed fresh when the fruit is ripe,
are Nam Dok Mai and Mahachanok. A small percentage of the production is processed
to canned, dried and frozen mango [9]. Mangos contain bioactive compounds, such
as ascorbic acid, carotenoids (e.g., β-carotene, violaxanthin, cryptoxanthin, neoxanthin,
luteoxanthin and zeaxanthin), phenolic components, and mono-, di- and triterpenoids (e.g.,
ocimene, myrcene or limonene, terpinolene and careen) [2].

The domestic consumption and the export trade of pineapple and mango provide
economic value to Thailand. Nevertheless, reports on bioactive compounds and antioxidant
activities of these fruits from Thailand are rare. Since bioactive compounds generally occur
as complex mixtures in a plant, it is a major challenge to identify the individual substances
responsible for specific effects [17–19]. For such effect-directed profiling, high-performance
thin-layer chromatography hyphenated with multi-imaging (UV/Vis/FLD) and effect-
directed assays (EDA) was proven to be a good choice [20–24]. In this study, a non-target
effect-directed profiling by HPTLC−UV/Vis/FLD−EDA was developed for puree and
juice products of different Thai pineapple and mango cultivars to gain information on
bioactive constituents. The obtained effect-directed profiles pointed to individual bioactive
compounds and allowed a comparative evaluation with regard to their activity potential.

2. Results and Discussion
2.1. Physico-Chemical Characterization of the Produced Fruit Purees and Juices

Two cultivars each of mango and pineapple were chosen due to their importance
as major commercial varieties and their widespread production in Thailand. The two
pineapple cultivars Pattavia (PTV) and Nanglae (NL) were selected as sub-varieties of
the smooth cayenne pineapple Pattavia variety. The two mango cultivars Nam Dok Mai
(NDM) and Mahachanok (MHC) represent poly-embryonic and mono-embryonic ecotypes,
respectively. At the commercial maturity stage, the fruits were harvested from the orchard
at the Chiang Rai province in Northern Thailand. The regularity of fruit ripeness was
controlled by the peel color observation in our study, i.e., 30–40% yellow for pineapple and
fully yellow for mango. A puree and a juice sample were produced from each of the four
cultivars. Thus, 8 fruit product samples were obtained. Their ripeness (content of total
sugars and total acidity) and compositional values (content of total amino acids and total
phenolics) were determined (Table 1). Total soluble solids, pH, and total acidity of pineapple
and mango puree in both cultivars were in accordance with the literature [12,13,25–29]. The
total sugar of pineapple was higher than that reported by Lu et al. [13]; however, values of
natural plant-based food can vary depending on harvest time, climate influence each year,
agricultural and soil management, among many other aspects. The sugar content normally
increases during fruit ripening.
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Table 1. Properties of the produced purees and juices of the pineapple (PTV and NL) and mango
cultivars (NDM and MHC). Each value shows the mean ± standard deviation from three measure-
ment replicates. Different letters (a–d) derived from the ANOVA and DMRT test indicate significant
differences among samples.

Pineapple Cultivar Mango Cultivar

PTV NL NDM MHC

Parameters Produced Puree

Total Soluble Solids (◦Brix) 14.4 ± 0.2 d 15.3 ± 0.1 c 18.0 ± 0.2 a 16.4 ± 0.1 b

Total Sugar (g/L) 133 ± 0 d 142 ± 0 c 159 ± 0 a 151 ± 0 b

pH 4.6 ± 0.0 a 4.5 ± 0.0 a 3.7 ± 0.0 c 4.0 ± 0.0 b

Total Acidity
(pH 8.1 as citric acid, g/L) 2.4 ± 0.0 c 2.4 ± 0.0 c 7.8 ± 0.2 a 4.1 ± 0.1 b

