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Abstract: Mycotoxins, the small size secondary metabolites of fungi, have posed a threat to the
safety of medicine, food and public health. Therefore, it is essential to create sensitive and effective
determination of mycotoxins. Based on the special affinity between antibody and antigen, immunoas-
say has been proved to be a powerful technology for the detection of small analytes. However,
the tedious preparation and instability of conventional antibodies restrict its application on easy
and fast mycotoxins detection. By virtue of simplicity, ease of use, and lower cost, phage display
library provides novel choices for antibodies or hapten conjugates, and lead random peptide or
recombinant antibody to becoming the promising and environmental friendly immune-reagents
in the next generation of immunoassays. This review briefly describes the latest developments
on mycotoxins detection using M13 phage display, mainly focusing on the recent applications of
phage display technology employed in mycotoxins detection, including the introduction of phage
and phage display, the types of phage displayed peptide/recombinant antibody library, random
peptides/recombinant antibodies-based immunoassays, as well as simultaneous determination of
multiple mycotoxins.

Keywords: mycotoxins; phage display; scFv; anti-idiotypic nanobody; simultaneous determination

1. Introduction

Mycotoxins are nonvolatile and relatively low-molecular weight secondary metabo-
lites produced by a variety of microscopic fungi. As mycotoxins are natural contaminants
that exist in cereal, vegetables, milk and herbal medicine, they cannot be completely elimi-
nated without damaging food. For fungi, mycotoxins are beneficial and play important
roles in eliminating other microorganisms or invading host tissues. However, for ani-
mals, mycotoxins are acutely or chronically toxic, which interfere with absorption and
metabolism of nutrients, resulting in the damage of endocrine and neuroendocrine func-
tions, or suppression of the immune system [1–3]. Hence, stringent regulations relating to
mycotoxins have been established to protect the consumer from their harmful effects [4].

To date, many food regulatory authorities have set maximum residue limits (MRLs)
for mycotoxins, including EU, USA, China, etc. Even regulated mycotoxins and commodi-
ties, as well as MRLs, vary significantly in different countries; the request for analytical
methods for mycotoxins detection is a worldwide priority. In order to meet the require-
ments of these regulations, many analytic methods for identification and quantification
of mycotoxins have been developed, such as high performance liquid chromatography
(HPLC) [5], liquid chromatography coupled with mass spectrometry (LC-MS) [6], gas chro-
matography coupled with mass spectrometry (GC-MS) [7,8], and so on. Although these
methods provide excellent accuracy and reproducibility, there are still special limitations in
actual practice, such as being relatively high cost, time-consuming, requiring of a skilled
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technical personnel, and any of these weaknesses make them unsuitable for quick and
easy detection.

Alternatively, by the specific interaction of antibodies to mycotoxins hapten, im-
munoassays have particularly attractive properties in mycotoxins detection, for example,
low cost, strong specificity, high sensitivity, fast test and simple operation [9]. Moreover,
antibodies as one of the biorecognition elements, can exploit antibody-antigen interaction
for specific detection of a particular analyte from complex matrices. Depending on the
principles of detection, immunoassay can be mainly divided into four formats, including
direct immunoassay, indirect immunoassay, sandwich immunoassay, and competitive im-
munoassay. Among these assays, sandwich immunoassay is mostly applied for detection
of macromolecules, and competitive immunoassay is usually used for the detection of small
molecules. The competitive immunoassay is frequently applied for low molecular weight
mycotoxin detection, basing on the competitive binding between anti-mycotoxin antibody
and mycotoxin conjugates. Until now, many portable immunoassay techniques have been
developed for detection of small analytes. For instance, the lateral flow immunochromato-
graphic assays (LFIAs), optimal suited for on-site test formats, require only the addition
of the sample and can result in a readable signal [10]. The critical biochemical reagents
in competitive immunoassay are the used antibody and hapten-conjugate. Nevertheless,
the prepare processes of antibodies and the traditionally used hapten-protein conjugates
are complicated, time-consuming, and expensive, which partly restricts their wide range
of application.

