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Abstract: Pomaces of sea buckthorn berry were usually side-products during the processing of juice.
Due to a lack of an economical and effective extraction method, it was typically recognized as waste.
For the purpose of resource utilization, the mechanochemical-assisted extraction (MCAE) method
was applied to develop an ecofriendly extraction method and product with better pharmacology
activity. The parameters were investigated through response surface methodology (RSM) design
experiments. The processing conditions were optimized as follows: amount of Na2CO3 40%, ball-to-
material rate 29:1 g/g, milling speed 410 rpm, milling time 24 min, extraction temperature 25 ◦C,
extraction time 20 min and the solid-to-solution ratio 1:10 g/mL. Under these conditions, the yields
of flavonoids from sea buckthorn pomaces were 26.82 ± 0.53 mg/g, which corresponds to an increase
of 2 times in comparison with that extracted by the heat reflux extraction method. Meanwhile, the
hepatoprotective activity of sea buckthorn pomaces extracts was studied by the liver injury induced
by ip injection of tetracycline. Biochemical and histopathological studies showed that biomarkers
in serum and liver of nonalcoholic fatty liver disease (NAFLD) mice were significantly ameliorated
when sea buckthorn flavonoids extracted by MCAE were used. Altogether, these results demonstrate
that, as a green and efficient extraction, MCAE treatment could increase the extraction yield of sea
buckthorn flavonoids, meanwhile it could exhibit significant activity of improving liver function.
This research provided a new way to use pomaces of sea buckthorn as a functional food. It also has
great value on the comprehensive utilization of nature’s resources.

Keywords: Hippophaë rhamnoides L.; hepatoprotective activity; mechanochemical-assisted extraction;
flavonoids; response surface methodology

1. Introduction

Hippophaë rhamnoides L. is a thorny small tree that is widely distributed throughout
Asia and Europe. The fruit of Hippophaë rhamnoides L., known as “Shaji” (sea buckthorn), is
a common eatable berry with great ecology and economic value around the world. Sea
buckthorn is a kind of berry, which is also a rich source of nutraceuticals for human health.
As a popular drinks, sea buckthorn juice is very popular in China, Russia and Eastern
Europe [1]. However, after producing juice, a large number of pomaces contained high
levels of total flavonoids and were discarded as waste or utilized rather inefficiently [2,3].
Previous research found that the peels, pulp and seeds of sea buckthorn contained different
metabolites [4–6]. The whole berry and pulp extracts exhibited high flavonoid, carotenoid
and polyphenol contents, whereas the seed portion expressed high tocopherol/tocotrienol
and phytosterol concentrations [4]. The study also found that the peels and seed contained
65 metabolites (delphinidin, naringenin, pinocembrin, luteolin and taurine, etc.) and
130 metabolites (purines and nucleotides) that were absent in the juice. The juice contained
exclusively 55 metabolites [5]. Recently, the total flavonoids from sea buckthorn had
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been reported as a functional food for treating cardiovascular diseases, which received
recognition all over the world [7–9]. If high-value flavonoids with better pharmacological
activity can be produced with high efficiency and low energy consumption extraction
methods, the practical application of sea buckthorn pomaces can be broadened.

The traditional extraction methods of flavonoids include heat reflux extraction
(HRE) [10], alkali extraction [11], ultrasound-assisted extraction [12,13], microwave-assisted
extraction [14] and supercritical fluid extraction [15,16], etc. The processes of extracting
flavonoids from sea buckthorn leaves mainly includes solvent extraction [17,18], ultrasonic-
assisted extraction [19,20], microwave-assisted extraction [21], enzyme-assisted extrac-
tion [22] and synergistic extraction [23]. In recent years, the application of mechanochem-
istry as a preliminary treatment has represented a novel tool in the development of phyto-
chemical manufacturing processes.

As an innovative mechanochemistry technique, MCAE has been developed and ap-
plied in the extraction of flavonoids from various natural plants, such as flavonoids from
bamboo (Phyllostachys edulis) leaves [24], rutin from Hibiscus mutabilis L. [25], flavonoids
from Ginkgo leaves [26], flavonoids from Sophora flavescens [27] and flavonoids from
Chrysanthemum [28]. The above research showed that MCAE technology is very suitable
for extracting flavonoids from various natural plants that are unstable for oxidative pro-
cesses. This can reduce the extraction time and increase the extraction yield together. It is
also useful to preserve the bio-activity of the active components, which are unstable due
to oxidation.