Produced Juice

Total Amino Acids (mg/L) 3335 ± 8 a 2790 ± 11 b 1641 ± 4 c 1366 ± 14 d

Total Phenolics (mg/L) 426 ± 3 d 442 ± 4 c 845 ± 6 a 616 ± 4 b

2.2. Development of the Effect-Directed Profiling

An effect-directed HPTLC method was developed on HPTLC plates silica gel 60 F254
(for the B. subtilis bioassay without F254). For a first impression, the more complex puree
sample was chosen first. The methanolic extraction was performed at a solid-liquid ratio
of 40%. A highly concentrated extract solution was preferred for the analysis of bioactive
secondary metabolites, usually present in trace amounts. This allows the use of small
sample volumes (rapid application) and easy adjustment to the different detection capa-
bilities of biological and enzymatic assays (dilution step is faster than concentration step).
Application as area (4 mg/area) was preferred due to the expected high load of sample
matrix onto the adsorbent. Six different mobile phases (which resulted in successful sepa-
rations in previous projects) were investigated (Table S1 from Supplementary Materials).
Solvent mixture 1 consisting of toluene–ethyl acetate–methanol–formic acid 2.4:1.8:0.7:0.06,
v/v/v/v, was suited best, as it distributed the sample components well along the develop-
ing distance, especially detectable after derivatization with the anisaldehyde sulfuric acid
reagent at FLD 366 nm. A large portion of each methanolic extract remained in the initial
start zone area, to which the sugar content contributed most, being as high as 16% in the
8 fruit product samples (Table 1). The individual saccharides of the samples, applied at
200 µg/area, were determined using a more polar mobile phase for separation (Table S1
from Supplementary Materials), mobile phase 6: acetonitrile–water 4:1, v/v, plus 8 mg
diphenylboric acid-2-aminoethylester) and the diphenylamine aniline o-phosphoric acid
reagent for detection at white light illumination. The 8 saccharide profiles showed glucose,
fructose and sucrose being present (Figure 1). Among these, the mango cultivars (Table 2,
puree IDs 3,1 and 4,1; juice IDs 7,1 and 8,1) showed a lower glucose and instead a higher
sucrose content than the pineapple cultivars (puree IDs 1,1 and 2,1; juice IDs 5,1 and 6,1).
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Figure 1. Saccharide analysis: HPTLC-Vis chromatogram of fructose (Fru), glucose (Glc) and sucrose
(Suc) present in fruit product extracts (IDs 1–8, Table 2, 0.4 g/mL in methanol, 0.5 µL/area) on
HPTLC plates silica gel 60 F254 with acetonitrile–water 4:1, v/v, plus 8 mg diphenylboric acid-2-
aminoethylester (Table S1 from Supplementary Materials, mobile phase 6) derivatized with dipheny-
lamine aniline o-phosphoric acid reagent and documented at white light illumination.

Table 2. Produced fruit products (IDs 1–8) extracted either with methanol (x,1) or ethyl acetate (x,2).

Puree Extract Juice Extract

ID Fruit Cultivar ID Fruit Cultivar

1,1
Pineapple PTV

5,1
Pineapple PTV

1,2 5,2

2,1
Pineapple NL

6,1
Pineapple NL

2,2 6,2

3,1
Mango NDM

7,1
Mango NDM

3,2 7,2

4,1
Mango MHC

8,1
Mango MHC

4,2 8,2

2.3. Selection of the Extraction Solvent for Effect-Directed Profiling

Sample preparation was performed as minimally as possible to minimize any influence
(alteration) in the fruit products produced. Different extraction solvents (i.e., methanol,
acetone, methanol/acetone 1:1, ethanol, ethyl acetate, and acetonitrile) were comparatively
studied for the intended non-targeted effect-directed profiling (Figure 2, all 4 mg/area).
For polar extraction solvents, the co-extracted saccharides caused a high matrix loading
on the start zone area of the adsorbent. This limited not only the amount of sample that
could be applied, but also the development with more polar mobile phases (Table S1 from
Supplementary Materials, mobile phases 4 and 6). In comparison, the ethyl acetate extracts
discriminated the co-extraction of saccharides, as evident in the absent dark start zone
area. This was found to be advantageous, in case higher sample amounts need to be
used depending on the assay response. In addition, the ethyl acetate extracts contained a
similar pattern of medium polar components that was almost comparable to that of the
other solvents. Therefore, to cover different selectivities, not only methanol but also ethyl
acetate were chosen as extraction solvent (Table 2). Apart from UV/Vis/FLD detections
and the use of derivatization reagents, the compounds in the extracts were detected via the
Gram-negative Aliivibrio fischeri bioassay (Figure 2C). This assay detects more universally
any bioactive chemicals interfering with the energetic metabolism of the bacteria and
is commonly used in environmental research [30]. The bioautogram revealed a similar
pattern of bioactive compounds within the different samples. As the bioactivity pattern
of the applied 10 µL sample (4 mg/area) was faint, it was evident that a higher sample
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amount was required to detect the bioactive components present at low concentrations.
Therefore, a 5-fold amount of each fruit product extract (solid-liquid extract ratio of 20% in
ethyl acetate) was applied (100 µL/area) in the following.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 13 
 