On the one side, a large number of antibodies against various mycotoxins have
been produced, such as monoclonal antibodies, polyclonal antibodies, and recombinant
antibodies [11–13]. Nowadays, antibodies continue to be the predominant immunoreagent
and some improvements of preparation have been introduced [14,15]. While validation of
antibodies is often lacking, which may be a major limitation considering the quality and
consistency of antibody-based technologies [16]. Meanwhile, the traditional antibodies
need animal immunizations, longer time and larger expenses, which also influence their
widespread use. On the other side, haptens cannot elicit an immuno response, so many
artificial antigens conjugated with proteins were produced, like bovine serum albumin
(BSA). However, mycotoxins conjugated with proteins still keep toxicity, and may produce
toxic effects on the operators. Furthermore, analyte conjugation can unfavorably affect
antibody recognition, or the release of the analyte moiety from the conjugate might even
cause false positive results [17,18]. In addition, antigen-conjugates are not suitable for a
large scale production with low cost. For example, the expenses of artificial antigen of
fumonisin (FB1)-BSA, zearalenone (ZEN)-BSA and ochratoxin (OTA)-BSA were $193.344,
$20.858 and $77.427, respectively [19].

Peptide mimics and recombinant antibodies are interesting alternatives to overcome
above limitations. Therefore, more and more researchers have shifted the emphasis to
alternatives of antibodies and mycotoxin conjugates. In general, there are two ways. One
conventional approach is to generate anti-idiotype antibodies (AIds), which are raised
against the variable regions of the original antibody or mycotoxins. For example, some
AIds against various mycotoxins have been prepared successfully by monoclonal, poly-
clonal, or alpaca nanoantibody technology, such as FB1, aflatoxin (AFB1), deoxynivalenol
(DON) [20–23].

Another approach to develop AId is via the phage displayed peptide technology.
Phage-displayed peptide, which can mimic the antibody binding site on the antigen, has
been demonstrated to be an alternative to the specific recognition for various targets.
Phage-displayed peptides have been used in a number of applications, containing epitope
mapping [24,25], molecular imaging [26], targeting drug delivery [27,28] and defining the
protein-protein interactions [29,30]. Mimotopes for mycotoxins have also been selected
through using phage display technology [31–34]. The mimotopes have been utilized for the
detection of mycotoxins in the form of phage themselves or synthetic peptides. Moreover,
combined toxic effects of mycotoxins have co-existed in agro-products [35]. So multiplexed
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detection of target analytes are of great significance owning to the advantages of time-
saving, cost-effective, and high-throughput screening. This review focuses on the recent
applications of phage display technology using for toxin detection, including the intro-
duction of phage and phage display, the types of phage displayed peptide/recombinant
antibody library, random peptides/recombinant antibodies-based immunoassays and
simultaneous determination of multiple mycotoxins.

2. M13 Phage Display Technology
2.1. The Structure and Life-Cycle of M13 Bacteriophage

M13 phage is one kind of rod-like filamentous phages with 1 µm long and 6 µm
in diameters. As the demonstration in Figure 1A, a single-stranded DNA (ssDNA) was
encapsuled in a protein tube, which composed mainly of systematically arranged molecules
of pVIII (~2700 copies), named major coat protein. Meanwhile, 5 copies of pIII and pVI
are located at one tip of the particle,5 copies of pVII and pIX are presented at the other tip,
which respectively formed the “head” and “tail” of phage, named minor coat protein [36].
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Figure 1. The basic structure (A) and life cycle (B) of filamentous bacteriophage.

Filamentous bacteriophage can produce vast progenies in a short time without killing
the host, which is different from lytic and lysogenic phages (Figure 1B). Relying on the
adhesion between F pilus of E. coli bacteria and N-terminal domain of pIII, the whole
phage is drawn into the periplasm of the cell. Only ssDNA is injected into the cytoplasm,
and leaving the coat proteins outside. Taking advantage of the host machinery, a double-
stranded replicate form (RF) DNA is synthesized, which provides the template for the
transcription of phage genes and duplication of progeny ssDNAs. Then, all 5 coat proteins
containing signal peptides are synthesized and secreted into the periplasm, where intact
progeny phages are assembled successfully. The ssDNA carrying pV dimers produces
packaging signal, which initiates the self-assembly. The “head” is formed first, while the
“tail” is synthesized at last. The length of phage and number of pVIII are all determined
by the size of ssDNA [37–39]. During the process of self-assembly, coat proteins arranged
ordered in a special pattern. For example, pVIII always retains its N-terminal part outward,
which allows foreign peptides or proteins display on the surface of phage particles.

2.2. Phage Display Technology

Phage display is a technology that can display foreign proteins or peptides on the
surface of phage rods, either on the backbone or on both ends, which can achieve by tar-
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geted insertion of DNA sequence encoding foreign proteins or peptides. More importantly,
foreign proteins or peptides still retain their ability to recognize the molecular targeting
binding site. As early as in 1985, the restriction endonuclease EcoR I was first fused to
pIII as recombinant minor coat proteins by Smith [40]. Subsequently, pVIII and pVI coat
proteins can also be utilized for phage display [41–43] and even double display system is
innovatively proposed [44].