From the previous research [23–26], MCAE had been applied to different plant materi-
als to provide highly efficient extraction methods and plant extracts with better bio-activity.
Thus, based on the experience, MCAE has been developed for the extraction of flavonoids
from sea buckthorn pomaces to improve the conventional extraction methods and more
effective extraction. The effects of the main operating parameters on the extraction yields
of flavonoids from sea buckthorn pomaces were investigated. The MCAE method was
compared with the HRE method. Moreover, hepatoprotective activity of total flavonoids
obtained by MCAE was studied on the model of a fatty liver, which was induced by
tetracycline in ICR mice.

2. Results and Discussion
2.1. Optimization of the MCAE Procedure
2.1.1. Effects of Solid Reagent Type and Its Amount

Flavonoids contain lots of phenolic hydroxyl groups. They can be ionized with weak
alkaline-like carbonate by mechanical force in solid states. After MCAE treatment, it can
be dissolved in water quickly, extraction yield of flavonoids will be increased remarkably.
In this experiment, different alkaline agents were chosen as a solid reagent under the
following MCAE conditions: ball-to-material ratio 30:1 g/g, milling speed 400 rpm, milling
time 20 min, extraction time 25 min, extraction temperature 25 ◦C and the ratio of solvent
to solid 10:1 mL/g. Afterwards, the effect of the solid reagent amount (ranging from
10% to 50%) for flavonoids extraction from sea buckthorn was investigated. The relations
between the two parameters and the flavonoids yield of sea buckthorn are displayed in
Figure 1A,B. When milling with Na2CO3, the extraction yield is higher than that with other
solid reagents. A possible reason is that Na2CO3 with better water solubility will be formed
by alkaline additives and flavonoids under mechanical force. Meanwhile, the extraction
yield of flavonoids increased rapidly with increasing the amount of solid reagent (from
10% to 40%). Conversely, after 40%, the increments of flavonoids yields were insignificant.

2.1.2. Effects of MCAE Paraments

Ball-to-material ratio, milling speed and milling time determined energy output of
MCAE, and they also affected the extraction yield directly. Following, these parameters
were optimized individually.
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The effect of the ball-to-material ratio on flavonoids’ extraction yields was determined
under the following extraction conditions: the amount of solid reagent 40%, milling speed
400 rpm, milling time 20 min, extraction time 25 min, extraction temperature 25 ◦C, and
solvent-to-solid ratio 10:1 mL/g. As shown in Figure 1C, when the ball-to-material ratio
was 30:1 g/g, the flavonoids’ extraction yield was maintained at the maximum level.
Thus, the ball-to-material ratio 30:1 g/g was selected as the optimum operating condition
for MCAE.

The effect of ball milling speed on the flavonoid extraction was shown in Figure 1D.
When the ball milling speed was set at 400 rpm, the flavonoids yield reached the maximum
value, and there was no increase in the flavonoids yield thereafter. Theoretically, the
MCAE of the ball mill can continuously destroy the cell wall and promote the reaction of
biologically active substances with solid-phase reagents, thereby greatly improving the
extraction efficiency. However, the ball milling speed at 500 rpm and 600 rpm did not
further improve the entire extraction process. Therefore, a ball milling speed of 400 rpm
was chosen for the rest of the follow-up experiment.
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Milling times were investigated for 5, 10, 20, 30, 40, 50 and 60 min under the same
extraction conditions. Total flavonoid content significantly increased from 12.34 ± 0.67 mg/g
at 5 min to 26.73 ± 0.93 mg/g at 20 min and then slightly fell down, as shown in Figure 1E.
MCAE pretreatment caused particle size reduction and the specific surface area increase,
which makes the flavonoids in sea buckthorn have intimate contact with solid reagents.
However, too long of a milling time could lead to a decrease in the recovery rate of
flavonoids, which is mainly due to their oxidation and partial decomposition. Therefore,
20 min was selected as the optimum milling time.