 

pattern of bioactive compounds within the different samples. As the bioactivity pattern of 

the applied 10 µL sample (4 mg/area) was faint, it was evident that a higher sample 

amount was required to detect the bioactive components present at low concentrations. 

Therefore, a 5-fold amount of each fruit product extract (solid-liquid extract ratio of 20% 

in ethyl acetate) was applied (100 µL/area) in the following. 

 

Figure 2. Investigation of different solvent selectivities for extraction: HPTLC chromatogram at FLD 

366 nm after derivatization with anisaldehyde sulfuric acid reagent (A), at FLD 366 nm before the 

bioassay (B) and bioautogram after Aliivibrio fischeri bioassay, depicting bioluminescence after 30 

min as grey scale image (C) of methanol (MeOH), mixture of methanol/acetone 1:1 (Mix), acetone, 

ethanol (EtOH), ethyl acetate (EtOAc) and acetonitrile (ACN) extracts of puree sample IDs 1 and 3 

(Table 2, 0.4 g/mL) applied as area (6.0 × 3.0 mm, 10 µL/area), developed on HPTLC plates silica gel 

60 F254 with toluene–ethyl acetate–methanol–formic acid 2.4:1.8:0.7:0.06, V/V/V/V, in twin-trough 

chamber 20 x 10 cm (*yellow acetone-soluble contamination from plastic flask material). 

2.4. Physico-chemical Profiling of the Fruit Product Extracts 

The physico-chemical profiling of the ethyl acetate extracts of the 8 different fruit 

products provided information on the absorbance or fluorescence of individual com-

pounds. Close to the solvent front of the separated mango puree extracts (IDs 3,2 and 4,2), 

a yellow zone, most likely carotenoids, was visible (Figure 3A). UV-active compounds 

were comparatively more pronounced in the mango (IDs 3,2; 4,2; 7,2 and 8,2) than pine-

apple product extracts (Figure 3B). Among the mango products, the puree extracts (IDs 

3,2 and 4,2) contained more UV-active compounds than the juice extracts, mainly retained 

in the start area of the adsorbent.  

Figure 2. Investigation of different solvent selectivities for extraction: HPTLC chromatogram at
FLD 366 nm after derivatization with anisaldehyde sulfuric acid reagent (A), at FLD 366 nm before
the bioassay (B) and bioautogram after Aliivibrio fischeri bioassay, depicting bioluminescence after
30 min as grey scale image (C) of methanol (MeOH), mixture of methanol/acetone 1:1 (Mix), acetone,
ethanol (EtOH), ethyl acetate (EtOAc) and acetonitrile (ACN) extracts of puree sample IDs 1 and 3
(Table 2, 0.4 g/mL) applied as area (6.0 × 3.0 mm, 10 µL/area), developed on HPTLC plates silica gel
60 F254 with toluene–ethyl acetate–methanol–formic acid 2.4:1.8:0.7:0.06, v/v/v/v, in twin-trough
chamber 20 × 10 cm (* yellow acetone-soluble conta mination from plastic flask material).

2.4. Physico-Chemical Profiling of the Fruit Product Extracts

The physico-chemical profiling of the ethyl acetate extracts of the 8 different fruit
products provided information on the absorbance or fluorescence of individual compounds.
Close to the solvent front of the separated mango puree extracts (IDs 3,2 and 4,2), a
yellow zone, most likely carotenoids, was visible (Figure 3A). UV-active compounds were
comparatively more pronounced in the mango (IDs 3,2; 4,2; 7,2 and 8,2) than pineapple
product extracts (Figure 3B). Among the mango products, the puree extracts (IDs 3,2 and
4,2) contained more UV-active compounds than the juice extracts, mainly retained in the
start area of the adsorbent.
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Figure 3. Physico-chemical profiling: HPTLC chromatograms at white light illumination (Vis, A),
UV 254 nm (B), FLD 366 nm (C) and after derivatization with anisaldehyde sulfuric acid reagent
(D FLD 366 nm and E Vis) of the puree and juice extracts (IDs 1–8, Table 2, 0.2 g/mL in ethyl acetate,
100 µL/area of 8.0 × 6.0 mm) developed on HPTLC plates silica gel 60 F254 with toluene–ethyl
acetate–methanol–formic acid 2.4:1.8:0.7:0.06, v/v/v/v, in twin-trough chamber 10 cm × 10 cm.