Vectors of M13 bacteriophage used in phage display can be classified into different
types, including type 3 + 3, type 6 + 6 and type 8 + 8 vectors. Among them, the foreign
peptides encoded by the phagemid genome are named phagemid vectors. While the foreign
peptides are encoded by phage genome are called phage vectors. Based on the number
of displayed foreign peptides, phage vectors mainly classified into type 3/8 vectors and
type 33/88 vectors, in which the displayed peptides fused to all copies of coat proteins or a
fraction of them. Absolutely, some novel phage display systems have also been developed
based on above phage or phagemid vectors. As reported by Wang et al. [44], magnetic
nanoparticle-binding peptides and anti-sap2 antibody-binding peptides were separately
displayed on pVIII and pIII to form a bi-functional nano-fibers using for the detection
of Candida albicans. Meanwhile, various phage libraries comprising about 109 variants
are constructed, such as random peptide phage library [45], antibody phage library [46]
and cDNA phage library [47], which lay a foundation for the study of bio-panning of
targeted binding peptides and enzyme evolution. Next, we will review the main types of
phage display libraries reported with respect to mycotoxins detection and discuss their
construction methods, applied ranges, strengths and weaknesses.

3. Random Peptide Using for Mycotoxins Detection
3.1. Random Peptide Libraries

Random peptide libraries are the most common type of phage display library. Origi-
nally, random peptide, also called mimotopes, was applied to discover antibody-binding
ligands whose specificity is not known in advance [48]. By direct insertion of peptide
cDNA between the signal peptide and the N-terminus of the coat protein pIII, degenerate
oligonucleotides can be introduced into the phage genome [39]. Then, random peptides
were displayed on the surface of phage along with the propagating of phage particles. Fur-
thermore, the detailed construction methods of random peptide libraries had been deeply
reviewed by Kehoe and Kay [49]. According to the structure and length of peptide, a linear
random peptide library varying in length from 6 to 43 amino acids and a loop random
peptide library were constructed, respectively. Notwithstanding many random peptide
libraries had been created for now, only few libraries were developed into a commodity
for sell, such as Ph.D.™-12 Phage Display Peptide Library and Ph.D.™-7 Phage Display
Peptide Library Kit.

A random peptide library may display tens of millions of peptide epitope, which
makes phage display derived products play a significant role in the diagnosis and treatment
of diseases. Macromolecules, bacteria, cells, tissues, organs, animals, and even nanoparti-
cles [50–55] can all serve as the targets for bio-panning to obtain specific binding peptides.
Therefore, many peptide mimotopes of mycotoxins have been identified through affinity
selection from phage display libraries (Table 1), such as OTA, AFB1, FB1 and DON et al. In
order to obtain mimotopes with higher affinity, a second generation peptide library had
been constructed based on the identical sequence from the initial random peptide library.
He et al. screened OTA from second-generation peptide library, which could improve the
sensitivity approximately 10-fold [56].
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Table 1. Mycotoxins-binding mimotopes screened from phage display library.

Mycotoxin Library Passenger
Protein Peptide Mimics Linear Range LOD Detection

Principle
Sample
Matrices Ref.

DON Random 7-mer
peptide library pIII SWGPFPF;

SWGPLPF 0.1–10 µg/mL - Competitive ELISA Wheat [31]

AFB1

Random 8-mer
peptide library pIII -PHPWNP-;

-T-HRNW- 4–24 µg/kg - Competitive ELISA Peanut and feedstuff [33]

Random Cys-4/Cys-6 peptide
library pVIII CYMD-C - - Competitive ELISA Groundnut [57]

Ph.D.™-7 Phage
Display Peptide Library pIII HPSDPRH 100–2500 pg/mL - Competitive ELISA Rice, wheat, corn, and

feedstuff [58]

OTA

Random 7-mer
peptide library pIII GMVQTIF 0.005–0.2 ng/mL 0.1 ng/mL Competitive ELISA Corn [32]

Second generation
peptide library pIII AETYGFQLHAMK 0.006–0.245 ng/mL 0.005 ng/mL Chemiluminescent ELISA Corn, rice, and instant coffee [56]

Ph.D.™-7 phage
display peptide library pIII IRPMVXX 200–8000 pg/mL 150 pg/mL Competitive ELISA - [59]

ZEN

Ph.D.™-7 Phage
Display Peptide Library pIII DAVILLM;

HHCHWWH 100–10,000 pg/mL 100 pg/mL Competitive ELISA Wheat, corn, and feedstuff [34]