2.1.3. Effects of Extraction Process

On the basis of optimal milling conditions (ball-to-material ratio 30:1, milling speed
400 rpm, milling time 20 min, amount of Na2CO3 40%), extraction conditions, including
extraction time, extraction temperature and the solid-to-solution ratio, were investigated
preliminary. Figure 1F showed the effect of the extraction temperature on the extraction
yields of flavonoids. It was found that the yields of flavonoids decreased obviously, as the
extraction temperature was raised from room temperature to 100 ◦C. The results showed
that room temperature was an appropriate condition for the experiment. Figure 1G showed
the effect of extraction time on the extraction yields of flavonoids. As the extraction time
was extended from 5 to 20 min, a notable increase in the extraction rate was observed. The
yields were decline when the extraction time was too long, and the optimal extraction time
was 20 min. A possible reason is that the thermal stability of flavonoids is poor, and a high
temperature will cause decomposition. Figure 1H showed the effect of the solid-to-solution
ratio on the extraction yields of flavonoids. A significant increase in the extraction yields
was observed with the solid-to-solution ratio raised from 1:5 g/mL to 1:10 g/mL. At a
bigger solid-to-solution ratio, the yields kept at steady levels.

Through previous single-factor experiments, the ball-to-material ratio (20:1–50:1 g/g),
milling speed (100–400 rpm) and milling time (10–60 min) were selected for RSM. Data were
analyzed using design expert 7.1.6 software for statistical ANOVA, regression coefficients
and regression equation. The polynomial equations, describing the yield of flavonoids (Y)
as a simultaneous function of the milling speed (X1), milling time (X2) and ball-to-material
ratio (X3), are shown in Equation (1).

Y = 26.73 + 0.09X1 + 1.88X2 − 0.45X3 + 0.50X1X2 + 0.19X1X3 + 0.51X2X3 − 1.34X1
2 − 2.50X2

2 − 2.39X3
2 (1)

In order to evaluate the optimal extraction conditions of MCAE for flavonoids and the
relationship between the response and the significant variables, the model was analyzed
by ANOVA. After fitting the experimental data (Supplementary Materials Table S1) to the
quadratic polynomial model, as shown in Table S2, the experimental data fitted well to the
quadratic models. The analysis of variance of the response surface quadratic regression
model showed that the model was highly significant (p < 0.0001) with a high F-value
of 32.31.

Three-dimensional response surfaces using Equation (1) for the yield of flavonoids are
shown in Figure 2. In order to describe the interactive influence of operational variables
on responses, one variable remains unchanged, and the other two variables changed
within a defined range. The shape of the response surfaces and contour plots indicated the
nature and extent of the interaction between different variables. The regression analysis
of the data showed the coefficient of determination (R2) values for flavonoids of 0.9765,
which showed that the model was significant. The adjusted determination coefficient
(Adj R2 = 0.9463) was also satisfactory to confirm the significance of the model. This
showed that Equation (1) was suitable for describing the response of experiments related
to flavonoids.
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To determine the optimal level of the test variables for the yields of flavonoids, the 3D
response surface described by the regression model is shown in Figure 2. By solving the
inverse matrix, the optimal values of the variables affecting the yields of flavonoids given
by the software were milling speed 410.13 rpm, milling time 23.81 min and ball-to-material
rate 29.51:1. The model gave the maximum predicted values of flavonoids (27.10 mg/g)
under these optimal conditions, slightly higher than 26.82 mg/g obtained from the plot
analysis. Considering the operating convenience, the optimal extraction parameters were
determined to be milling speed 410 rpm, milling time 24 min and ball-to-material rate 29:1.

Triplicate experiments were carried out under the determined conditions, and the
yields (26.82 ± 0.53 mg/g) consistent with the predicted value (27.10 mg/g) were obtained,
indicating that the model was suitable for the extraction process of sea buckthorn.

In conclusion, under optimized conditions, the MCAE method to extract sea buckthorn
flavonoids showed significant advantages on the extraction yield and energy consumption.
Compared with the HRE method, the extraction time of MCAE was shortened to only 20%
of the HRE method’s extraction time, as shown in Table 1. Moreover, the MCAE method
adopted water as a solvent, which was much safer and greener. Therefore, MCAE is an
efficient and environmentally friendly alternative to utilize for sea buckthorn pomaces.