In the FLD 366 nm chromatogram (Figure 3C), a dominantly yellow fluorescent zone
was observed in the solvent front of the mango puree extracts (IDs 3,2 and 4,2). This zone
was also visible and UV-active as mentioned. Tentatively, more blue fluorescent zones were
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observed in the pineapple (IDs 1,2; 2,2; 5,2 and 6,2) than mango products (IDs 3,2; 4,2; 7,2
and 8,2). After derivatization with the anisaldehyde sulfuric acid reagent and detection at
FLD 366 nm (Figure 3D) or with white light illumination (Figure 3E), further components
of the fruit products were detectable. For example, a strongly pink fluorescent (Figure 3D)
or lilac (Figure 3E) compound at hRF 80 was detected only by chemical derivatization,
proving that the commonly used UV/Vis/FLD detection is not sufficient for quality control.
In particular, this compound zone also proved to have multiple bioactivities, as discussed
subsequently. As expected by the natural density of the product and verified by all the
different detection modes, the puree extract samples (IDs 1,2–4,2) were more complex and
rich in natural compounds.

2.5. Effect-Directed Profiling of the Fruit Product Extracts

The effect-directed profiling of the ethyl acetate extracts of the 8 different fruit products
provided information on bioactive components using five different effect-directed assays
(i.e., one chemical, two biological and two enzymatic assays). The DPPH• radical scav-
enging assay (Figure 4A) showed for both mango products (puree and juice) the strongest
radical scavenging (antioxidative) compound zone at the start area and at hRF 37 due to
the ascorbic acid addition. This addition was required during juice production to prevent
the enzymatic browning reaction, and thus, darkening of mango products.
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Figure 4. Effect-directed profiling: HPTLC autograms after DPPH• assay (A), Aliivibrio fischeri
bioassay, instantly and after 30 min (B), Bacillus subtilis bioassay (C), AChE (D, here zones shifted
upwards by 2 mm) and tyrosinase inhibition assays I detected at white light illumination (except
for B: bioluminescence depicted as grey scale image) of puree and juice extracts (IDs 1–8, Table 2,
0.2 g/mL in ethyl acetate, 100 µL/area of 8.0 × 6.0 mm) developed on HPTLC plates silica gel 60 F254

with toluene–ethyl acetate–methanol–formic acid 2.4:1.8:0.7:0.06, v/v/v/v, in twin-trough chamber
10 cm × 10 cm (chromatograms at UV 254 nm and FLD 366 nm before the respective assay detection
in Table S2 from Supplementary Materials).
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Nevertheless, clear differences in the antioxidative response at hRF 60 and hRF 80 were
evident for the two mango cultivars (IDs 3,2 versus 4,2; 7,2 versus 8,2). The comparison
of the two mango products also revealed a difference. The enzymatic or heat treatment
during juice production degraded the antioxidative compound zone at hRF 80 (e.g., IDs 4,2
versus 8,2).

At the same position (hRF 37) as the previously mentioned main antioxidative com-
pound zone (ascorbic acid), the Gram-negative Aliivibrio fischeri bioautogram (Figure 4B)
revealed a dominant bioactive dark zone in both mango products and cultivars which,
however, substantially decreased over the 30 min imaging inspection. This indicated an
acute transient effect, i.e., the energetic metabolism of the bacteria was immediately but
temporarily disrupted by this compound and recovered almost completely after 30 min. In
the pineapple cultivars, two further dominant antimicrobial zones at hRF 58 and 68 were
observed. The similar acute transient effect was observed for the antimicrobial zone at
hRF 68, whereas the antimicrobial zone at hRF 58 increased in activity over the monitored
30 min period. The latter indicated a lasting effect with a delayed increase in the activity
response. Over the monitoring period, a new antimicrobial compound appeared at hRF 80
mainly in both fruit purees, as evident in the 30-min bioautogram. This indicated a delayed
increase in the activity response.