Random 12-mer
peptide library pIII ESYWATVPWTRH 50–100 µg/kg - Dot-immunoassay Peanut, corn and rice [60]

FB1

Ph.D.-C7C phage
display peptide library pIII E-L-P-T-L 1.77–20.73 ng/mL 1.18 ng/mL Chemiluminescent

Immunoassay
Maize, feedstuff,

and wheat [61]

Random 12-mer
peptide library pIII NNAAMYSEMATD;

TTLQMRSEMADD - 0.21 ng/mL Elispot Immunoassay Maize, feedstuff, and rice [62]

Ph.D.™-12 Phage
Display Peptide Library pIII VTPNDDTFDPFR 17.3–79.6 ng/mL 11.1 ng/mL Microarray-based

Immunoassay Maize and wheat [63]

Phomopsin Random 15-mer phage
display peptide library pIII CTVALCNMYFGAKLD - - Competitive ELISA Lupin seed [64]
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Moreover, several methodologies have been successfully developed for small molecule-
peptide/protein interaction studies based on the inter-disciplinary of biology, chemistry,
physics, etc. For example, through detecting changes of the surface plasma signal excited
by polarized light before and after binding to the immobilized molecule, surface plasma
resonance (SPR) [65,66] can be most popularly applied for the affinity conformation be-
tween peptides and small molecules. In addition, circular dichroism (CD), isothermal
calorimetry (ITC), and docking simulation are also utilized [67–70].

3.2. Random Peptide-Based Mycotoxins Detection

Compared with other analytic methods, immunoassays have several advantages
for rapid test, including higher sensitivity, stronger specificity, facile sample preparation,
and ease of use. As one of immunoassays, ELISA has been used widely for mycotoxin
detection following the development of monoclonal and polyclonal antibodies. However,
the low efficiency of chemical conjugation of mycotoxins to a carrier protein may result
in substantial bridge group interference and cross-reactions [31]. So protein or peptide
mimics as immunochemical reagents have been developed as one possible alternative
of mycotoxins.

Due to the tiny size, random peptides against a special mycotoxin or antibody cannot
be directly immobilized on the solid surface for immunoassay, except in one report where
the synthetic peptide alone was sufficient for binding to the antibody [31]. Actually, ran-
dom peptides were always conjugated with some proteins to form fusion proteins using for
immunoassays. The most direct way, M13 bacteriophage displayed with target peptides
were used as coating antigens. For example, one mimotope peptide P3 (HPSDPRH), the
AFB1 mimotope peptide, was obtained from Ph.D.™-7 Phage Display Peptide Library [58].
The recombinant phage was applied for the detection of AFB1 through an indirect competi-
tive ELISA. Compared with a conventional indirect competitive ELISA with the AFB1-BSA
conjugate, there was no special difference between ELISA methods in accuracy and preci-
sion. Similarly, for another example, 5 mimotopes against MAb 24 specific to aflatoxins
B1 were identified from a random 8-peptide library [33]. The whole phage displayed with
mimotope peptides were also used in an indirect competitive ELISA for analyzing total
aflatoxin concentration with an IC50 value of 14 µg/kg and the linear range of 4–24 µg/kg
(Figure 2A). Moreover, phage-based dot-immunoassay device based on PVDF membrane
strips were also developed and acted as alternatives of 96-well plate [60].
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However, phage-based immunoassays were not suitable for diagnosis due to the fol-
lowing reasons: (1) Phages with filamentous nature are “unconventional” reagents which
can infect E. coli. (2) Peptide linked to the phage particles leads to complex difficulties
in measuring the phage displayed peptide and quality control. (3) Peptide concentration
was not controlled precisely, with the avidity artifacts associated with pentavalent display
on the phage [22]. So mimotope conjugated with special proteins named fusion proteins
were prepared and used as coating antigens in the immunoassay for analyzing mycotoxins
(Figure 2B). For example, a phage clone that recognized anti-fumonisin McAb 1D11 from a
phage random loop constrained heptapeptide library was selected as mimotope peptide
and conjugated with bovine serum albumin as coating antigen [61]. The results for fumon-
isin detection showed that the linear range of the inhibition curve was 1.77–20.73 ng/mL
and the limit of detection was 1.18 ng/mL. In another example, phage displayed peptide
which bind to ani-FB1 antibody from a 12-mer peptide library was selected and conjugated
with maltose binding protein (MBP) to form fusion protein [62]. The fusion protein was
used as a coating antigen to develop a qualitative Elispot assay with a cutoff level of
2.5 ng/mL, and the results was 10-fold more sensitive than that of measurement from
chemically synthesized FB1-BSA conjugates based Elispot immunoassay. In addition, an
on-chip binding inhibition assay based on A2 peptide (VTPNDDTFDPFR) conjugated with
biotin was developed for the detection of FB1 through microassay [63].