Table 1. Comparison of MCAE with HRE methods.

Extraction Methods Extraction Time Extraction Temperature Solvent Amount of Solvent Yield of Flavonoids (mg/g) a

MCAE 24 min 25 ◦C Water 1:10 g/mL 26.82 ± 0.53
HRE 2 h 50 ◦C Ethanol 1:40 g/mL 8.99 ± 0.10

a Data are presented as means ± SD (n = 3).

2.2. Quantitative and Morphology Analyses

Quantitative and morphology analyses were carried out by HPLC and SEM to demon-
strate the advantages of the MCAE method and explain possible mechanisms in this part.

A reverse-phase high-performance liquid chromatography (HPLC) method was devel-
oped for the quantitative analyses of its major constituents rutin, quercetin, and isorham-
netin. In order to develop effective mobile phases, various solvent systems were tested,
including acetonitrile, methanol and different combinations of water with phosphoric acid.
Finally, a solvent system consisting of 0.4% phosphoric acid in water and methanol was
proved to be successful. As shown in Figure S1a, the retention times of rutin, quercetin
and isorhamnetin were 19.317 min, 20.331 min and 21.005 min, respectively. Figure S1b
is the HPLC diagram of sea buckthorn flavonoids extracted by the HRE method (HPG).
Figure S1c is the HPLC diagram of sea buckthorn flavonoids extracted by the MCAE
method (MPG). From those HPLC diagrams, according to the content calculation formula,
the concentrations of rutin (925.14 µg/mL), quercetin (1091.1 µg/mL) and isorhamnetin
(433.86 µg/mL) in MPG were obviously higher than HPG, especially those insoluble
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flavonoids (quercetin, and isorhamnetin). This result fully expressed the advantage of the
MCAE method on sea buckthorn flavonoids’ extraction.

Furthermore, morphology analyses of sea buckthorn samples treated before and
after MCAE are shown in the following. Figure 3A,B shows the micrograph of raw
sea buckthorn powder, which has a bigger particle size, an unbroken cell structure and
highly rough surfaces. However, after MCAE treatment (Figure 3C,D), the particle size
of sea buckthorn samples was obviously reduced, and the cell structure of sea buckthorn
was almost destroyed. Thus, water was efficiently permeated into the cell wall, and the
extraction yield significantly increased simultaneously.
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2.3. Pharmacology Study

Sea buckthorn flavonoids had been reported as a functional food for NAFLD. Herein,
NAFLD mouse model was applied to compare liver protection effect between MPG and
HPG. Through body weight, liver index, serum index and histopathological studies, excel-
lent liver protective activity of MPG was fully demonstrated.

2.3.1. Body Weight

The body weights of the mice were recorded every day. As shown in Figure 4A, the
body weights of mice in the normal control group (NCG), NAFLD model group (NMG),
MPG group (MPG), HPG group (HPG) and curcumin control group (CCG) all showed
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an increasing trend. The initial weights of NMG were slightly lower than that of the
normal group.
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2.3.2. Liver Index

The ratio of wet liver weight to the body weight of the mouse reflects the accumulation
of lipids in the liver. The liver index of the NMG was increased by 38.80% compared to
the normal control group (*** p < 0.005). NMG, MPG, HPG and CCG decreased by 29.85%,
29.13% and 36.40%, respectively (*** p < 0.005, *** p < 0.005, **** p < 0.001). The liver index
of the mice is shown in Figure 4B.

2.3.3. Serum Index

The serum triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL-C),
high-density lipoprotein (HDL-C), aspartate aminotransferase (AST) and alanine amino-
transferase (ALT) of NMG significantly increased compared with NCG. Compared with
NMG, the serum TG, TC, LDL-C, AST and ALT of MPG, HPG and CCG significantly
reduced. The serum index experiment results are shown in Figure 4C–H (* p < 0.05;
** p < 0.01; *** p < 0.005; **** p < 0.001).