The Gram-positive Bacillus subtilis bioassay (Figure 4C) revealed the same antimicro-
bial compound zone at hRF 80 in both fruit puree extracts. This colorless zone at hRF 80
acting against B. subtilis was also the main inhibitor of the AChE (Figure 4D, IDs 1,2–4,2).
Another weaker AChE inhibiting zone was detected at hRF 60. Both colorless zones were
almost absent in the juice extracts, most likely degraded by the enzymatic or heat treatment
during the juice production. Especially, the mango cultivar NDM (IDs 3,2 and 7,2) revealed
a further AChE inhibiting compound zone at hRF 45.

The tyrosinase inhibition assay (Figure 4E) showed three colorless inhibition zones in
the puree extracts (IDs 1,2–4,2) with the main inhibition zone at hRF 80. This multipotent
compound zone showed already a pronounced activity against B. subtilis and AChE. Vice
versa, the dark zone above (hRF 85) in the mango puree extracts (ID 3,2 and 4,2) triggered
the fruit browning. Another weaker browning-promoting dark zone at hRF 78 was evident
in all puree extracts (IDs 1,2–4,2).

Differences in the activity profiles depending on the fruit processing were evident.
Both purees contained a multipotent zone at hRF 80 (active against both bacteria, AChE
and tyrosinase, Figure 4B–E), which was lost during the production of juice made out
of the puree. This was a more general observation across all the different assays, as the
more apolar bioactive compounds (evident in the upper autogram part) were partially or
totally lost during the production of juice. Although it was expected that puree is richer in
bioactive compounds than juice, the severe loss was surprising. All in all, the bioprofiling
of food products turned out to be a rich source of information with regard to changes in
the activity potential caused by food processing.

3. Materials and Methods
3.1. Chemicals and Reagents

Bi-distilled water was produced using a Heraeus Destamat Bi-18E (Thermo Fisher
Scientific, Schwerte, Germany). Ethyl acetate (≥99.7%) and ammonia (25%) were ob-
tained from Th. Geyer, Renningen, Germany. All amino acids, lithium citrate, all min-
eral salts for producing phosphate-buffered saline (PBS), acetone (≥99.5%), acetonitrile
(≥99.9%), diphenylamine, aniline, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•, 97%),
acetylcholinesterase (AChE) from Electrophorus electricus (≥245 U/mg, 10 kU/vial), bovine
serum albumin (BSA, fraction V, ≥98%) and tyrosinase from mushroom (≥1000 U/mg,
25 kU/vial) were obtained from Fluka Sigma-Aldrich, Steinheim, Germany. 1-Naphthyl
acetate (≥98%) and 2-naphthyl-α-D-glucopyranoside were obtained by AppliChem, Darm-
stadt, Germany. Toluene, ethanol, 2-propanol (all ≥ 99.9%), formic acid (≥98%), sulfuric
acid (96%), diphenylboric acid-2-aminoethylester, 4-methoxybenzaldehyde (anisaldehyde,
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≥97.5%), tris(hydroxymethyl)amino¬methane (TRIS,≥99.9%) and thiazol blue tetrazolium
bromide (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, MTT) were pur-
chased from Carl Roth, Karlsruhe, Germany. Methanol (>99.8%) was purchased from VWR,
Darmstadt, Germany. (2S)-2-Amino-3-(3,4-dihydroxyphenyl) propionic acid (levodopa)
was obtained from Santa Cruz Biotechnology, Dallas, TX, USA. 1-Butanol was from Alfa
Aesar, Karlsruhe, Germany. HPTLC plates silica gel 60 F254 (without F254 for B. subtilis
bioassay), 20 cm × 10 cm, ascorbic acid, potassium disulfite, sodium hydroxide, Gram-
positive soil bacteria Bacillus subtilis subsp. spizizenii (DSM-618), and Folin-Ciocalteu’s
phenol reagent were from Merck, Darmstadt, Germany. Gram-negative marine A. fischeri
bacteria (NRRL-B11177, strain 7151) were bought from the Leibniz Institute DSMZ (Ger-
man Collection of Microorganisms and Cell Cultures), Berlin, Germany. Fruit samples were
from the orchard at Chiang Rai province, Northern Thailand.