Beyond that, colloidal gold strip as a rapid and inexpensive detection method was also
used for rapid detection of mycotoxins with the help of mimotope peptide. Lai et al. [71]
developed a colloidal gold strip using chemically synthesized gold nanoparticles conju-
gated with anti-OTA monoclonal antibodies and the OTA mimotope was screened from
a Ph.D.™-7 phage display peptide library. The results revealed that 10 ppb of OTA was
detected in 10 min, which provides a rapid method without using the mycotoxin.

4. Recombinant Antibody Using for Mycotoxins Detection
4.1. Recombinant Antibody Libraries

Recently, the recombinant antibodies devoid of light chain have emerged as a salient
alternative for immunosensing. Compared with conventional antibodies, the recombinant
antibodies are smaller, such as antigen binding fragment (Fab), heavy chain only antibody
(HcAb), single chain fragment variable (scFv) and a single domain heavy chain antibody
(VHH, termed “nanobody”, Figure 3). Specially, the recombinant antibodies are particularly
apt for genetic manipulation such as large-scale amplification and antibody-protein fusion
to create bi-functional molecules [72]. Depending on the preparation method, there are
mainly two types of recombinant antibody libraries, naive libraries and immune libraries.
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sequence diversity of naive libraries can be designed as desired. Most importantly, the
library is not biased to small antigens. Additionally, good-quality antibodies against
conserved antigens were also yielded from naive libraries [73]. In addition, high-affinity
antibodies against mycotoxins have been isolated from naive libraries, such as AFB1, cit-
rinin (CIT), ZEN, and DON [23,74–77]. However, for some special application, antibodies
from naive libraries showed lower affinity, so immune libraries are generated by amplifica-
tion variable region (V) genes of antibody extracted from plasma cells from immunized
donors. Primarily, animals were immunized with target antigens for the isolation of re-
combinant antibodies. Subsequently, RNA extracted from spleen cells was transcribed into
complementary DNA. Finally, a recombinant library was constructed through amplifying
antibodies genes into appropriate vector. Overall, the above types of libraries are typically
created to obtain an antibody for a specific target (Table 2) [78].

4.2. ScFv Antbibodies Based-Detection Method

The scFv first developed in 1988 is a recombinant protein composed of a variable
region of heavy chain (VH) and a variable region of light chain (VL) of the antibody through
a short peptide [79,80]. Due to the small molecular weight, strong penetration, and high
affinity, scFv has been widely used in tumor therapy, infectious disease prevention and
treatment, food safety residue detection, as well as other fields [81]. Without phage display,
scFv can be generated from spleen cells directly and many of them have been prepared
for mycotoxins detection, such as FB1, ZEN, DON, and CIT [82–85]. The scFv generated
from phage recombinant antibody library were focus on the AB1 detection. For example,
through biopanning to immobilized AFB1-BSA conjugate, two scFv fragments named YM1
C3 and TomI-F6 were generated from non-immunized Yamo 1 library and semisynthetic
libraries (Tomlinson I & J). After analysis of binding sensitivity by competitive ELISA,
the IC50 of YM1 C3 and TomI-F6 was 0.04 µg/mL and 0.14 µg/mL, respectively. Then,
these two scFv DNA fragments were cloned into an AP expression vector to form scFv-
AP fusions, and the competitive ELISA results showed that the binding sensitivity of
YM1 C3-AP (IC50 = 0.034 µg/mL) is approximately 4 fold higher than that of TomI-F6-AP
(IC50 = 0.14 µg/mL). So the YM1 C3-AP was used as a convenient one-step detection
probe for competitive ELISA of AFB1 [86]. For diagnosis, the affinity and sensitivity of
selected scFv to mycotoxins is very important. Hence, a lot of efforts were made to increase
its affinity and sensitivity. Through panning antibodies against AFB1-BSA and AFB1,
Moghaddam et al. found many of the antibodies isolated specifically bound AFB1-BSA,
not soluble AFB1 or BSA [87]. At the same time, similar results were obtained by Chen et al.
Compared to the selection against AFB1-bovine serum albumin conjugate, the isolated
scFvs against AFB1 showed higher specificities for AFB1 [74]. Additionally, two high-
quality scFv antibodiesagainst AFB1 were isolated from synthesized immune scFv library
using 20 hybridoma cell lines by Li et al. Thedis IC50 of 1A7 and 2G7 was 0.02 ng/mL
and 0.01 ng/mL, respectively [88]. Recently, antibody-ligand interactions were analyzed
and improved by Rangnoi et al. through chain-shuffling technique using a naive human
phage-displayed scFv library and a constructed VH/VL chain-shuffled library. One clone
named sAFH-3e3 showing 7.5-fold improvement in sensitivity was obtained [89].
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Table 2. Recombinant antibodies and their performances in immunoassay applications.