2.3.4. Liver Index

As shown in Table S3 and Figure 4I–L, the liver TG, TC and LDC-C of NMG signif-
icantly increased compared with NCG, while the HDL-C significantly decreased. The



Molecules 2021, 26, 7615 8 of 14

liver TG of MPG and CCG were significantly reduced compared with NMG. The liver
TG of HPG was reduced. The liver TC and LDC-C of MPG significantly reduced, while
the liver TC and LDC-C of HPG and CCG reduced. The HDL-C of MPG, HPG and CCG
significantly increased (* p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001).

From the above results, it can be seen that MPG has a significant therapeutic effect on
fatty liver in NAFLD mice, and it has a better effect than curcumin.

2.3.5. Histopathological Studies

The results of the histopathological examination are shown in Figure 5. Histopatholog-
ical studies of NCG liver sections showed regular cell structures with different hepatocytes,
sinusoidal spaces and central veins (Figure 5A). Hepatocytes were polygonal cells with
retained cytoplasm and obvious nuclei. On the other hand, in the NMG, the histologi-
cal examination showed structural loss, inflammation and congestion with cytoplasmic
vacuolation, fat changes, sinusoidal dilation and necrosis of the lobule center. It also
showed collagen bundles around the lobules, resulting in huge fibrous septa and distorted
tissue structure (Figure 5B). Animals treated with the MPG showed that the hepatic cords
were arranged neatly, no obvious expansion or squeezing of the liver sinusoids and no
obvious inflammation; a large number of hepatocytes were widely seen to be cytoplasmic
vacuolation (Figure 5C). Animals treated with the HPG showed that the hepatic cords were
arranged neatly, and the liver sinusoids were not significantly expanded or squeezed; more
hepatocytes were seen in the tissue, and the cytoplasm was slightly loose; lymphocytes
and neutrophil infiltration were rare (Figure 5D). Histopathological studies also showed
better recovery of NAFLD by flavonoids from sea buckthorn as compared to curcumin
(Figure 5E).

Molecules 2021, 26, x FOR PEER REVIEW 8 of 14 
 

 

2.3.4. Liver Index 
As shown in Table S3 and Figure 4I–L, the liver TG, TC and LDC-C of NMG signifi-

cantly increased compared with NCG, while the HDL-C significantly decreased. The liver 
TG of MPG and CCG were significantly reduced compared with NMG. The liver TG of 
HPG was reduced. The liver TC and LDC-C of MPG significantly reduced, while the liver 
TC and LDC-C of HPG and CCG reduced. The HDL-C of MPG, HPG and CCG signifi-
cantly increased (* p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.001). 

From the above results, it can be seen that MPG has a significant therapeutic effect 
on fatty liver in NAFLD mice, and it has a better effect than curcumin. 

2.3.5. Histopathological Studies 
The results of the histopathological examination are shown in Figure 5. Histopatho-

logical studies of NCG liver sections showed regular cell structures with different hepato-
cytes, sinusoidal spaces and central veins (Figure 5A). Hepatocytes were polygonal cells 
with retained cytoplasm and obvious nuclei. On the other hand, in the NMG, the histo-
logical examination showed structural loss, inflammation and congestion with cytoplas-
mic vacuolation, fat changes, sinusoidal dilation and necrosis of the lobule center. It also 
showed collagen bundles around the lobules, resulting in huge fibrous septa and distorted 
tissue structure (Figure 5B). Animals treated with the MPG showed that the hepatic cords 
were arranged neatly, no obvious expansion or squeezing of the liver sinusoids and no 
obvious inflammation; a large number of hepatocytes were widely seen to be cytoplasmic 
vacuolation (Figure 5C). Animals treated with the HPG showed that the hepatic cords 
were arranged neatly, and the liver sinusoids were not significantly expanded or 
squeezed; more hepatocytes were seen in the tissue, and the cytoplasm was slightly loose; 
lymphocytes and neutrophil infiltration were rare (Figure 5D). Histopathological studies 
also showed better recovery of NAFLD by flavonoids from sea buckthorn as compared to 
curcumin (Figure 5E). 

 
Figure 5. Liver slices of (A) NCG; (B) NMG; (C) MPG; (D) HPG; (E) CCG. Eight animals of each group were investigated 
(proliferative connective tissue: red arrow; loose cytoplasm: black arrow; cytoplasmic vacuolation: yellow arrow; lympho-
cytes and neutrophil infiltration: blue arrow). 