3.2. Production of Puree Samples

Ripe pineapples were washed with water, peeled, cut into small pieces and crushed to
form pineapple puree. Then 50 mg/L of sulfur dioxide was added. Ripe mangoes were
also washed, peeled, cut and crushed, but after peeling the seeds were removed. The
mango purees were treated with 40 mg/L of ascorbic acid and 50 mg/L of sulfur dioxide.
Each fruit puree (1 kg) was placed in a polyethylene pouch and stored at −18 ◦C until
further use.

3.3. Production of Juice Samples

The frozen puree of each cultivar was thawed at ambient temperature and treated
with pectinase (400 µL/L; Trenolin®Super DF, Erbslöh, Geisenheim, Germany). The puree
was incubated at 45–50 ◦C for 1 h. Then, it was heated at 70 ◦C for 5 min to inactivate the
enzymes. The juice was separated from the solid material part by centrifugation at 5000× g
at 4 ◦C for 10 min. Juice (100 mL) was filled in a polyethylene bottle and stored at −18 ◦C
until use.

3.4. Physico-Chemical Characterization of the Produced Purees and Juices

The standard parameters were established as follows: total soluble solids (TSS) was
measured by a digital automatic refractometer (Abbemat, Anton Paar®, St. Albans, Aus-
tria). The total saccharide content was enzymatically determined using a Konelab 20XTi
analyzer (Thermo Fisher Scientific, Schwerte, Germany) and its proper kits (EnzytecTM
fluid, Thermo Fisher Scientific). Total acidity and pH were analyzed by a Schott titrator
(Titroline alpha plus, SI-Analytics, Texas City, TX, USA). The content of total phenols
was evaluated by the Folin assay (Singleton and Rossi 1965) using an automatic analyzer
(Konelab 20XTi, Thermo Fisher Scientific). Amino acids were determined by an Amino
Acid Analyzer S433 (Sykam GmbH, Eresing, Germany). All measurements were made
in triplicate.

3.5. HPTLC−UV/Vis/FLD−EDA Analysis of the Produced Purees and Juices
3.5.1. Extraction

For the selection of the extraction solvent, 400 mg each of pineapple (PTW) or mango
(NDM) puree were placed in a 1.5 mL centrifuge tube, mixed and extracted with 1 mL
solvent (methanol, acetone, ethanol, ethyl acetate, and acetonitrile) in the ultrasonic bath
for 10 min. Each suspension was centrifuged (5 min, 11,600× g) and the supernatant
transferred into an autosampler vial (1.8 mL). For effect-directed profiling, the puree (2 g)
and juice samples (2 mL) were extracted with 10 mL ethyl acetate, mixed (vortexed) and
centrifuged (5 min, 3000× g). The supernatant was removed with a Pasteur pipette, was
transferred to a 10 mL glass vial and stored at −18 ◦C until use.
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3.5.2. Sample Application and Development

Instrumentation was used from CAMAG. Plates were cut to smaller pieces using the
smartCUT Plate Cutter. Solutions were sprayed as a band (8 mm) for sugar analysis or as
area (6.0× 3.0 mm for 10 µL or 8.0× 6.0 mm for 100 µL) for other analyses on HPTLC plates
with the Automatic TLC Sampler (ATS) 4. Up to 8 tracks were applied onto an HPTLC plate,
10 cm × 10 cm, with a distance of 10 mm from the lower edge, 15 mm distance from the left
edge and 10 mm distance between the bands. Sample volumes ranged 10 µL for extraction
solvent selection and 100 µL for effect-directed profiling. Development was performed with
a mixture of with toluene–ethyl acetate–methanol–formic acid 2.4:1.8:0.7:0.06, v/v/v/v [31]
up to a migration distance of 60 mm from the lower plate edge in a twin-through chamber.
The chromatogram was dried in a stream of warm air (hair dryer) for 2 min.