Mycotoxin Antibody
Type Library Linear

Range LOD IC50
Detection
Principle

Sample
Matrices Ref.

FB1 scFv VHH library 2.10–76.45 µg/L 8.32 µg/kg 12.67 µg/L Competitive ELISA Corn [82]
ZEN scFv VHH library - - 17 ng/mL Competitive ELISA Corn [83]
DON scFv - - - 8.2 ± 0.6 ng/mL Competitive ELISA Wheat [84]
CIT scFv Mutational phage library 25–562 µg/mL 14.7 ng/mL 120 ng/mL Competitive ELISA Corn [85]

AFB1 scFv Human non-immunized scFv library 0.007–0.2 µg/mL 0.007 µg/mL 0.034 µg/mL Competitive ELISA - [86]
AFB1 scFv Naive recombinant antibody libraries - - Competitive ELISA - [87]
AFB1 scFv Tomlinson libraries I + J 0.4 ng/mL Competitive ELISA [74]
AFB1 scFv positive phage-display library - - 0.01 ng/mL Competitive ELISA - [88]
AFB1 scFv Variable VH/VL shuffled library 0.019–5 µg/mL 0.02 µg/mL Competitive ELISA - [89]

CIT VHH Naive alpaca phage displayed VHH
library 5–300 ng/mL 7.6 µg/kg;

8.6 µg/kg 44.6 ng/mL VHH-based ELISA Wheat,
Rice [75]

OTA VHH - 0.003–0.673 ng/mL 0.001 ng/mL 0.097 µg/mL Competitive ELISA Corn, rice, wheat [90]
OTA VHH VHH Library 0.01–1000 pg/mL 3.7 pg/L, 0.31 ng/mL PD-IPCR Corn, wheat, rice [91]

OTA VHH - 0.06–0.43 ng/mL 0.04 ng/mL 0.13 ng/mL Fluorescencecompetitive
ELISA Rice, oats, barley [92]

15-AcDON VHH VHH library 10–5000 ng/mL 19 ng/mL 0.5 µM Competitive ELISA - [93]

ZEN VHH Naive alpaca phage displayed VHH
library 0.11–0.55 ng/mL 0.08 ng/mL 0.25 ± 0.02 ng/mL PD-IPCR Corn, wheat, rice [76]
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4.3. Anti-Idiotypic Antibody Based-Detection Method

Anti-idiotypic antibody is a secondary antibody that targets the idiotype of the primary
antibody, which sit on the variable regions of immunoglobulins and possess specific
antigenic determinants. Numerous anti-idiotypic antibodies against both large and small
molecules have been developed and applied in diagnostics and immunoassays [94,95].
Interestingly, a type of antibody from camelids completely devoid of light chains (only
heavy chain antibody) was found in 1993 [96]. The variable domain (VH) of such heavy
chain antibodies is formed by only one variable domain (VHH), termed nanobody [97,98].
In virtue of small size, good physical and chemical properties, large scale in production,
and easy manipulating, anti-idiotypic nanobodies have also been developed and used for
diagnostic and therapeutic purposes [99,100].

Absolutely, anti-idiotypic antibodies were also applied in environmental immunoas-
says, including mycotoxins diagnostic. The first research using nanobodies for mycotixins
detection was reported by Wang et al. In their work, the authors constructed an antibody
phage library from the mRNA of an alpaca immunized with an anti-aflatoxin monoclonal
antibody (MAb) 1C11 and isolated VHH antibodies, which applied to immunoassay to-
wards aflatoxin as a coating antigen. The immunoassay with an IC50 of 0.16 ng/mL showed
a good correlation (R2 = 0.89) towards the conventional ELISA method [78]. Normally,
anti-idiotypics nanobodies mimics, selected from recombinant antibodies library or naive
antibodies library, were acted as surrogate antigens which can competitively bind with
homologous antibodies. Then the unbound antibodies with mycotoxins were captured
by the pre-coated nanobodies and detected such as CIT, OTA, 15-acetyl-deoxynivalenol
(15-acDON), ZEN [76,80,91–94].