From the above results, it can be seen that MPG has a significant therapeutic effect 
on fatty liver in NAFLD mice, better than HPG even better than curcumin. This result 
shows that besides enhancing the extraction yield, the MCAE method also raised the phar-
macology activities of sea buckthorn flavonoids. 

Figure 5. Liver slices of (A) NCG; (B) NMG; (C) MPG; (D) HPG; (E) CCG. Eight animals of each group were investi-
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From the above results, it can be seen that MPG has a significant therapeutic effect
on fatty liver in NAFLD mice, better than HPG even better than curcumin. This result
shows that besides enhancing the extraction yield, the MCAE method also raised the
pharmacology activities of sea buckthorn flavonoids.

These above results were consistent with the results reported in the literature that rutin
and quercetin exhibited hepatoprotective effects [29–37]. Liu et al. [29] tried to investigate
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the molecular mechanisms underlying rutin’s hypolipidemic and hepatoprotective effects
in NAFLD. The experimental data demonstrated that rutin could reduce TG content
and mitigate oxidative injuries in fat-enriched hepatocytes. Pan et al. [30] showed that
dietary rutin supplementation had a beneficial effect against cholestatic liver injury, as
evidenced by the alleviation of histopathological changes and the improvement of serum
bio-chemicals, such as AST, ALT, total bilirubin, TG, TC and total bile acids, using a rat bile
duct ligation model. Domitrovic et al. [31] investigated the mechanisms underlying the
protective effects of rutin and its aglycone quercetin against CCl4-induced liver damage
in mice. The results demonstrated that rutin and quercetin could ameliorate acute liver
damage by at least four mechanisms: acting as scavengers of free radicals, inhibiting NF-κB
activation and the inflammatory response, exerting antifibrotic potential and inducing the
Nrf2/HO-1 pathway. The rutinoside moiety in position 3 of the C ring could be responsible
for more pronounced protective effects against iNOS induction, nitrosative stress and
hepatocellular necrosis. Miltonprabu et al. [32] analyzed the available literature regarding
the hepatoprotective effects of quercetin with special emphasis on its mechanisms of action.
The data showed that quercetin appears to be a promising hepatoprotective compound.
Sotiropoulou et al. [33] clearly demonstrated that quercetin had potent antioxidative stress
action and inhibitory effects on hepatocyte apoptosis, inflammation, and generation of
reactive oxygen species, factors which were linked to the development of the disease.
Ying et al. [34] also showed that oral administration of quercetin at doses of 30–60 mg/kg
to hyperlipidemic rats for 14 days was highly effective in decreasing the levels of serum
TC, TG, LDL-C, ALT and AST. Fuentes et al. [35,36] also investigated the potential of the
quercetin oxidation metabolite to protect Caco-2 monolayers against oxidative stress (OS)
and the loss of the intestinal epithelial barrier function (IEBF) in Caco-2 cell monolayers.

3. Materials and Methods
3.1. Plant Materials and Chemicals

The fresh fruits of sea buckthorn used in this experiment were provided and identified
by Qinghai Nationalities University. They were stored in the −18 ◦C freezer until use.

Reference substances of rutin (purity ≥ 98%), quercetin (purity ≥ 98%), isorhamnetin
(purity ≥ 98%) were purchased from Shanghai yuanye Bio-Technology Co., Ltd. (Shanghai,
China). Ultrapure water was produced by Barnstead TII super Pure Water System (MA,
USA). D101 macroporous resin was purchased from Tianjin Bohong Resin Technology Co.,
Ltd. (Tianjin, China). All other analytical grade chemicals used in this experiment were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

High-fat feed was purchased from SPF (Beijing, China) Biotechnology Co., Ltd.
(Beijing, China). All detection kits (total cholesterol test kit, triglyceride detection kit,
protein carbonyl detection kit, high-density lipoprotein cholesterol detection kit, low-
density lipoprotein cholesterol detection kit, aspartate aminotransferase detection kit,
alanine transaminase detection kit and Bradford protein detection kit) were purchased
from Nanjing Jiancheng Bioengineering Research Institute (Nanjing, Jiangsu, China).