3.5.3. Derivatization and Documentation

For derivatization, the HPTLC plate was immersed into the anisaldehyde sulfu-
ric acid reagent (5 mL concentrated sulfuric acid was carefully added to a mixture of
500 µL anisaldehyde, 10 mL acetic acid, and 100 mL methanol) or diphenylamine aniline
o-phosphoric acid reagent (mixture of 70 mL aniline solution, 70 mL diphenylamine solu-
tion, 2% each in acetone, and 10 mL o-phosphoric acid, 85%) using the TLC Chromatogram
Immersion Device. The immersion speed was 3 cm/s and the immersion time 2 s. The
plates were heated at 110 ◦C on the TLC Plate Heater for 5 min. The HPTLC chromatograms
were documented at UV 254, FLD 366 nm and white light illumination (reflection and
transmission mode) using the TLC Visualizer. All data obtained was processed with the
software winCATS, version 1.4.7.2018.

3.5.4. Effect-Directed Detection

The HPTLC plates were immersed into the respective assays using the TLC Chro-
matogram Immersion Device (immersion speed 3 cm/s), heated using the TLC Plate
Heater, and if not stated otherwise, documented using the TLC Visualizer or DigiStore
2 Documentation System. Before application of the biological assays, the chromatogram
was neutralized with ammonia vapor for 5 min and freed from any excess vapor or acidic
mobile phase traces (Automatic Developing Chamber 2; relative humidity control glass
flask filled with dry molecular sieve) for 25 min.

Radical scavenging assay: The chromatogram was dipped in a 0.02% methanolic
DPPH• solution [32] for 5 s (immersion time). The chromatogram was dried in the dark
at room temperature for 90 s, heated at 60 ◦C for 30 s and documented at white light
illumination (reflectance mode), repeated after a day.

A. fischeri bioassay: The nutrient medium for the bacterial suspension was prepared
as described [33]. The dried, neutralized chromatogram was immersed into the suspension
for 3 s. Bioluminescence images (bioautograms) were recorded and processed with the
BioLuminizer software, version 1.0.2.6107. Ten images were recorded over 30 min at time
intervals of 3 min, each over an exposure time of 50 s.

B. subtilis bioassay: The dried, neutralized chromatogram was immersed in the bacte-
rial suspension for 5 s and incubated at 37 ◦C for 2 h [31,34]. For visualization, the plates
were immersed into a 0.2% PBS-buffered MTT solution for 1 s. During the incubation
for 30 min at 37 ◦C, the MTT was reduced to a purple formazan dye, stopped by drying
the plate at 50 ◦C for 5 min. Bioautograms were documented at white light illumination
(reflection mode).

AChE inhibition assay: The dried, neutralized plate was immersed in the enzyme
solution (AChE 666 units and 100 mg BSA in 100 mL 0.05 M TRIS buffer, pH 7.8) for 5 s.
The plate was incubated for 25 min at 37 ◦C according to Akkad and Schwack [35]; Hage
and Morlock [36]. For visualization, the chromatogram was immersed in the substrate
solution (25 mg α-naphthyl acetate and 50 mg Fast Blue salt B in 90 mL ethanol-water, 1:2)
and documented at white light illumination (reflectance mode).
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Tyrosinase inhibition assay: The dried, neutralized plate was immersed in the enzyme
solution (400 U/mL mushroom tyrosinase in 0.02 M phosphate buffer, pH 6.8) for 5 s [37].
The plate was dried for about 2 min and immersed in the substrate solution (L-DOPA,
18 mM in phosphate buffer, pH 6.8) for 3 s, followed by incubation for 15 min at room
temperature. The dried plate was recorded at white light illumination (reflectance mode).

4. Conclusions

The bioactivity patterns revealed multiple bioactive compounds of mango and pineap-
ple purees and juices, self-produced from self-harvested authentic fruits. The bioactivity
assessment can be used to valorize and add value to the plant-based products. It can also be
used with regard to distinct health claims, e.g., based on antioxidative compounds. Some
of the bioactive compounds were not detected by UV/Vis/FLD, but first with the planar
biochemical or biological assays. Effect-directed profiling thus makes product control more
powerful. Since it is a non-targeted method, also unknown effective compounds, which
are not in the focus of current analysis, can be detected. This is of high importance due to
the global food processing chain. Compared to the status quo, product changes caused by
contamination, adulteration, processing, treatments, etc. can be more comprehensively and
easily detected through multi-imaging exploiting an array of different detection techniques.

Supplementary Materials: The following are available online, Table S1: Investigated mobile phases
1–6, Table S2: Chromatograms at UV 254 nm and FLD 366 nm before the respective assay detection.
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