Besides competing immunoassay, other methods based on nanobodies were also
developed. For instance, phage display-mediated immuno-polymerase chain reaction
(PD-IPCR), a highly promising technique for ultrasensitive analysis of small molecules,
was first described by Zhang et al. and has been applied for mycotoxins detection [101]. As
signal output, PD-IPCR has been reported for ultrasensitive analysis of antigens combining
nanobodies with phage DNA, including noncompetitive phage anti-immuno complex
real-time (RT) PCR [102], phage-based open-sandwich immune-PCR [103] and competitive
phage real-time PCR. For example, Liu et al. [91] constructed an alpaca-derived heavy-
chain antibodies (VHH) library and obtained the clone-28 which showed the lowest 50%
inhibitory concentration. Then, the VHH phage-based RT immuno-PCR was developed
and utilized for the analysis of OTA (detailed process illustrated in Figure 4). The results
displayed that detection limit of the VHH phage-based RT immuno-PCR was 3.7 pg/L
with a linear range of 0.01–1000 pg/mL, indicating the reliability of VHH phage-based
RT-IPCR in the detection of OTA in cereal samples. In the same way, anti-idiotypic VHH
PD-PCR was also supplied for ultrasensitive determination of mycotoxin zearalenone in
cereals. Compared with phage ELISA, the LOD of Z1 (anti-idiotypic VHH phage clone)
based PD-IPCR was 12-fold improved, together with a detection limit of 6.5 pg/mL and a
linear range of 0.01–100 ng/mL [76]. However, PD-IPCR method needs special instrument
(Real time fluorescence quantitative PCR instrument) and a longer assay time (more than
3 h), and it is not suitable for on-site fast detection of mycotoxins.

As an alternative to PCR based analysis, the loop-mediated isothermal amplification
(LAMP) is an innovative technique for rapid and easy detection of target nucleic acids.
Since first reported in 2000, LAMP has been applied in various fields of diagnosis, such
as pathogen detection and disease diagnosis [104–106]. Due to the higher specificity
and efficiency, on-site testing, naked eye identification, and isothermal amplification,
immune-LAMP (iLAMP) assay was exploited for aflatoxin detection. The basic process is
as follows (Figure 5): Firstly, anti-aflatoxin mAb 1C11was pre-coated on the bottom of a
PCR tube. Secondly, the sample extract and nanobody-phage V2-5 were added to the tube
simultaneously with a competition binding between the phage and aflatoxin to mAb 1C11.
Subsequently, the unbound phages were washed away after the incubation. Finally, the
LAMP solutions were added into the tube for amplification for visual detection. The color
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of violet and sky blue respectively means positive and negative result. The visual detection
limits of iLAMP of AFB1, AFB2, AFG1, and AFG2 in peanut samples were 1.6, 1.6, 3.2, and
16 µg/kg, respectively [107].
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5. Simultaneous Determination of Multiplex Mycotoxins

Currently, many techniques have been developed to quantitatively or qualitatively de-
tect multiple mycotoxins, including chromatographic techniques, immunochemical assays
and electrochemical techniques [108–112]. For example, with the help of different myco-
toxin or antibody conjugated fluorescent nanoparticles, multiplexed immunochromato-
graphic assay (mICA) strips were widely developed for the simultaneous monitoring of
multiple mycotoxins, such as gold nanoparticles [113,114], quantum dot microbeads [115],
and amorphous carbon nanoparticles [116]. In the following sections, different multi-
plex immumoassay of mycotoxins using peptide mimotope or recombinant antibodies
are presented.

5.1. Random Peptide-Based Multiplex Detection

Due to rapidity, good specificity, high throughput, convenience and low cost, ICA
is the most commonly used and mature screening platforms for on-site determinations.
ICA requires only the addition of the sample initiating a series of reactions which result
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in a readable signal. ICA had been developed for singleplex and multiplex detection
based on traditional antibodies [117–123]. Recently, a multiplex ICA based on random
peptides was developed for detection of three different mycotoxins. Yan et.al developed an
economical and sensitive QDs and QBs based mICA for the rapid detection of FB1, ZEN,
and OTA without the building-up process of mycotoxin conjugates [19]. QBs conjugated
with anti-FB1 mAb or anti-ZEN mAb, and QDs coupled with anti-OTA mAb, were selected
as fluorescent reporters. Furthermore, phage-displayed FB1, ZEN and OTA mimotope
peptide were monovalently fused to MBP, which were applied onto the test line of the
mICA as the mimetic coating antigen. The immunochromatograghic test is applied with the
competition between mycotoxins in the sample and peptide mimics. The visual detection
limits of peptide-MBP-based mICA could be obtained as 0.25 ng/mL for FB1, 3.0 ng/mL
for ZEN, and 0.5 ng/mL for OTA within 10 min. The proposed mICA was comparable
with UPLC-MS in terms of reliability in detecting FB1, ZEN and OTA.