3.2. Pretreatment and Mechanochemical-Assisted Extraction (MCAE)

Fresh fruits of sea buckthorn were juiced by a single-screw press, and residues were
collected and fully dried below 5% water contained. Then, sea buckthorn residue was
defatted with petroleum ether and dried to constant weight at 50 ◦C.

Defatted sea buckthorn pomaces (5.0 g) and different amounts of solid reagent
(10–50%) were added into PM400 high-intensity planetary activator (grinding media:
stainless steel balls of 8 mm diameter; weight of balls: 4.2 g; two drums and 50 mL each; the
volume of load/drum ratio: 1:2). After milling for several minutes (5–60 min), the powder
was extracted with an appropriate volume of water (1:5–1:60 mL/g) with a certain temper-
ature (25–100 ◦C) and time (5–120 min). Then the mixture was clarified by centrifugation
at 2000 rpm for 10 min. The supernatant was adjusted to pH 6.0 with 10% hydrochloric
acid. Lastly, the liquid product was condensed and centrifuged at 2000 rpm for 10 min
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to collect crude total flavonoids and analyzed by UV and HPLC analysis. The analysis
and further process are shown in Figure 6. The technological parameters, such as solid
reagent type and its amount, ball-to-material ratio, milling speed, milling time, extraction
temperature, extraction time, and the solid-to-solution ratio, were optimized in terms of
flavonoids yield.
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3.3. Total Flavonoids Determination

Total flavonoids content was determined by the NaNO2–Al(NO3)3–NaOH colorimetry
method. The resulting red aluminum complex was then measured at 510 nm. Rutin was
used as a standard for the calibration curve. The total flavonoid content was calibrated
using the linear equation based on the calibration curve.

3.4. Purification of Total Flavonoids and HPLC Analysis

The crude extract of total flavonoids extracted by MCAE was dissolved in water. The
concentrated filtrate was loaded with a peristaltic pump using a wet packing column at
a rate of 0.5 BV/h. Stay and adsorb for 8 h, then sequentially eluted with 1 BV purified
water, 2 BV 30% ethanol and 2 BV 60% ethanol at a speed of 1 BV/h, respectively. Each
gradient eluate was collected, concentrated, freeze-dried and named S0, S30, S60.

HPLC analysis was used to determine the flavonoid (rutin, quercetin and isorham-
netin) content in the sea buckthorn pomaces extracts. The analytical separation was
performed on an Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) with a Welchrom®

C18 column (4.6 mm × 250 mm, 5 µm, Welch, China). Solvent A (0.4% phosphoric acid)
and solvent B (methanol) were selected as the mobile phases. Gradient elution was used as
follows: 0–10 min, 15% B; 10–15 min, 15–85% B; 15–25 min, 85% B; 25–30 min, 85–15% B;
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30–35 min, 15%. The injection volume was 10 µL, the flow rate was 1.0 mL/min and the
column temperature was maintained at 25 ◦C. The signal was monitored at 254 nm.

The peaks were characterized by comparing the retention time with the standards.
The internal standard method was used to calculate the content of each compound with
the IS of para-aminobenzoic acid. The standard solutions were prepared as follows: rutin
(50 µg/mL), quercetin (50 µg/mL), isorhamnetin (50 µg/mL) and para-aminobenzoic acid
(20 µg/mL). The content calculation formula was as follows:

Correction factor f =
As/ms
Ar/mr

As: The peak area of IS; Ar: The peak area of standard; ms: The amount of IS added;
mr: The amount of standard added.

Sample content mi = f × Ai
As/ms

Ai: The peak area of analyte; As: The peak area of IS; ms: The amount of IS added.

3.5. Scanning Electron Microscopy (SEM)

The morphological alterations of raw samples and obtained from the MCAE method
were observed by SEM using ZEISS Gemini 500 field SEM (Carl Zeiss AG, Jena, Germany).

3.6. Animals

From the Zhejiang Academy of Medical Sciences (Hangzhou, China), 40 SPF-grade
male ICR mice (5–6 weeks old) were kept at an animal room (ambient temperature of
22 ± 2 ◦C, relative humidity of 55 ± 5%, 12 h light/dark cycles). They were observed for
one week in the Experimental Animal Center of the Zhejiang Province (Hangzhou, China)
before starting the experiments. They were fed with freely available food and water and
fasted with free access to water for 12 h before drug administration. The experimental
protocols involving animals strictly followed the Guide for the Institutional Animal Care
and Use Committee of Zhejiang University of Technology Laboratory Animal Center
(20190927083). The animals were randomly divided into 5 groups of 8 mice each and
treated as follows.

Group A (NCG): ordinary feed + saline (ip) for 5 days + purified water for 15 days.
Group B (NMG): high-fat diet + tetracycline saline (150 mg/kg, ip) at 10 am daily for

5 days + purified water for 15 days.
Group C (MPG): high-fat diet + tetracycline saline (150 mg/kg, ip) for 5 days + MCAE

flavonoids (200 mg/kg, po) for 15 days.
Group D (HPG): high-fat diet + tetracycline saline (150 mg/kg, ip) for 5 days + HRE

flavonoids (200 mg/kg, po) for 15 days.
Group E (CCG): high-fat diet + tetracycline saline (150 mg/kg, ip) for 5 days + curcumin

(200 mg/kg, po) for 15 days.
The body weights of all mice were measured every day. All mice were sacrificed

12 h after the last treatment and overnight fast. Blood samples were collected, and serum
was separated for assay of the liver biomarker. The liver was harvested, washed with
physiological saline and blotted dry with filter paper, then weighed. Gross examination
was conducted to examine any abnormalities developed in the organs. Subsequently, the
livers of all mice were subjected to histopathological examination in a blinded manner.

3.7. Biochemical Examination and Histopathological Studies

The collected blood samples were separated at 3000 rpm for 10 min. TC, TG, HDL-C,
LDL-C, AST, ALT and liver biochemical indicators were assayed by standard automated
techniques according to the procedures [38].

The liver was sliced, and pieces were fixed in 10% buffered formaldehyde solution
for histological study. The fixed tissues were processed by an automated tissue processing
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machine. Tissues were embedded in paraffin wax by conventional methods. Sections of
4 µm in thickness were prepared and then stained with hematoxylin eosin [39]. Afterwards,
the sections were observed under the microscope for histopathological changes, and their
photomicrographs were captured.

3.8. Statistical Analysis

All values were expressed as mean ± SEM. Statistical analysis was performed using
Prisma 6 software (PRISMA Technology Inc., Chicago, IL, USA). Data were evaluated for
significance one-way analysis of variance (ANOVA) followed by Bonferroni’s multiple
comparison test. A value of p < 0.05 was considered to be significant.

4. Conclusions

In this study, the MCAE technology was used to extract flavonoids from sea buck-
thorn pomaces. The optimal operating parameters were determined by response surface
methodology design experiments. Under these optimal conditions, the experimental value
agreed with the predicted value, indicating the success of RSM for optimizing flavonoids
from sea buckthorn pomaces. The sea buckthorn flavonoids extracted by the MCAE
method performed significant hepatoprotective activity that was proven by biochemical
and histopathological analyses. Based on the results, MCAE has notable advantages of
reducing organic solvent, saving time and using a low temperature with higher efficiency;
thus, the method represents a valuable alternative to the traditional HRE for the prepa-
ration of flavonoids. Meanwhile, the present investigation indicates flavonoids extracted
by MCAE may be more effective than flavonoids extracted by HRE for the treatment of
NAFLD. A possible mechanism was related to a higher concentration of different flavonoids
in the extract. In conclusion, this study provided a novel method for utilizing sea buckthorn
pomaces in an economical and eco-friendly way. Meanwhile, it will also be very valuable
for the development of sea buckthorn flavonoids’ health food and products.

Supplementary Materials: The following are available online, Figure S1. HPLC analysis results:
(a) internal standard and references; (b) the HPLC diagram of sea buckthorn flavonoids extracted by
the HRE method (HPG); (c) the HPLC diagram of sea buckthorn flavonoids extracted by the MCAE
method (MPG). Table S1. Box–Behnken experiment design with the independent variables. Table S2.
Regression model significance and analysis of variance. Table S3. Effect of NAFLD, curcumin and
sea buckthorn pomaces extract on biochemical parameters in tetracycline liver cirrhosis mice.
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