5.2. Recombinant Antibodies-Based Multiplex Detection
5.2.1. Time-Resolved Fluorescence Immunochromatographic Assay

Time-resolved fluorescence, which used lanthanides as tracers, has a longer fluo-
rescence lifetime that could eliminate the background interference, thus achieving more
sensitive and specific assays. Tang et al. prepared a novel Eu/Tb (III) nanosphere with en-
hanced fluorescence conjugated to anti-idiotypic nanobody and established a competitive
time-resolved strip method for rapid, quantitative, and simultaneous detection of aflatoxin
and zearalenone in maize and its products. The results showed that the half inhibition
concentration was 0.46 and 0.86 ng/mL for AFB1 and ZEN, and the detection limit was
0.05 and 0.07 ng/mL, respectively [124].

5.2.2. Duplex Real-Time PCR Methods

As demonstrated above, PD-IPCR has been an ultrasensitive immunoassay for my-
cotoxins detection. Through the combination of PD-IPCR and RT-PCR, a new detection
platform was developed for simultaneously detecting of aflatoxins and Aspergillus sec-
tion Flavi in stored maize. The quantitative standard curves for simultaneous detection
of aflflatoxins and Aspergillus section Flavi were constructed, with detection limits of
0.02 ng/mL and 8 × 102 spores/g, respectively. The entire process for the simultaneous
detection requires less than 1 day. Therefore, this detection platform provides new ideas
for simultaneous detection of small molecular contaminants and microorganisms [125].

6. Conclusions

Mycotoxins are small size secondary metabolites of fungi, which pose a threat to the
safety of medicine, food and public health. Many novel methods have been developed for
mycotoxins detection, such as antibodies and aptamers [126]. M13 bacteriophage has also
been applied for screening mimotopes of small analytes including mycotoxins as target
recognition element.

In the bio-panning of mimitopes, random peptides library and recombinant antibodies
library were separately constructed with M13 phage display technology and applied to
select desired surrogate antigens or antibodies. It should be noted that both libraries
have their own advantages and disadvantages in the application, and a better choice
should be made according to our own situation. Random peptide library can mimic
continuous or discontinuous (distant in the primary sequence but close in the folded native
conformation) determinants on ligands that specifically bind receptors or other proteins,
and even nonproteinaceous ligands. Random peptide library shows no bias to small
antigens, which makes it a good choice for mycotoxins detection. However, the peptides
from random peptide library may show lower affinity, and recombinant antibody library
will be a better choice because the recombinant antibodies generated from immune donors
inherently have good affinities. Furthermore, after bio-panning, the recombinant antibody
with the highest affinity can be successfully isolated.
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In the application, individual peptides or phage form were rarely used. Instead, ran-
dom peptides were always conjugated with other proteins to form fusion proteins and then
applied for mycotoxins detection. Beyond that, with the help of multi-functional phage
display technology, a versatile biosensor based on M13 phage has been assembled for detec-
tion analysis. For example, M13 phage was decorated with different mimotopes on the tip
and backside of phage bodies, which endows it new features, such as the targeting bound
capacity, the optical property of quantum dot, the accumulation of magnetic nanoparticle,
and so on [127]. Compared with random peptides, recombinant antibodies can be directly
immobilized on the solid surface to bind with antigens. So many recombinant antibodies,
including scFvs and anti-idiotypic antibodies were isolated from recombinant antibody li-
braries and applied for sensitive diagnosis of various mycotoxins through ELISA, PD-IPCR
and iLAMP, etc. Meanwhile, novel immunoregents using for the detection of different
congeners from a mycotoxin group might be generated through recombinant antibodies
in the future. This may be beneficial to detect broad range of mycotoxins. What is more
delightful is that simultaneous detection of mycotoxins was developed based on the phage
display. To some extent, all these results demonstrated the advantages of recombinant
antibody in stronger specificity, higher sensitivity, less time consuming, and superior safety.
However, there are still some challenges to select interested mimotopes binding to small
molecule epitopes. This hampers the more extensive applications of phage display in
mycotoxin detection. Therefore, efforts should be made to cope with the difficulties in
the future.
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